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 EFFICIENT TWO-PARAMETER ESTIMATOR  
IN LINEAR REGRESSION MODEL 

Ashok V. Dorugade1 

ABSTRACT 

In this article, two-parameter estimators in linear model with multicollinearity are 
considered. An alternative efficient two-parameter estimator is proposed and its 
properties are examined. Furthermore, this was compared with the ordinary least 
squares (OLS) estimator and ordinary ridge regression (ORR) estimators. Also, 
using the mean squares error criterion the proposed estimator performs more 
efficiently than OLS estimator, ORR estimator and other reviewed two-parameter 
estimators. A numerical example and simulation study are finally conducted to 
illustrate the superiority of the proposed estimator.  

Key words: multicollinearity, ridge regression, two-parameter estimator, mean 

squared error. 

1.  Introduction 

The ordinary least squares (OLS) method is one of the most important ways 
for estimating the parameters of the general linear model. Because of its 
simplicity and rationality, the results are obtained when specific assumptions are 
achieved. But if these assumptions are violated, OLS method does not assure the 
desirable results. Multicollinearity occurs when two or more than two explanatory 
variables are correlated with each other. To solve this problem, various biased 
estimators were put forward in the literature. The ordinary ridge regression (ORR) 
proposed by Hoerl and Kennard (1970a) is the most popular biased estimator. 
However, ORR estimator has some disadvantages; mainly it is a nonlinear 

function of the ridge parameter k . This leads to complicated equations when 

selecting k . To solve such difficulty, Liu (1993) then proposed the estimator 

called Liu estimator (LE). As seen, LE is a linear function of the ridge parameter 

d  and thus it is more convenient to choose d  than k . Liu (2003) suggested two 

Liu-type estimators and proved that these estimators have some superior 
properties over RR estimator under the mean squared error (MSE) criterion. 
However, it is difficult to determine which is better between them.  

Some other popular numerical techniques to deal with multicollinearity are the 
ridge regression due to Singh and Chaubey (1987), Liu (1993), Akdeniz and 
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Kaciranlar (1995), Crouse et al., (1995), Kaciranlar et al., (1999), Ozkale and 
Kaciranlar (2007), Yang and Chang (2010), Wu and Yang (2011),  Dorugade 
(2014) and others. 

In this paper, a new method for estimating the parameters in linear regression 
model with multicollinearity problem is proposed. The rest of this paper is 
organized as follows. The model and some well-known estimators are reviewed in 
Section 2. The efficient two parameter estimator is introduced in Section 3. 
Performances of the proposed estimator with respect to the scalar MSE criterion 
are discussed in Section 4. In Section 5, the methods of choosing the parameters 
were discussed. A simulation study to justify the superiority of the suggested 
estimator is given in Section 6. Some concluding remarks are given in Section 7. 

2. Model and estimators 

Consider the linear regression model 

  XY ,                                                    (1) 

where Y is a n×1 random vector of response variables, X is a known n×p matrix 

with full column rank,  is the vector of errors E() = 0 and Cov() = 2 In. ,  is a 

p×1  vector of unknown regression parameters and 2 is the unknown variance 

parameter. For the sake of convenience, it was assumed that the matrix X and 

the response variable Y are standardized in such a way that XX '  is a non-

singular correlation matrix and YX '  is the correlation between X and Y.  

Let   and T be the matrices of eigen values and eigen vectors of XX ' , 

respectively, satisfying XTXT ''
 =    = diagonal ( 1 , 2 ,..., p ),    with 

i  

being the ith eigen value of XX '  and TT '
 = 

'TT  = Ip We obtain the equivalent 
model  

       ZY ,                                                   (2) 

where Z = XT , it implies that ZZ '
 = , and α = 'T    (see Montgomery et al., 

2006).            

