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ABSTRACT 

The Engle-Granger cointegration test is highly sensitive to the choice of lag 
length and the poor performance of conventional lag selection criteria such as 
standard information criteria in selecting appropriate optimal lag length for the 
implementation of the Engle-Granger cointegration test is well-established in the 
statistical literature. Testing for cointegration within the framework of the 
residual-based Engle-Granger cointegration methodology is the same as testing 
for the stationarity of the residual series via  the augmented Dickey-Fuller test 
which is well known to be sensitive to the choice of lag length. Given an array of 
candidate optimal lag lengths that may be suggested by different standard 
information criteria, the applied researchers are faced with the problem of 
deciding the best optimal lag among the candidate optimal lag lengths suggested 
by different standard information criteria, which are often either underestimated 
or overestimated. In an attempt to address this well-known major pitfall of 
standard information criteria, this paper introduces a new lag selection criterion 
called a modified Koyck mean lag approach based on partial correlation criterion 
for the selection of optimal lag length for the residual-based Engle-Granger 
cointegration test. Based on empirical findings, it was observed that in some 
instances over-specification of lag length can bias the Engle-Granger 
cointegration test towards the rejection of a true cointegration relationship and 
non-rejection of a spurious cointegration relationship. Using real-life data, we 
present an empirical illustration which demonstrates that our proposed criterion 
outperformed the standard information criteria in selecting appropriate optimal 
truncation lag for the implementation of the Engle-Granger cointegration test 
using both augmented Dickey-Fuller and generalized least squares Dickey-Fuller 
tests. 
Key words: modified Koyck mean lag, partial correlation criterion, Engle-
Granger cointegration test, optimal truncation lag, information criteria, 
augmented Dickey-Fuller test, generalized least square Dickey-Fuller test. 
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1. Introduction 

The residual-based Engle-Granger cointegration methodology is arguably the 
most widely used bivariate cointegration test in empirical analysis. One of the 
major specification decisions that poses a big challenge to analysts and applied 
researchers is selection of appropriate lag length for the implementation of unit 
root test for the estimated residuals from cointegrating regressions. A number of 
previous studies have demonstrated a strong influence of lag selection on the 
outcome of the Engle-Granger cointegration test. Gutierrez et al. (2009) show that  
misspecification of appropriate lag length may greatly affect the cointegration 
results such that under-specification of lag length could invalidate the 
cointegration test and over-specification of lag length could result in a loss of 
power. Hall (1991) pointed out that the choice of lag structure in the error 
correction model (ECM) is a vital specification decision because too few lags may 
lead to serial correlation problem, whereas too many lags specified in the ECM 
will consume more degree of freedoms leading to small sample problem. Li et al. 
(2009) also corroborated Hall (1991) position by arguing that appropriate 
specification of lag length is one of the most important specification decisions 
concerning implementation of the error correction process. Johansen (1991) 
proposed the use of appropriate information criterion or a sequence of likelihood 
ratio tests for the determination of lag length.  

This paper is primarily concerned with appropriate specification of lag length 
for the cointegration test as well as the error correction process (ECP) within the 
context of the Engle-Granger cointegration methodology. Standard information 
criteria such as Akaike Information Criterion (AIC), Akaike Final Prediction 
Error (FPE), the Bayesian Information Criterion (BIC) and Hannan-Quinn 
Information Criterion (HQIC) that are commonly employed for the choice of 
optimal lag structure have been shown to exhibit a strong tendency to either over-
specify or under-specify the lag length. Nishi (1988) and Lutkepohl (1993) 
showed that both Akaike Information Criterion (AIC) and Final Prediction Error 
(FPE) are not consistent estimators of the truncation lag order but the Bayesian 
Information Criterion (BIC) is strongly consistent. Bewley and Yang (1998) 
evaluated the performance of standard information criteria such as AIC and BIC 
in selecting appropriate lag structure for the cointegration test and showed that 
these conventional lag selection criteria appear to have problem of 
underestimation and overestimation of the lag structure. Clarke and Mirza (2006) 
argue that both AIC and FPE cannot be recommended as lag selection procedures 
since both criteria are well known to have a positive probability of overestimating 
the true lag order.  

