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BAYESIAN INFERENCE FOR EXPONENTIATED
PARETO MODEL WITH APPLICATION TO BLADDER

CANCER REMISSION TIME

Sanjay Kumar Singh 1, Umesh Singh 2, Manoj Kumar 3

ABSTRACT

Maximum likelihood and Bayes estimators of the unknown parameters and
the expected experiment times of the exponentiated Pareto model have been
obtained for progressive type-II censored data with binomial removal scheme.
Markov Chain Monte Carlo (MCMC) method is used to compute the Bayes
estimates of the parameters of interest. The generalized entropy loss function
and squared error loss function have been considered for obtaining the Bayes
estimators. Comparisons are made between Bayesian and maximum likeli-
hood (ML) estimators via Monte Carlo simulation. The proposed method-
ology is illustrated through real data.
Key words: PT-II CBR, MLE, bayes estimators, average experiment time.

1. Introduction

The exponentiated Pareto model (EPM) was proposed by Gupta, Gupta and
Gupta (1998). The probability density function (pdf) and cumulative distribution
function (cdf) of the EPM are given by

f(x, α, θ) = αθ
[
1− (1 + x)−α

]θ−1
(1 + x)−(α+1) ;x > 0, α > 0, θ > 0 (1)

and
F (x, α, θ) =

[
1− (1 + x)−α

]θ
;x > 0, α > 0, θ > 0 (2)

respectively, where α and θ are the shape parameters of the model. The reliability
function takes the following form:

S(x) = 1− F (x, α, θ) = 1−
[
1− (1 + x)−α

]θ
, x > 0, α > 0, θ > 0. (3)
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A distinguished feature of EPM is that because it accommodates all types of
failure rates (i.e both monotone and non-monotone). Therefore, it can be effectively
used for analyzing various types of data. It may also be noted that a number of distri-
butions can be obtained as particular cases of it. For the shape parameter θ = 1, the
EPM is reduced to standard Pareto distribution of second kind (see, Johnson Kotz
and Balakrishnan, 1994). For more details about EPM, we refer to Gupta Gupta and
Gupta (1998). Some statistical properties of this distribution and the estimators of
the parameters of EPM have been discussed by Shawky and Abu-Zinadah (2009) un-
der different estimation procedures for complete sample case. In general life testing
experiments, situations do arise when units are lost or removed from the experiment
while they are still functioning, i.e. we get censored data from the experiment. The
loss of units may occur due to time constraints, giving type-I censored data. In such
a censoring scheme, the experiment is terminated at some specified time. Some-
times, the experiment is terminated after a prefixed number of observations due to
cost constraints and we get type-II censored data. The estimation of parameters of
EPM has also been attempted by Afify (2010) under type-I and type-II censoring
scheme. Besides the above two controlled causes, units may drop out of the experi-
ment randomly due to some uncontrolled causes such type of situation progressive
censoring arises.

For example, consider that a doctor performs an experiment with n bladder can-
cer patients with remission times (in months), i.e. a period during which symptoms
of disease are reduced (partial remission) or disappear (complete remission) with
regard to cancer, remission means there is no sign of it on scans or when the doctor
examines you. Doctors use the word ’remission’ instead of cure when talking about
cancer because they cannot be sure that there are no cancer cells at all in the body. So
the cancer could come back in the future. But the complete remission would there-
fore be better than partial remission. Because with partial remission the chances of
occurrence of bladder cancer are higher, its means remission times (in months) are
the minimum that represents partial remission, when remission times (in months)
are longer, say complete remission. So the doctor performs an experiment on blad-
der cancer patients with partial and complete remission times (in months) are very
costly and time-consuming. Due to cost constraint the experiment is terminated af-
ter a prefixed number of bladder cancer patients and we get type-II censored data.
After type-II censoring another situation of bladder cancer patients with remission
times (in months) may arise, the first bladder cancer patient has died due to some
other unforeseen circumstances such as heart attack, accident, damage of lever, de-
pletion of funds, etc.; some patients leave the experiment and go for treatment to
other doctor/hospital. Similarly, after the second death a few more leave and so on.
Finally, the doctor stops taking observation as soon as the predetermined number
of deaths (say m) is recorded. Which has arise a scenario of progressive type-II
censoring with random/binomial removals. For further details, readers are referred
to Balakrishnan (2007). In last few years, the estimation of parameters of differ-
ent life time distribution based on progressive censored samples have been studied
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by several authors such as Childs and Balakrishnan (2000), Balakrishnan and Kan-
nan (2001), Mousa and Jheen (2002), Ng, Chn and Balakrishnan (2002). The pro-
gressive type-II censoring with binomial removal were considered by Yang, Tse and
Yuen (2000) for Weibull distribution, Wu and Chang (2002) for Exponential dis-
tribution. Under the progressive type-II censoring with random removals, Wu and
Chang (2003) and Yuen and Tse (1996) developed the estimation problem for the
Pareto distribution and Weibull distribution respectively, when the number of units
removed at each failure time has a discrete uniform distribution, the expected time
of this censoring plan is discussed and compared numerically. Mathematically, this
experiment is similar to a life test experiment which starts with n units. At the first
failureX1, r1 (random) units are removed randomly from the remaining (n−1) sur-
viving units. At the second failure X2, r2 units from remaining n− 2− r1 units are
removed, and so on; untill mth failure is observed, i.e. atmth failure all the remain-
ing rm = n−m− r1− r2 · · · rm−1 units are removed. Note that herem is pre-fixed
and r,is are random. Such a censoring mechanism is termed as progressive type-II
censoring with random removal scheme. If we assume that probability of removal of
a unit at every stage is p for each unit then ri can be considered to follow a binomial
distribution i.e, ri ≈ B(n − m −