Then, OLS estimator of α is given by 

            YZZZOLS

'1' )(ˆ  =
1 YZ ' .                                     (3) 

Therefore, LS estimator of β is given by 

OLSOLS T ˆˆ   

However, it is well-known that OLS estimator performs poorly when 
multicollinearity exists. In order to control the instability in least squares estimates, 
Hoerl (1962), Hoerl and Kennard (1968) and then Hoerl and Kennard (1970b) 
suggested an alternative estimate of the regression coefficients namely ridge 
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regression as obtained by adding a positive constant (or ridge parameter) k  to 

the diagonal elements of the ordinary least square estimator. It is given as: 

ORR̂ =    OLSkIkI ̂
1

                                       (4)  

Therefore, ORR estimator of β is given by 

ORRORR T ˆˆ   

The literature has shown that some ridge estimators are based on a single 
ridge parameter while some are based on two ridge parameters. Some of the 
well-known methods used for estimation are listed below. 

The Jackknifed ridge regression estimator introduced by Singh and Chaubey 
(1987) is defined by 

JRR̂ =    OLSkIkI ̂
22 

                                   (5)  

Liu (1993) introduced a biased estimator, which is defined by 

          Liu̂ =     OLSdII ̂
1




                                 (6)  

The almost unbiased Liu estimator introduced by Akdeniz and Kaciranlar 
(1995) is defined by 

AUL̂ =    YXdII '122
)1( 

 .                            (7)  

Crouse et al., (1995) defined unbiased ridge estimator given by 

           





p

i

iURR pJwherekJYZkI
1

'1
ˆˆ  .                   (8) 

Ozkale and Kaciranlar (2007) introduced a two-parameter estimator, which is 
defined by  

           TP̂ =     OLSkdIkI ̂
1




.                                (9) 

The ridge parameter 




p

i

ipk

1

22 ˆˆ   given by Hoerl et al. (1975) performs 

fairly well and the well-known estimate of ‘ d ’proposed by Liu (1993) is given as:    






p

i

iiii

p

i

iid

1

222

1

222 )1()ˆˆ()1()ˆˆ(  . 

The above calculated values of k  and d  are used to determine estimators 

given in (5) to (9), where, i̂  is the ith element of OLS̂ ,   pi ,...,2,1  and 
2̂  is 

the OLS estimator of 
2 i.e. 

2̂ )1()ˆ( '''  pnYZYY  .                                        
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In the context of two-parameter estimator, Yang and Chang (2010), Wu and 
Yang (2011) have recently suggested two-parameter estimator’s alternative to LS 
estimator in the presence of multicollinearity. These estimators are given as: 

Yang and Chang (2010) suggested new two-parameter (NTP) estimator, 
given by 

NTP̂ =      YZkIdII '11 
                          (10) 

where, 




p

i

ipk

1

22 ˆˆ    and   

    

 












p

i

iiii

p

i

iiiiii

k

kkk

d

1

2222

1

22222

)()1()ˆˆ(

)()1(ˆˆ)1(





. 

Also, MSE of  NTP̂  is given as: 

     NTPMSE ̂ 
 

















p

i ii

ii

k

d

1
22

2
2

)()1(

)(




 +

 

 














p

i

i

ii

i

k

kdk

1

2

22

2

)()1(

)1(





.      (11) 

Wu and Yang (2011) introduced always unbiased two-parameter (AUTP) 
estimator, which is defined by 

AUTP̂ =   TPTP kIdk  ˆ)1(ˆ 1
                         (12) 

where, 






  22 ˆˆˆmin1  iid       and     





   ˆˆˆ)1(ˆ 22
iii dk . 

Also, MSE of  AUTP̂  is given as: 

 AUTPMSE ̂
 

 
 


















p

i ii

ii

k

dkdk

1
4

22
2 )2()2(




 +

 
 















p

i

i

i k

dk

1

2

4

44 )1(



.       (13) 

Recently, Dorugade (2014) introduced a modified two-parameter (MTP) 
estimator, which is defined by 

   OLSMTP kdIkdIkdIdkI  ˆ)())(1(ˆ 11             (14) 

Where, 




p

i

ipk

1

22 ˆˆ        and  
  


 










 


p

i i

iiii

k

k
d

1
2

22

ˆ

ˆˆˆ




.    