In general, the major drawback of the commonly used standard information 
criteria lies with problem of underestimation and overestimation of lag length 
which are regarded as undesirable in cointegration analysis as demonstrated in 
Cheung and Lai (1993) and Gonzalo (1994). Given this demonstrated weaknesses 
of the standard information criteria, we therefore propose an alternative lag 
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selection criterion called a modified Koyck mean lag approach based on partial 
correlation criterion (MK-PCC) for the purpose of lag specification in the 
residual-based Engle-Granger cointegration test proposed by Engle and Granger 
(1987). 

The remaining part of this paper is organized as follows. Section 2 discusses 
specification of augmented Dickey-Fuller (ADF) and generalized least squares 
Dickey-Fuller (DF-GLS) tests for the implementation of the residual-based Engle-
Granger cointegration test. Section 3 introduces lag specification procedure based 
on the modified Koyck mean lag approach using partial correlation criterion. 
Section 4 presents preliminary data description and unit root tests. Section 5 
discusses the Engle-Granger cointegration tests, residual analysis and estimation 
of error correction models. Finally, section 6 concludes. 

2.  Specification of Engle-Granger cointegration test 

Consider two non-stationary time series variables that are integrated of the 
same order, say order 1, ( )1I  variables. Following Engle and Granger (1987), 

two variables, say x  and y are said to be cointegrated of order ( )1,1CI  if there 
exists a long-run equilibrium relationship between the two integrated variables 
such that the residuals of the estimated regression are stationary or integrated of 
order zero , ( )0I . 

The long-run equilibrium relationship is captured by the following regression 
models:  

0 1t t ty x wα α= + +                                                     (1) 

0 1t t tx y uβ β= + +                                                      (2)   

where x  and y  are  ( )1I  variables, 0α , 1α , 0β and 1β  are cointegrating 

parameters, tw and tu  are OLS residuals which capture divergences between the 
variables from an assumed equilibrium long-run relationship.  

The use of the Engle-Granger (EG) cointegration methodology requires pair-
wise comparison of two cointegrating regressions because the EG method 
produces just only one cointegrating vector. We distinguish between the pair of 
cointegration regressions (1) and (2) above because unlike Johansen 
cointegration methodology, the Engle-Granger cointegration procedure is 
sensitive to the choice of dependent variable (see Dickey et al., 1991). 
Testing for the presence of cointegration in the context of the bivariate 
Engle-Granger cointegration test is essentially equivalent to testing for the 
presence of a unit root in the estimated residual series { }ˆtu  and { }ˆ tw for the 
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cointegrating regressions (1) and (2) where the Engle-Granger (EG) tests 
(which are akin to the standard Dickey-Fuller tests)  used for testing the 
stationarity of the residuals are specified as follows: 

1 1ˆ ˆt t tu uρ ε−∆ = +                                                        (3) 

2 1ˆ ˆt t tw wρ −∆ = +∈                                                        (4) 

The first difference of the residuals is regressed on the lagged level of the 
residuals without a constant, where 1ρ  and 2ρ  are parameters of interest 

representing the slope of each line, ˆtu∆ and ˆ tw∆  are the  first difference of the 

estimated residual series { }ˆtu and { }ˆ tw  respectively, 1ˆtu − and 1ˆ tw −   are  the 

estimated lagged residuals, tε  and t∈  are error terms which are expected to be 
serially uncorrelated. Equations (3) and (4) do not include intercept terms because 
the estimated residual series{ }ˆtu and { }ˆ tw   are obtained from regression 
equations (1) and (2) respectively. The EG test requires that error terms be serially 
uncorrelated. Due to the problem of serial correlation in standard EG test, it is a 
common practice to use the augmented Engle-Granger (AEG) test which 
accommodates more lags of the first difference of the residuals to eliminate the 
serial correlation problem that is associated with standard EG test. The 
corresponding AEG tests for (3) and (4)  are specified as follows: 

1 1
0

ˆ ˆ ˆ
p

t t i t i t
i

u u uρ ξ ε− −
=

∆ = + ∆ +∑                                                (5) 