∑i−1
l=0 rl, p) for i = 1, 2, 3, · · ·m − 1 and with

r0 = 0. The main aim of this article is concerned with the problem of obtaining
Bayes estimates for the two parameter EPM based on progressive type-II censoring
with binomial removals (PT-II CBR). Bayes estimators are obtained based on under
square error loss function (SELF) and generalized entropy loss function (GELF).
The results are obtained to PT-II CBRs, and compare the expected test times for PT-
II CBR with complete sampling scheme. However, no attempt has been made to
develop estimators for the parameters of EPD under PT-II CBR and its applications
are discussed based on real illustration. Therefore, we propose to develop such an
estimation procedure. The rest of the paper is organized as follows.

Section 2, provides the likelihood function. The ML estimators of the unknown
parameters are presented in section 3. Section 4 contains the loss functions, prior
distributions, the Bayes estimates using the MCMC via Gibbs sampling scheme.
An algorithm for simulating the PT-II CBR is presented in section 5. We compare
the expected test times under PT-II CBRs with complete sample which are given in
section 6. The comparison of ML estimators and corresponding Bayes estimators
are presented in section 7. These comparisons are based on simulated risk (average
loss over sample space) of the estimators and discussion of results is presented. In
section 8, we provide an application of the EPD distribution to remission time of
bladder cancer. Finally, some conclusions are drawn in section 9.

2. Likelihood function

Let (X1, R1), (X2, R2), (X3, R3), · · · , (Xm, Rm) denote a progressive type-II
censored sample, where X1 < X2 < X3, · · · , Xm.With pre-determined number
of removals, say R1 = r1, R2 = r2, R3 = r3, · · · , Rm = rm, the conditional
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likelihood function can be written as, Cohen(1963)

L(α; θ;x|R = r) = c∗
m∏
i=1

f (xi) [S (xi)]
ri , (4)

where c∗ = n(n − r1 − 1)(n − r1 − r2 − 2)(n − r1 − r2 − r3 − 3) · · · (n −
r1− r2− r3, · · · , rm−m+ 1), and 0 ≤ ri ≤ (n−m− r1 − r2 − r3 · · · ri−1), for
i = 1, 2, 3 . . . ,m− 1. Substituting (1) and (3) into (4), we get

L(α, θ;x|R = r) =

m∏
i=1

αθ
[
1− (1 + xi)

−α
]θ−1

{
1−

[
1− (1 + xi)

−α
]θ}ri

(1 + xi)
−(α+1). (5)

Suppose that an individual unit being removed from the test at the ith failure,
i = 1, 2, · · · (m − 1) is independent of the others but with the same probability p.
That is the numberRi of the unit removed at ith failure i = 1, 2, · · · (m− 1) follows
a binomial distribution with parameters

(
n−m−

∑i−1
l=1 ri, p

)
therefore,

P (R1 = r1; p) =

(
n−m
r1

)
pr1(1− p)n−m−r1 , (6)

and for i = 2, 3, · · · ,m− 1,

P (R;p) = P (Ri = ri|Ri−1 = ri−1, · · ·R1 = r1)

=

(
n−m−

∑i−1
l=0 rl

ri

)
pri(1− p)n−m−

∑i−1
l=0 rl .

(7)

Now, we further assume thatRi is independent ofXi for all i. Then, using above
equations, we can write the full likelihood function as in the following form

L (α, θ, p;x, r) = AL1 (α, θ)L2 (p) , (8)
where

L1(α; θ) =
m∏
i=1

αθ
[
1− (1 + xi)

−α]θ−1 {1−
[
1− (1 + xi)

−α]θ}ri (1 + xi)
−(α+1),

(9)

L2 (p) = p
∑m−1
i=1 ri (1− p)(m−1)(n−m)−

∑m−1
i=1 (m−i)ri . (10)

and A = c∗(n−m)!

(n−m−
∑i−1
l=1 ri)!

∏m−1
i=1 ri!

does not depend on the parameters α, θ and p.
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3. ML estimation

The ML estimations of α and θ are the simultaneous solutions of following nor-
mal equations

m

α
+ (θ − 1)

m∑
i=1

(1 + xi)
−α ln (1 + xi)

1− (1 + xi)
−α −

m∑
i=1

ln (1 + xi)−

θ
m∑
i=1

ri
[
1− (1 + xi)

−α]θ−1 (1 + xi)
−α ln (1 + xi)

1−
[
1− (1 + xi)

−α]θ = 0,

(11)

and
m

θ
+

m∑
i=1

ln
[
1− (1 + xi)

−α]
m∑
i=1

ri
[
1− (1 + xi)

−α]θ ln
[
1− (1 + xi)

−α]
1−

[
1− (1 + xi)

−α]θ = 0.

(12)

It may be noted that (11) and (12) cannot be solved simultaneously to provide a
nicely closed form for the estimators. Therefore, we propose to use fixed point it-
eration method for solving these equations. For details about the proposed method
readers may refer to Jain, Iyengar and Jain (1984).