Also, MSE of  MTP̂  is given as: 

            MTPMSE ̂
 

 
 

















p

i i

ii

kd

k

1
4

2
2




 +

 
 

 
















p

i

i

i

i

kd

kddk

1

2

4

222 )21(





.       (15) 

All the above methods of estimating   are used in Section 6. 
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3. Proposed estimator 

Hoerl and Kennard (1962) first suggested that to control the inflation and 
general instability associated with the least squares estimates.  The relationship 
of a ridge estimate to an ordinary estimate is given by the alternative form. It is 
observed that OLS is unbiased but has inflated variances under multicollinearity. 

Due to the complicated nature of the ridge parameter k , in the ridge regression 

method, Liu (2003) proposed a two-parameter estimator. In this article we 
introduce the efficient two-parameter estimator, which can be computed in two 
steps. Initially, following the similar method proposed by Liu (1993), Kaciranlar et 
al., (1999) and Yang and Chang (2010), we introduce the two-parameter 
estimator as: 

*̂ =   YZIdk '1
)1(


 .                                      (16) 

Hoerl and Kennard (1970a) pointed that ORR avoids inflating the variances at 

the cost of bias by pre-multiplying 
OLS̂  with the matrix ])([ 1 kIkI  to reduce 

the inflated variances in OLS. The proposed estimator is based on this same logic 

by pre-multiplying 
*̂ with the matrix ])([ 1 kIkI . This is defined in 

equation (17) as : 

*1 ˆ])([ˆ   kIkIETP
,                                    (17) 

or 

OLSETP IdkkI  ˆ]))1(()([ˆ 112   . 

Equation (17) is termed as Efficient Two-Parameter (ETP) estimator of   . 

Thus, the coordinate wise estimators can be written as                

 pi
dkk

i

ii

i
iETP ,...,2,1ˆ

))1()((
ˆ

2











 




                 (18)   

where i̂  are the individual components of 
OLS̂ . 

We can see that it is a general estimator which includes the OLS and ORR 
estimators as special cases: 

       at   dk ,0     OLSETP  ˆˆ    the OLS estimator, 

       at   1, dk         OLSETP IkkI  ˆ][ˆ
1

   the ORR estimator, 

       at   1 dk        OLSETP II  ˆ][ˆ
1

 , 

       at   0, dk         ORRETP IkkI  ˆ][ˆ
1

 .          
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3.1.  Bias, Variance and MSE of ETP estimator 

It is clear that ETP̂ is biased estimator, the bias of the ETP estimator is given 

by:  

 ETPBias ̂ =  ]ˆ[ ETPE  

]))1(()([ 112 IIdkkI  
 

 
 
  

 












p

i

i

ii

i

dkk

dkdk

1

2

ˆ
)1(

)1()2(





                              (19) 

 ETPV ̂    = '12 VV   where ]))1(()([ 112   IdkkIV          

                       
   
















p

i ii

i

dkk1
22

3

2

)1(
ˆ




 .                                 (20) 

The MSE of ETP estimator is  

 ETPMSE ̂  =  ETPV ̂ +   ETPBias ̂    'ˆ
ETPBias   

 ETPMSE ̂
   
















p

i ii

i

dkk1
22

3

2

)1(
ˆ




 +  

   

 













p

i ii

i

i
dkk

dkdk

1

2

22

22

ˆ
)1(

)1()2(




 . 

     (21) 

Setting 0k  in (21), we obtain 

  OLSMSE ̂ 



p

i i1

2 1
ˆ


 .                                      (22) 

Also, setting 1d  in (21), we obtain 

  ORRMSE ̂
 


 


p

i i

i

k1
2

2ˆ



 +

 

 

p

i i

i

k
k

1
2

2
2 ˆ




.                  (23) 

4. Performance of the proposed estimator  

This section compares the performance of ETP̂  with 
OLS̂  and ORR̂  using 

MSE criteria. 

4.1.  Comparison between the ETP̂  and 
OLS̂ using MSE criterion 

The difference between 
OLS̂  and ETP̂  in the MSE sense is as follows: 

 OLSMSE ̂ -  ETPMSE ̂  
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   
















p

i ii

i

i dkk1
2

3

2

2)1(

1
ˆ








 
   

 
















p

i

i

ii

i

dkk

dkdk

1

2

22

22

ˆ
)1(

)1()2(





 

      
   


 
















p

i iii

iiiiii

dkk

dkdkdkk

1
22

2224222

)1(

)1()2(ˆ)1(ˆ




. 