2 1
0

ˆ ˆ ˆ
q

t t j t j t
j

w w wρ − −
=

∆ = + Ω ∆ +∈∑                                             (6) 

where 1ρ  and 2ρ  are parameters, iξ  and jΩ  are coefficients of lagged 

difference of the estimated residuals, ˆtu∆  and ˆ tw∆  are first difference of the 

estimated residual series { }ˆtu and{ }ˆ tw  respectively, ˆt iu −  and ˆ t jw −  are lags of  

the estimated residuals, tε and t∈  are error terms, p  and q  are optimal 
truncation lag parameters to be determined to whiten the error terms. AEG test 
can be utilized to perform unit root test on the estimated coefficients 1ρ  and 2ρ  
individually to establish the existence or non-existence of long-run equilibrium 
relationship. Any unit root test involving ADF is sensitive to the choice of lag 
length which is the number of lagged differences with which the regression is 
augmented. Since AEG test is a modification of ADF test, it also inherits the lag 
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selection problem that is commonly associated with ADF test due to its sensitivity 
to the choice of lag length. The main criticism of the Augmented Dickey-Fuller 
(ADF) test is that the power of the test is very low if the time series under test  is 
nearly non-stationary which implies that the time series is stationary but with a 
root close to 1 (see Brooks 2002). The focus of our present study is to employ the 
modified Koyck mean lag approach based on partial correlation criterion (MK-
PCC) for lag selection required for the implementation of AEG tests since enough 
lags need to be chosen for the error terms tε  and t∈  to be serially uncorrelated. In 
applying the MK-PCC, we consider a distributed lag re-parameterization of the 
augmented Engle-Granger (AEG) tests as follows:     

CASE 1: When y  is the dependent variable for the cointegrating regression, we 
have the following representation: 

( )
1 1

0

ˆ ˆ
p

t t i t i
i

y u u uρ ξ∗
− −

=

= ∆ − = ∆∑                                                   (7) 

CASE 2: When x is the dependent variable for the cointegrating regression, we 
have the following representation: 

( )
2 1

0

ˆ ˆ ˆ
q

t t j t j
j

x w w wρ∗
− −

=

= ∆ − = Ω ∆∑                                   (8) 

Using generalized least squares Dickey-Fuller (DF-GLS) test as an alternative 
unit root test to ADF, we repeat the same distributed lag re-parameterization for 
the DF-GLS test as follows: 

CASE 1: When y  is the dependent variable for the cointegrating regression, we 
have the following representation: 

( )
1

0

ˆ ˆ
p

d d d
t t i t i

i
y u u uρ ξ∗

−
=

= ∆ − = ∆∑                                        (9) 

CASE 2: When x is the dependent variable for the cointegrating regression, we 
have the following representation: 

( )
2 1

0

ˆ ˆ ˆ
q

d d d
t t j t j

j
x w w wρ∗

− −
=

= ∆ − = Ω ∆∑                                     (10) 

Interpretation of notations is the same as earlier given above except that the 
residual series are subjected to generalized least squares detrending. 
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3. Modified Koyck mean lag approach based on partial correlation 
criterion for lag selection (MK-PCC) 

Following Koyck (1954) mean lag model, we can assume the Koyck 
postulations as follows 

( )
( )

( )
,  1,..., 4

1
i

i
i

R
L i

R
= =

−
                                            (11) 

where ( )iL  is the mean lag for a particular unit root test, ( )iR  is the partial 
correlation coefficient computed for each of the model in equation (7) through 
equation (10) between ( )*y  and  lagged differences 1ty −∆ , 2ty −∆ ,……, 12ty −∆ (in 

case of monthly dataset) and it measures the rate at which ( )*y depends on these 
lagged differences. The main idea of MK-PCC is based on fitting simple linear 
regression model to the left-hand side of equation (7) through equation (10) to 
generate the parameters needed and to compute the partial correlation between the 
parameter on the left-hand side of equation (7) through equation (10) and different 
choices of lagged differences from the set of lagged differences 1ty −∆ , 2ty −∆
,……, 12ty −∆ on the right-hand side of equation (7) through equation (10) while 
controlling for the effects of other remaining lagged differences. For the first 
computation we compute partial correlation between ( )*y  and 1ty −∆  while 

controlling for 2ty −∆ ,……, 12ty −∆ . For the second computation we compute 

partial correlation between ( )*y  and the first two lagged differences (i.e. 1ty −∆  

2ty −∆ ) while controlling for  3ty −∆ ,……, 12ty −∆  and so on like that. We also 
repeat the same procedure for other specification of unit root tests as shown 
above. The partial correlation coefficient denoted by ( )iR is computed and 
adjusted for maximum lag until it gives a values less than 0.3 which is equivalent 
to lag 0 since for ( ) 0.3iR < , the mean lag will be assumed to be zero since the 

mean lag specified by ( )
( )