4. Bayesian estimation

This section is concerned with prior distributions for unknown parameters, sym-
metric and asymmetric loss function and Bayes estimates using the Gibbs sampling
scheme.

Prior and posterior distributions

In order to obtain the Bayes estimators of unknown parameters α and θ based on
PT-II CBRs, we must assume that the parameters α and θ are random variables. The
model under consideration has shapes and censoring parameters, and continuous
conjugate priors for these parameters do not exist. We further assume that these ran-
dom variables α and θ have independently distributed informative prior distribution
with respective prior pdfs

g1 (α) =
λ1

ν1e−λ1ααν1−1

Γν1
; 0 < α <∞, λ1 > 0, ν1 > 0 (13)

g2 (θ) =
λ2

ν2e−λ2θθν2−1

Γν2
; 0 < θ <∞, λ2 > 0, ν2 > 0 (14)
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respectively. But Arnold and Press (1983) had all ready discussed that there is no
clear cut way in which one can say that one prior is better than the other. But for
purpose of Bayesian analysis, the gamma prior g1 (α) and g2 (θ) are chosen instead
of the exponential prior of α and θ used by Eissa and Nassar (2004) and Jung, Chung
and Kim (2011) because the gamma prior is wealthy enough to cover the prior belief
of the experimenter for different shapes. On the basis of the above stated assump-
tions, the joint prior pdf of α and θ is

g (α, θ) = g1 (α) g2 (θ) ; α > 0, θ > 0 (15)

Combining the priors given by (13) and (14) with likelihood given by (9), we can
easily obtain joint posterior pdf of (α, θ) as π (α, θ|x, r) = J1

J0
where

J1 = αm+ν1−1θm+ν2−1e−(
∑m
i=1 λ1α+

∑m
i=1 λ2θ)

m∏
i=1

[
1− (1 + xi)

−α]θ−1
{

1−
[
1− (1 + xi)

−α]θ}ri (1 + xi)
−(α+1),

(16)

and J0 =
∫∞
0

∫∞
0 J1dαdθ. Hence, the respective marginal posterior pdfs of α

and θ are given by

π1 (α|x, r) =

∫ ∞
0

J1
J0
dθ, (17)

and

π2 (θ|x, r) =

∫ ∞
0

J1
J0
dα. (18)

Loss functions

In order to select the best decision in decision theory, an appropriate loss function
must be specified. For this purpose, we use symmetric as well as asymmetric loss
function. The Bayes estimators are obtained under SELF

l1(φ, φ̂) =∈1
(
φ− φ̂

)2
; ∈1> 0 (19)

where φ̂ is the estimate of the parameter φ and the Bayes estimator φ̂S of φ comes out
to beEφ[φ], whereEφ denotes the posterior expectation. However, this loss function
is symmetric loss function and can only be justified if over-estimation and under-
estimation of equal magnitudes are of equal seriousness. A number of asymmetric
loss functions are also available in the statistical literature. Let us consider the GELF,
proposed by Calabria and Pulcini (1996), defined as follows :

l2(φ, φ̂) =∈2

( φ̂
φ

)δ
− δ ln

(
φ̂

φ

)
− 1

 ; ∈2> 0 (20)
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The constant δ, involved in (20), is its shape parameter. It reflects departure
from symmetry. When δ > 0, it considers over-estimation (i.e., positive error) to
be more serious than under-estimation (i.e., negative error) and converse for δ < 0.
The Bayes estimator φ̂E of φ under GELF is given by

φ̂E =
[
Eφ

(
φ−δ

)](− 1
δ ) (21)

provided the posterior expectation exits. It may be noted here that for δ = −1,
the Bayes estimator under loss (19) coincides with the Bayes estimator under SELF
l1. Expressions for the Bayes estimators α̂E and θ̂E for α and θ respectively, under
GELF can be given as

α̂E =

[∫ ∞
0

α−δπ1 (α|x, r) dα
](− 1

δ )
, (22)

and

θ̂E =

[∫ ∞
0

θ−δπ1 (θ|x, r) dθ
](− 1

δ )
, (23)

It is to mention here that from equation (22) and (23), the Bayes estimators α̂E
and θ̂E are not reducible in a nice closed form. Therefore, we use the numerical
techniques for obtaining the estimates. We, therefore, propose to consider Gibbs
sampling procedure.

MCMC method via Gibbs sampling

In this subsection, we use the Gibbs sampling procedure to obtain the Bayes
estimates α and θ under SELF and GELF. It is clear from equations (22) and (23)
that the Bayes estimators of α and θ are not obtained analytically and numerical
techniques must be used for computations. To compute Bayes estimators of the pa-
rameters α and θ we propose to use MCMC technique, via Gibbs sampler along with
Metropolis-Hastings algorithms to generate samples from posterior distributions and
then compute Bayes estimates. The Gibbs is an algorithm for simulating from the
full conditional posterior distributions while the Metropolis-Hastings algorithm gen-
erates samples from an (essentially) arbitrary proposal distribution. For more details
about the MCMC methods see, for example, Vasishta, Smith and Upadhyay (2001)
and Gupta and Upadhyay (2010). The full conditional posterior distributions of the
parameters α and θ are, respectively, given as

τ1(α|x, r) ∝ αm+ν1−1e−(
∑m

i=1 λ1α)
m∏
i=1

[
1− (1 + xi)

−α
]θ−1

{
1−

[
1− (1 + xi)

−α
]θ}ri

(1 + xi)
−(α+1)

(24)

τ2(θ|x, r) ∝ θm+ν2−1e−(
∑m

i=1 λ2θ)
m∏
i=1

[
1− (1 + xi)

−α
]θ−1

{
1−

[
1− (1 + xi)

−α
]θ}ri

(25)
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The following MCMC algorithm is used to generate the posterior samples and
then to obtain the Bayes estimates of α and θ.