From the above equation, it can be shown that the difference  OLSMSE ̂ -

 ETPMSE ̂  will be positive if and only if      

      2224222 )1()2(ˆ)1(ˆ dkdkdkk iiiiii    

Thus,     ETPOLS MSEMSE  ˆˆ   

if and only if  

      2224222 )1()2(ˆ)1(ˆ dkdkdkk iiiiii   .            (24) 

4.2.  Comparison between the ETP̂  and 
ORR̂  

The difference between 
ORR̂  and ETP̂  in the MSE sense is as follows: 

 ORRMSE ̂ -  ETPMSE ̂
     



















p

i ii

i

i

i

dkkk1
2

3

2

2

2)1(
ˆ








  

 
 
   

 



















p

i

i

ii

i

i dkk

dkdk

k

k

1

2

22

22

2

2

ˆ
)1(

)1()2(







 

        
   


 
















p

i ii

iiiii

dkk

dkdkdkkdkdk

1
22

222222

)1(

)1()2(1ˆ12)1(ˆ





 

From above equation, it can be shown that the difference  ORRMSE ̂ -

 ETPMSE ̂  will be positive if and only if     2222 )1()2(1 dkdkdkk ii    

Thus,            ETPORR MSEMSE  ˆˆ   

if and only if      

                       2222 )1()2(1 dkdkdkk ii   .                         (25) 

5. Determination of ridge parameter k  and d   

A very important issue in the study of the ridge and Liu regression is how to 

find appropriate ridge and Liu parameters, k  and d  respectively. These 



180                                                            A. V. Dorugade: Efficient two-parameter… 

 

 

parameters may either be nonstochastic or may depend on the observed data. 
The choice of values for these ridge parameters has been one of the most difficult 
problems confronting the study of the generalized ridge regression.  

In order to determine and evaluate the performance of our proposed estimator 

ETP̂  as compare to OLS estimator and others, we will find the optimal values of 

ridge parameters k  and d . Let k̂  is the optimal value of the k  determined by 

well-known method of determining the ridge parameter, the optimal value of the 

d  can be considered to be this d  that minimizes  ETPMSE ̂ .  

Let  ETPMSEdkg ̂),(   
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Then, by differentiating ),( dkg  w.r.t. d  and equating to 0, we have 
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d  is the function of k  depends on the 2 and i . For practical purposes, they 

are replaced by their unbiased estimator 2̂ and i̂  . Hence,   
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6. Comparative study 

6.1. A simulation study 

The performance of the proposed estimator and the existing estimators is 
examined via a simulation study. The simulation is carried out under different 

degrees of multicollinearity. The average MSE (AMSE) ratios of the ETP̂  and 

other ridge estimators over OLS estimator are evaluated. The true model is 

considered as   XY . Here  follows a normal distribution ),0(
2

nIN   and 

following McDonald and Galerneau (1975) the explanatory variables are 
generated by  

pjniuux ipijij ,...,2,1,...,2,1)1( 2/12    

where uij are independent standard normal pseudo-random numbers and   is 

specified so that the theoretical correlation between any two explanatory variables 
is given by  2. In this study, to investigate the effects of different degrees of 

multicollinearity on the estimators, we consider two different correlations,  
  = 0.95, 0.99.   parameter vectors are chosen arbitrarily such that 
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')2,6,1,2( , ')3,1,1( for p = 4 and 3, respectively. The sizes of samples are 

20, 50 and 100. The variance of the error terms is taken as 2  = 1, 5 and 10.  

The well-known ridge parameter 




p

i

ipk

1

22 ˆˆ   suggested by Hoerl et al., 

(1975) was used. d  is determined as defined in equation (27). Efficient two-

parameter estimator and estimators given in (3) to (5), (7) to (10), (12) and (14) 
are computed. The experiment is repeated 1000 times and the average MSE 
(AMSE) of estimators is obtained using the following expression: 

                         )ˆ(AMSE  = 
 



p

i j

iij

1

1000

1

2)ˆ(
1000

1
                               (28)  

where ij̂  denote the estimator of the ith parameter in the jth replication and 
i , 

pi ,...,2,1   are the true parameter values. 