I. Start with initial guesses of α and θ say α0 and θ0.
II. Set j=1.

III. Generate α1 from τ1(α|θ, x, r) and θ1 from τ2(θ|α, x, r).
IV. Repeat steps 2-3, N times.
V. Now, the Bayes estimates of α and θ under GELF are, respectively, given as

α̂E =

 1

N −M

N∑
j=M+1

αj
−δ

−1/δ (26)

θ̂E =

 1

N −M

N∑
j=M+1

θj
−δ

−1/δ (27)

VI. Put δ = −1 in above step 5, then the Bayes estimator under GELF coincides
with Bayes estimator under SELF.
where M is the burn-in period (i.e, the number of iterations before the station-
ary distribution is achieved).

5. Algorithm for PT-II CBR

We need to simulate PT-II CBR from specified EPD. To get such a sample, we
propose the use of the following algorithm:

I. Specify the value of n.
II. Specify the value of m.

III. Specify the value of parameters α, θ and p.
IV. Generate random number ri from B

(
n−m−

∑i−1
l=0 rl, p

)
, for i = 1, 2, 3, · · · ,

m− 1.
V. Set rm according to the following relation.

VI. rm =

{
n−m−

∑m−1
l=1 rl if n−m−

∑m−1
l=1 rl > 0

0 otherwise
VII. Generate m independent U(0, 1) random variables W1,W2, · · · ,Wm.

VIII. For given values of the progressive type-II censoring scheme ri(i = 1, 2, · · · ,m)

set Vi = W
1/(i+rm+·+rm−i+1)
i (i = 1, 2, · · · ,m).

IX. Set Ui = 1−VmVm−1 · · ·Vm−i+1(i = 1, 2, · · · ,m), then U1, U2, · · · , Um are
progressive type-II censored samples with binomial removals of size m from
U(0, 1).

X. Finally, for given values of parameters α and λ, we set xi = F−1(U)(i =
1, 2, · · · ,m). Then,(x1, x2, · · · , xm) is the required from progressive censor-
ing with binomial removals sample of size m from the EPD.
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6. Average Experiment Time

In practical situations, an Experimenter may be interested to know whether the
test can be completed within a specified time. This information is important for
an experimenter to choose an appropriate sampling plan because the time required
to complete a test is directly related to cost. Under Progressive censoring with a
fixed number of removal the time is given by Xm. According to Balakrishnan and
Aggarwalla (2000), the expected value of Xm is given by

E [Xm|R] = C(r)

r1∑
l1=0

r2∑
l2=0

· · ·
rm∑

lm=0

(−1)B
Cr1

l1=0 · · ·C
rm
lm=0∏m−1

i=1 h(li)

∫ ∞
0

xf(x)Fh(lm)−1(x)∂x.

(28)

where B =
∑m

i=1 li, h(li) = l1 + l2 + · · · + li + i, C(r) = n(n − r1 − 1)(n −
r1− r2− 2) · · · [n−

∑m−1
i=1 (ri + 1)] and i is the number of live units removed from

experiment (number of failure units). Using the p.d.f and c.d.f of EPD, the equation
will be

E [Xm|R] = C(r)

r1∑
l1=0

r2∑
l2=0

· · ·
rm∑
lm=0

(−1)B
Cr1l1=0 · · ·C

rm
lm=0∏m−1

i=1 h(li)∫ ∞
0

xiαθ
[
1− (1 + x)−α

]θ−1
(1 + x)−(α+1)

{[
1− (1 + x)−α

]θ}(h(lm)−1)

(29)

Let

S1 = αθ

∫ ∞
0

xi
[
1− (1 + x)−α

]θ−1
(1 + x)−(α+1)

{[
1− (1 + x)−α

]θ}(h(lm)−1)

= αθ

∫ ∞
0

xi(1 + x)−(α+1) [1− (1 + x)−α
](h(lm)θ−1)

∂xi.

= αθ

h(lm)θ−1∑
k=0

(−1)k
(
h(lm)θ − 1

k

)∫ ∞
0

xi

(1 + xi)(α(k+1)+1)
∂xi

= αθ

h(lm)θ−1∑
k=0

(−1)k
(
h(lm)θ − 1

k

)
BII(2, α(k + 1)− 1)
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Putting this value in to the right hand of equation (29), the expected test time is
given by

E [Xm|R] = C(r)αθ

r1∑
l1=0

r2∑
l2=0

· · ·
rm∑
lm=0

(−1)B
Cr1l1=0 · · ·C

rm
lm=0∏m−1

i=1 h(li)

αθ

h(lm)θ−1∑
k=0

(−1)k
(
h(lm)θ − 1

k

)
BII(2, α(k + 1)− 1)

(30)

The expected test time for PT-II CBRs is evaluated by taking expectation on both
sides (29) with respect to the R. That is

E [Xm] = ER [E [Xm|R = r]]

=

g(r1)∑
r1=0

g(r2)∑
r2=0

· · ·
g(rm−1)∑
rm−1=0

P (R, p)E [Xm|R = r] .
(31)

where g(ri) = n−m− r1 − · · · − ri−1 and P (R; p) is given in equation (7). For
the expected time a complete sampling case with n test units is obtained by taking
m = n and ri = 0 for all i = 1, 2, · · · ,m, in (30). We have

E [X∗n] = nαθ

n−1∑
k=0

(
n− 1

k

)
(−1)kBII(2, α(k + 1)− 1). (32)

Also, the expected time of a type-II censoring without removal is defined by the
expected value of the mth failure time, then

E [X∗m] = mαθ

(
n

m

)m−1∑
k=0

(
m− 1

k

)
(−1)kBII(2, α(k + 1)− 1), (33)

The ratio of the expected experiment time (REET)δREET is computed between
PT-II CBR and the complete sampling, we define

δREET =
E[Xm] Under PT − II CBR

E[Xn
∗] under complete sampling

. (34)

It can be noted from δREET that important information is given in order to determine
significantly the shortest experiment time if a much larger sample of n test units is
used, the test is terminated, when mth failures have been observed. But here we
are interested in considering various values of n, m and p, numerically calculated
under the expected experiment time of PT-II CBR and complete sample, which are
derived in equations (31) and (32). Numerical results are obtained in Table 7 where
for n = 15, 12 and 9 corresponding choices of m are given. From Table 7 we
observed that, when n is fixed, the values of the δREET and expected termination
time under PT-II CBR and complete test decrease as m decreases, while for fixed
m, the value of the δREET and expected termination time under PT-II CBR and
complete sampling increase as n decreases. Finally, for fixed values of m and n, we
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Figure 1. δREET under PT-II CBRs to δREET under complete sample

observed that the effect of variation of removal probability p with the values of the
δREET and expected termination time of PT-II CBR increase as p increases.

Figure 1 shows the ratio of the expected test time under PT-II CBR to the ex-
pected test time under complete sample versus n for m = 8 and different values
of removal probability p. We observed that, when the value of p is large, the ratio
increases and approaches 1 quickly and the expected test time is not small in these
cases. Hence, for small p, the expected test time is more significant than larger value
of p. So, we have taken p = 0.3 from Figure 1, which was significant for further
calculation.

7. Simulation studies

The estimators α̂M and θ̂M denote the ML estimators of the parameters α and θ
respectively while α̂S and θ̂S are corresponding Bayes estimators under SELF and
α̂E and θ̂E are the corresponding Bayes estimators under GELF. We compare the
estimators obtained under GELF with corresponding ML estimators and Bayes es-
timators under SELF. The comparisons are based on the simulated risks (average
loss over sample space) under GELF. It may be mentioned here that the exact ex-
pressions for the risks cannot be obtained because estimators are not in a nice closed
form. Therefore, the risks of the estimators are estimated on the basis of Monte-carlo
simulation study of 10000 samples. It may be noted that the risks of the estimators
will depend on values of n,m, θ, α, p, λ1, λ2, ν1, ν2 and δ. In order to consider vari-
ation in the values of these parameters, we have obtained the simulated risks for
m = 9 [3] 15, when n = 15, θ = 0.5, α = 2, δ = ±0.5 and p = 0.3. For
prior distribution we have used non-informative prior with λ1 = λ2 = ν1 = ν2 = 0,
and informative prior and the hyper parameter are chosen in such a way that the prior



414 S. K. Singh, U. Singh, M. Kumar: Bayesian inference for ...

mean became true value of the parameter and belief in prior mean strong or weak, i.e.
the prior variance is small and large. Thus, the values of the hyper parameter of in-
formative prior are λ1 = (0.5, 4), λ2 = (0.125, 1), ν1 = (1, 8), ν2 = (0.0625, 0.5).
Generating the progressive sample as mentioned in section 4, the simulated risks
under SELF and GELF have been obtained for different values of m with selected
values of the rest of the parameters n, θ, α, p, λ1, λ2, ν1, ν2 and δ have been taken.
The results are given in tables Table 1-6. The entries in brackets in all the tables de-
note the risks of the estimators when δ is negative and the other non-bracket entries
are the risks when δ is positive.