Firstly, we computed the AMSE ratios ( )ˆ()ˆ(  AMSEAMSE OLS
) of OLS 

estimator over different estimators for various values of triplet (  , n, 
2 ) and 

reported in Tables 1-4. We consider the method that leads to the maximum 
AMSE ratio to the best from the MSE point of view. 

From Tables 1-4, we observe that the performance of our proposed efficient 

two-parameter estimator ( ETP̂ ) is better than OLS̂ . Also, ETP̂  is more efficient 

in terms of MSE than other biased estimators JRR̂ , AUL̂ , URR̂ , TP̂ , NTP̂ , 

AUTP̂  and MTP̂  including 
ORR̂  for various values of triplet (  , n, 

2 ). The 

results agree with our theoretical findings in Section 4. 

Table 1. Ratio of AMSE of OLS over various ridge estimators  

 (p = 4, ')2,6,1,2( and   = 0.95) 

Estimator 
n = 20 50 100 

2̂ 1 5 10 1 5 10 1 5 10 

ORR̂  1.0209 1.3800 1.4746 1.5603 1.7090 2.1274 2.1833 2.2644 2.3872 

JRR̂  1.0019 1.3525 1.3624 1.5186 1.5745 1.8444 1.7952 1.4780 1.4779 

AUL̂  1.0326 1.2966 1.0040 1.0793 1.2278 1.0487 1.0013 1.0125 1.0219 

URR̂  1.4067 1.3184 1.3363 1.5621 1.7799 1.6437 1.8530 2.4037 3.2057 

TP̂  0.9909 0.8698 0.9730 0.8516 0.7984 0.8615 0.9675 0.9390 1.0504 

NTP̂  0.7030 0.3278 1.2536 1.5321 0.8943 1.9981 2.4686 2.0685 2.3089 

AUTP̂  1.0004 1.0695 1.0017 1.0697 1.1131 1.0328 1.0014 1.0032 1.0017 

MTP̂  1.0210 1.3800 1.4748 1.5600 1.7094 2.1270 2.1836 2.2648 2.3870 

ETP̂  1.4388 1.4078 1.5967 1.6028 1.8579 2.4492 2.6313 3.0779 3.3611 
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Table 2. Ratio of AMSE of OLS over various ridge estimators 

 (p = 4, ')2,6,1,2( and   = 0.99) 

Estimator 
n = 20 50 100 

2̂ 1 5 10 1 5 10 1 5 10 

ORR̂  1.2365 1.4166 1.9591 2.2037 2.7241 2.8145 2.2735 2.7244 2.9822 

JRR̂  1.1365 1.1309 1.4754 1.2585 2.4739 1.7537 2.2602 2.3833 1.6211 

AUL̂  1.0873 1.0061 1.052 1.068 1.0458 1.02 1.0022 1.0142 1.1438 

URR̂  1.2691 1.4654 0.9704 1.7314 2.281 2.8455 1.5181 1.742 2.257 

TP̂  1.0435 0.9784 0.8843 0.9211 1.2129 0.8857 1.0332 1.1264 0.8024 

NTP̂  1.1173 1.1683 1.5396 0.516 2.587 2.9986 2.5124 2.1497 2.0449 

AUTP̂  1.0054 1.0006 1.0176 1.0036 1.0409 1.0119 1.0016 1.0153 1.0336 

MTP̂  1.2300 1.4168 1.8960 2.2039 2.7245 2.8150 2.2740 2.7250 2.9820 

ETP̂  1.34 1.5982 2.5048 2.6136 3.0088 4.0831 2.2873 3.1294 4.2129 

 
 

Table 3. Ratio of AMSE of OLS over various ridge estimators  

 (p = 3, ')3,1,1( and   = 0.95) 