Discussion of the results

It is interesting to note that when effective sample size m increases, keeping n,
fixed for fixed positive value of δ under both losses, the risks of the ML estimate
of α, first increase then decrease slightly as m increases whereas the risks of Bayes
estimators always increase with the increase in the value of m. This trend of the
magnitude of the risks is also the same for fixed negative value of δ. It is observed
when non-informative prior for α has been used (see, Table 1). While regarding
the considered prior distribution, when we have smaller belief in considered prior
distribution for α, i.e. prior variance is 1, then we observe that in over-estimation
situation under both losses, the risks of estimator α̂M increase then slightly decrease
as m increases but in under estimation situation under both losses, the risks of es-
timator of α̂M decrease then slightly increase as m increases. Finally, we observed
that under both losses for positive and negative values of δ, the risks of estimator of
α̂S and α̂E increase asm increases (see, Table 2). For larger prior variance of α, we
observed that under both losses for δ < 0, the risks of estimator α̂M decrease as m
increases, and the rest of them for δ < 0 and δ > 0, the risks of estimators α̂S , α̂E
and for δ > 0 α̂M increase asm increases (see, Table 3). The risk of estimators of θ
under SELF and GELF, when priors for the parameter θ are non-informative types,
the risks of estimator θ̂M , decrease in case of both positive and negative values of
δ, and the risks of Bayes estimators increase as m increases for both positive and
negative values of δ, and under both losses namely SELF and GELF (see, Table 4).
For smaller prior variance of θ, we observed under both losses that when δ > 0, the
risk of estimator θ̂M decreases as m increases but when δ < 0, the risk of estimator
θ̂M first increases then decreases asm increases and as in the previous table the risk
of Bayes estimators as m increases for both positive and negative values of δ under
both losses. The risk of estimators of θ under SELF and GELF, when prior for the
parameter θ are non informative types, the risks of estimator θ̂M decrease in case of
both positive and negative values of δ and the risks of Bayes estimators increase as
m increases for both positive and negative values of δ and under both losses, namely
SELF and GELF (see, Table 5). For larger prior variance of θ, under both losses, for
δ > 0 and δ < 0, the risk of estimator θ̂M decreases as m increases and as in the
previous cases, the trends for the risks are the same (see, Table 6).



STATISTICS IN TRANSITION new series, Summer 2014 415

8. Application

In this section we reanalyze the data extracted from Luz, Silva, Rodrigo, Bou-
ruignon, Andrea and Gauss Coreiro (2012). For the purpose of real illustration, we
have been discussed in presence of PT-II CBR. The data describe a study of remis-
sion time(in months) of a random sample of 128 bladder cancer patients reported in
Lee and Wang (2003). The data are given as

0.08,2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29,
0.40, 2.26,3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24,
25.82, 0.51, 2.54,3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06,
14.77,32.15, 2.64, 3.88,5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34,7.59, 10.66,
15.96, 36.66, 1.05, 2.69, 4.23,5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63,
17.12, 46.12, 1.26,2.83, 4.33, 5.49,7.66,11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64,
17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76,
3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76,

12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.
In order to identify the shape of lifetime data failure rate function, we shall consider,
as a crude indicative, a graphical method based on TTT (Total time on test) plot
Aarset (1985) Hence, in its empirical version the TTT plot is given as

T (nr ) =
∑r
i=1 y(i)+(n−r)y(r)∑n

i=1 y(i)

where r = 1, 2, · · · , n and y(r) is the order statistics of the sample. On the basis
of TTT plot, we identify that the failure rate function is increasing, decreasing and
increasing then decreasing, i.e. when the TTT plot for considered data is concave,
convex and concave then convex respectively. Figure 2 shows that TTT plot for con-
sidered data, which is concave then convex indicating an increasing then decreasing
failure rate function, is properly accommodated by EPD with increasing then de-
creasing failure rate. According to Figure 3, we observed that this data is appropri-
ate for EPD and Figure 4 shows estimated pdf, CDF and hazard functions. Also, we
have obtained Kolmogrov-Smirnov (K-S) Statistics, Akaike’s information criterion
(AIC) and Bayesian information criterion (BIC) under sub model Pareto distribution
for given data set and values summarized in Table 8. According to above considered
criterion, we can say that EPD provide better fit than Pareto distribution. Therefore,
we use this data to illustrate the proposed methodology. For this PT-II CBRs are
generated from the given data under various schemes, which are summarized in Ta-
ble 11. We have obtained the ML estimates, Bayes estimates (using non-informative
prior), 95% CI and HPD intervals for the parameters α and θ respectively under
SELF and GELF for δ = ±1.5, and value of the hyper parameters α and θ are taken
as ν1 = 0.00001, λ1 = 0.0001 and ν2 = 0.00001, λ2 = 0.0001 respectively. We
have obtained the ML and the Bayes estimates of α and θ under SELF and GELF for
δ = ±1.5 presented in Table 9 and 10 respectively. When the degree of censoring
decreases, the estimate of α and θ is closer to the estimates of without censoring.
Under different censoring schemes, the length of HPD intervals is always less than
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CI. The ML and Bayes estimates under SELF and GELF of α and θ always lies be-
tween HPD and CI.

9. Conclusion
In this paper, we consider a Bayesian estimation of EPD in presence of PT-II

CBRs under the asymmetric loss function. We use independent gamma priors for
the unknown parameters as the continuous conjugate priors do not exist. It is seen
that the explicit expressions for the Bayes estimators are not possible. We obtain the
approximate Bayes estimates of parameters using the MCMC via Gibbs sampling
scheme. To observe the properties of the Bayes estimators based on the MCMC
via Gibbs sampling, some numerical experiments are performed. In general most
of cases, when the sample size increases the risk of the estimators decreases. The
interesting points are observed regarding PT-II CBR, either prior belief of the model
parameter is low or high, our proposed estimators α̂E and θ̂E perform well (in the
sense of having smaller risk).

On the other hand, in context of the expected experiment time, we may also
conclude that the removal probability p plays a great role in the expected test time.
The increase in the removal probability pmeans more items are removed at the early
stage of the experiment. Hence, for larger p, the collection of observations much
closer to the tail of the life time distribution and the experiment under PT-II CBR
increase as p increases.
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Figure 2. TTT plot for the remission times (in months) of
128 bladder cancer patients
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Figure 4. Estimated probability density, survival and hazard
functions for the remission times (in months) of 128 bladder
cancer patients.
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Table 1. Risks of estimators of α under different losses for
fixed α = 2, θ = 0.5, ν1 = 0, λ1 = 0, ν2 = 0, λ2 = 0, n= 15,
δ = ±0.5

m RS(α̂M ) RS(α̂S ) RS(α̂E ) RE(α̂M ) RE(α̂S ) RE(α̂E )

9 0.70526 0.41143 .021448 0.01624 0.010061 0.000743
(0.71638) (0.42280) (0.19942) (0.01462) (0.00937) (0.00484)

12 0.72537 0.50554 0.06051 0.01665 0.01211 0.001691
(0.72006) (0.50812) (0.33002) (0.01468) (0.01096) (0.00757)

15 0.72402 0.54560 0.13901 0.01662 0.01296 0.00372
(0.71659) (0.53729) (0.39171) (0.01462) (0.01150) (0.00879)

Table 2. Risks of estimators of α under different losses for
fixed α = 2 , θ = 0.5, ν1 = 4, λ1 = 2, n=15, ν2 = 0.25,
λ2 = .5, δ = ±0.5

m RS(α̂M ) RS(α̂S ) RS(α̂E ) RE(α̂M ) RE(α̂S ) RE(α̂E )

9 0.71061 0.07906 0.00245 0.01635 0.00220 .00074
(0.70607) (0.07960) (0.04193) (0.01445) (0.00212) (0.00116)

12 0.72158 0.13124 0.02286 0.01657 0.00355 0.00067
(0.70378) (0.12874) (0.08569) (0.01441) (0.00330) (0.00227)

15 0.70846 0.16820 0.04939 0.01631 0.00447 0.001406
(0.71687) (0.16936) (0.12436) (0.01463) (0.00422) (0.00319)

Table 3. Risks of estimators of α under different losses for
fixed α = 2 , θ = 0.5, ν1 = 1, λ1 = 0.5, n=15, ν2 = 0.0625,
λ2 = 0.125, n=15, δ = ±0.5

m RS(α̂M ) RS(α̂S ) RS(α̂E ) RE(α̂M ) RE(α̂S ) RE(α̂E )

9 0.69846 0.23747 0.00534 0.01610 0.00613 0.00016
(0.71844) (0.24831) (0.12497) (0.01465) (0.00592) (0.00319)

12 0.71230 0.32581 0.04418 0.01638 0.00818 0.00125
(0.71827) (0.32775) (0.21453) (0.01465) (0.00755) (0.00520)

15 0.72212 0.38485 0.10290 0.01658 0.00951 0.00281
(0.71713) (0.38264) (0.27947) (0.01464) (0.00864) (0.00657)
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Table 4. Risks of estimators of θ under different losses for
fixed α = 2, θ = 0.5, ν1 = 0, λ1 = 0, ν2 = 0, λ2 = 0, n= 15,
δ = ±0.5

m RS(θ̂M ) RS(θ̂S ) RS(θ̂E ) RE(θ̂M ) RE(θ̂S ) RE(θ̂E )

9 0.02434 0.01574 0.00451 0.00957 0.00642 0.00199
(0.02350) (0.01526) (0.01082) (0.008449) (0.00577) (0.00424)

12 0.02336 0.01687 0.00621 0.00921 0.00685 0.00269
(0.02336) (0.01717) (0.01299) (0.00834) (0.00641) (0.00500)

15 0.02256 0.01712 0.00699 0.00893 0.00693 0.00301
(0.02305) (0.01739) (0.01351) (0.00831) (0.00649) (0.00518)

Table 5. Risks of estimators of θ under different losses for
fixed α = 2 , θ = 0.5, ν1 = 4, λ1 = 2, n=15, ν2 = 0.25,
λ2 = .5, δ = ±0.5

m RS(θ̂M ) RS(θ̂S ) RS(θ̂E ) RE(θ̂M ) RE(θ̂S ) RE(θ̂E )

9 0.02402 0.009106 0.00303 0.00945 0.00387 0.00136
(0.02359) (0.00911) (0.00670) (0.008478) (0.00364) (0.00275)

12 0.0230799 0.00939 0.00339 0.00912 0.00399 0.00151
(0.02405) (0.01004) (0.00761) (0.00861) (0.00397) (0.00309)

15 0.02300 0.00964 0.00375 0.00909 0.00409 0.00167
(0.0224) (0.00932) (0.00712) (0.00811) (0.00371) (0.00290)

Table 6. Risks of estimators of θ under different losses for
fixed α = 2 , θ = 0.5, ν1 = 1, λ1 = 0.5, n=15, ν2 = 0.0625,
λ2 = 0.125, δ = ±0.5

m RS(θ̂M ) RS(θ̂S ) RS(θ̂E ) RE(θ̂M ) RE(θ̂S ) RE(θ̂E )

9 0.02446 0.01318 0.004151 0.00961 0.005469 0.00184
(0.02434) (0.0131) (0.00953) (0.008710) (0.00505) (0.0037)