Estimator 
n = 20 50 100 

2̂ 1 5 10 1 5 10 1 5 10 

ORR̂  1.5559 2.0183 2.7696 1.8432 1.923 2.3064 2.0479 2.0930 3.0024 

JRR̂  1.5030 1.3665 1.4734 1.7442 1.5766 1.7138 1.3825 1.3013 1.9361 

AUL̂  1.0061 1.0577 1.0181 1.0044 1.0591 1.0157 1.0690 1.0469 1.0214 

URR̂  1.1864 1.7946 2.5463 1.8317 1.8465 0.7616 1.7940 1.8067 2.5083 

TP̂  0.9606 0.8749 0.9631 1.0025 0.8328 0.8223 0.8684 0.8958 0.9171 

NTP̂  1.2280 1.7430 2.1870 1.8514 1.5227 1.6014 1.6203 1.8242 2.7112 

AUTP̂  1.0023 1.0176 1.0044 1.003 1.0301 1.027 1.0118 1.0090 1.0063 

MTP̂  1.5550 2.0189 2.7755 1.8440 1.933 2.3164 2.0586 2.0980 3.0124 

ETP̂  1.6037 2.3405 3.5764 1.9354 2.2614 2.8938 2.3319 2.4589 4.0607 
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Table 4. Ratio of AMSE of OLS over various ridge estimators  

 (p = 3, ')3,1,1( and   = 0.99) 

Estimator 
n = 20 50 100 

2̂ 1 5 10 1 5 10 1 5 10 

ORR̂  1.5622 2.8334 3.0927 1.9421 2.2077 2.4474 2.5685 2.6181 3.5616 

JRR̂  1.2507 1.8883 2.2305 1.2062 1.7607 1.4847 1.7945 1.4024 2.1656 

AUL̂  1.0227 1.0308 1.0204 1.0817 1.0179 1.1277 1.0273 1.1743 1.0506 

URR̂  1.4735 1.8497 2.1001 1.5143 1.4785 2.1487 2.3512 2.0673 2.2603 

TP̂  0.8635 0.8921 0.8776 0.8935 0.915 0.8246 0.9067     0.8155 0.8338 

NTP̂  1.4160 2.0758 2.5563 1.3947 1.9748 1.7623 0.5709 1.6083 3.438 

AUTP̂  1.0032 1.0115 1.0058 1.0076 1.0096 1.0288 1.0111 1.0246 1.0251 

MTP̂  1.5620 2.8634 3.2927 2.1011 2.3077 2.8474 3.1685 2.9182 3.7521 

ETP̂  1.8216 3.9784 3.6171 2.1426 2.7185 3.2002 3.3286 3.1803 4.4847 

6.2. Numerical example 

To validate the theoretical results, the numerical example used by Gruber 
(1988) was adopted. It was established that this data set suffers multicollinearity. 
Data shows Total National Research and Development Expenditures as a 
Percent of Gross National Product by Country: 1972-1986. It represents the 
relationship between the dependent variable Y, the percentage spent by the 
United States and four other independent variables X1, X2, X3, and X4.  

The estimated MSE values for OLS̂ ,
ORR̂ , NTP̂ , AUTP̂ , MTP̂  and ETP̂  

estimators, are obtained and reported in Table 5. 

Table 5.  Values of MSE 

Estimator OLS̂  
ORR̂  NTP̂  AUTP̂  

MTP̂  ETP̂  

MSE 0.2833 0.1256 0.1255 0.2832 0.1257 0.1251 

 
From Table 5, it was observed that the estimated MSE value of the efficient 

two-parameter estimator ( ETP̂ ) is always smaller than those of the OLS̂ , ORR̂ , 

NTP̂ , AUTP̂  and MTP̂  estimators. The results agree with the theoretical findings 

in Section 4. Finally, ETP̂  is meaningful in practice. 
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7. Conclusion 

A biased efficient two-parameter estimator has been proposed for estimating 
the parameter of the linear regression model with multicollinearity. The proposed 
estimator is examined against OLS and ORR estimator in terms of scalar MSE 
criterion. Finally, from the simulation study and numerical example, the 
performance of the proposed estimator is satisfactory in the presence of 
multicollinearity over other estimators reviewed in this article. 
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