12 0.02321 0.01385 0.00510 0.00916 0.00571 0.00223
(0.02338) (0.01392) (0.0105) (0.00841) (0.00533) (0.00414)

15 0.02298 0.01438 0.00582 0.009078 0.00591 0.00253
(0.02272) (0.01419) (0.01095) (0.008199) (0.005418) (0.00429)
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Table 7. Expected experiment time E(Xm) and δREET (in
the brackets) for (α, θ) = (2, 0.5) under PT-II CBR

(n, m) p=0.05 p=0.1 p=0.3 p=0.5 p=0.7 p=0.9

15 4.0340 4.0340 4.0340 4.0340 4.0340 4.0340
(15,14) 2.5476 2.8857 3.4785 3.6652 3.7676 3.9679

(0.6315) (0.7154) (0.8623) (0.9086) (0.9340) (0.9836)
(15,13) 1.6483 2.1813 3.2342 3.5110 3.6181 3.7663

(0.4086) (0.5407) (0.8017) (0.8704) (0.8969) (0.9336)
(15,12) 0.7518 1.1819 2.6107 3.3734 3.3846 3.7347

(0.1864) (0.2930) (0.6472) (0.8362) (0.8390) (0.9258)
(15,11) 0.5354 0.8059 2.4429 2.6319 2.8624 3.6419

(0.1327) (0.1998) (0.6056) (0.6524) (0.7096) (0.9028)
(15,10) 0.5104 0.7854 2.2901 2.7439 3.0896 3.6191

(0.1265) (0.1947) (0.5677) (0.6802) (0.7659) (0.8971)

12 3.4955 3.4955 3.4955 3.4955 3.4955 3.4955
(12,11) 1.9313 2.3490 3.1130 3.1289 3.4512 3.4808

(0.5525) (0.6720) (0.8906) (0.8951) (0.9873) (0.9958)
(12,10) 1.2064 1.6751 2.7961 2.8736 2.8852 2.9184

(0.3451) (0.4792) (0.7999) (0.8221) (0.8254) (0.8349)
(12,9) 0.7102 1.1478 2.2872 2.6235 2.7740 3.0725

(0.2032) (0.3284) (0.6543) (0.7505) (0.7936) (0.8790)
(12,8) 0.4466 0.6991 1.8043 2.2604 2.5090 2.5323

(0.1278) (0.2000) (0.5162) (0.6467) (0.7178) (0.7244)

9 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353
(9,8) 1.3739 1.7627 2.4083 2.5943 2.6157 2.7586

(0.4845) (0.6217) (0.8494) (0.9150) (0.9225) (0.9729)
(9,7) 0.7664 1.0396 1.8727 2.2745 2.3097 2.4699

(0.2703) (0.3667) (0.6605) (0.8022) (0.8146) (0.8711)
(9,6) 0.4260 0.5567 1.2967 1.8170 2.0244 2.0305

(0.1503) (0.1964) (0.4573) (0.6408) (0.7140) (0.7161)
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Table 8. Goodness of fit for the remission times (months) of
bladder cancer data

Distribution AIC BIC K-S Statistics P-value Log-likelihood

EPD 856.6102 862.3142 0.1016 0.5239 -426.3051
Pareto 948.0433 953.7473 0.3125 7.45E-06 -472.0216

Table 9. Bayes and ML estimates, CI and HPD intervals for
α with fixed n = 128 and p = 0.3 under PT-II CBR for the
remission times (months) of bladder cancer data for different
censoring schemes (Sn:m).

Sn:m MLE Bayes Estimates(MCMC) Interval

SELF GELF 95% CI 95% HPD

δ = 1.5 δ = −1.5 αLc αUc αLh αUh

51 3.5109 2.9787 2.9787 2.9787 2.1359 4.8859 2.9635 2.9925
64 2.9321 2.9273 2.9273 2.9273 1.8982 3.9659 2.9141 2.9398
77 3.5733 3.5675 3.5674 3.5675 2.3763 4.7704 3.5528 3.5829
90 3.6080 3.6033 3.6033 3.6033 2.4537 4.7624 3.5882 3.6168
102 4.0606 4.0564 4.0563 4.0564 2.8117 5.3096 4.0416 4.0724
128 4.6574 4.6574 4.6573 4.6329 3.3135 6.0013 4.6409 4.6740
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Table 10. Bayes and ML estimates, CI and HPD intervals for
θ with fixed n = 128 and p = 0.3 under PT-II CBR for the
remission times (months) of bladder cancer data for different
censoring schemes (Sn:m).

Sn:m MLE Bayes Estimates(MCMC) Interval

SELF GELF 95% CI 95% HPD

δ = 1.5 δ = −1.5 θLc θUc θLh θUh

51 0.6885 0.6895 0.6895 0.6895 0.4883 0.8885 0.68512 0.6937
64 0.7123 0.7112 0.7112 0.7112 0.5195 0.9051 0.7076 0.7152
77 0.8203 0.8193 0.8193 0.8193 0.6373 1.0034 0.8157 0.8227
90 0.8824 0.8816 0.8816 0.8816 0.7023 1.0624 0.8779 0.8849
102 0.9559 0.9554 0.9554 0.9554 0.7823 1.1296 0.9519 0.9586
128 1.0877 1.0877 1.0877 1.0845 0.9194 1.2559 1.0845 1.0912
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