( )1
i

i
i

R
L

R
=

−
  for which ( ) 0.3iR <  is a fraction not up to 

0.5. It should be noted that to have a reasonable mean lag length we expect the 
absolute value of ( )iR  to be in the interval [ )0.5,0.999 (see Agunloye et al., 
2013).The same procedure is repeated for DF-GLS test by fitting simple linear 
regression model to the left-hand side of equations (9) and (10) to generate the 
parameters needed and to compute the partial correlation between the parameter 
on the left-hand side of equation (9) through equation (10) as earlier explained 
above for ADF test. 
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As indicated earlier in the introductory part of this paper, the residual-based 
Engle-Granger cointegration test is very sensitive to the choice of truncation lag 
parameters p and q . The problem of bias in cointegration is due to 
misspecification of lag length. Since the Engle-Granger cointegration test is 
equivalent to testing for the presence of unit root in the estimated residuals from 
the cointegrating regression it also shares the problem of low power that is 
commonly associated with unit root test when the estimated residual is closed to 
being a unit root process but not exactly a unit root process. For the purpose of the 
present study, we consider a situation when the estimated parameters of interest 
(i.e. 1ρ and 2ρ ) assume any of the following values:  0.9, 0.95 and 0.999 in 
equations (7), (8), (9) and (10) respectively. Our choice of these parameter values 
is informed due to the fact that the power of test for Augmented Dickey-Fuller 
(ADF)  is very low if the process is nearly non-stationary, which means the 
process is stationary but with a root close to the non-stationary boundary 
(Brooks 2002). 

4. Data description and unit root test 

For empirical analysis, we use two sets of data. One real dataset and one 
simulated dataset. The real dataset are US 3-Month Treasury Bills (USMTB) for 
short-term money market interest rate series and US 10-Month Government 
Security (USMGS) for long-term interest rate series. The data cover the period 
from January 1962 through February 2014 and are obtained from IMF Monthly 
Bulletin. A total of 626 observations are collected for USMGS and USMTB series 
respectively. 

This paper adopts the residual-based Engle-Granger (EG) cointegration test 
for empirical analysis. The implementation of EG methodology is carried out in 
two steps. The first step tests for the order of integration of time series variables. 
The order of integration of a variable is the number of times a variable is required 
to be differenced to attain stationarity. A condition applicable to EG test is that 
the variables entering the cointegrating equation should be integrated of the same 
order which is assumed to be order 1 in the context of EG test. To test for degree 
of integration of the USMGS and USMTB series two well-known tests are used in 
this paper. The first test is the Augmented Dickey-Fuller (ADF) (1984) test and 
the second test is the generalized least squares Dickey-Fuller (DF-GLS) test 
introduced by Elliot et al. (1996). The optimal lag length were determined using 
five lag length selection criteria comprising four conventional criteria and newly 
introduced criterion called MK-PCC. The results for the unit root tests are 
presented in tables 1 through table 4 below: 
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Table 1. Summary of results for ADF Unit root test for both series at level 
 AIC FPE BIC HQIC MK-PCC 
USMGS -1.543344(3) -1.543344(3) -1.435517(2) -1.435517 (3) -1.341465 (0) 
USMTB -2.577255(3) -2.577255 (3) -2.577255 (2) -2.577255 (3) -2.299976(0) 
The null hypothesis of unit root is rejected if the test statistic is less than the 5% 
critical value 

Table 2. Summary of results for DF-GLS unit root test for both series at level 

 AIC FPE BIC HQIC MK-PCC 
USMGS -0.780907(3) -0.780907 (3)  -0.684594 (2) -0.684594 (3) -0.609149(0) 
USMTB -1.649786(3) -1.649786 (3) -1.649786 (2) -1.649786 (3) -1.406009 (0) 
The null hypothesis of unit root is rejected if the test statistic is less than the 5% 
critical value 

Tables 1 and 2 present the results of unit root tests for the level of the two 
series under investigation using ADF and DF-GLS tests. The ADF test-statistic 
under different optimal lag lengths is greater than the critical value at 5% level of 
significance which is -3.417060. Similarly, the DF-GLS test-statistic under 
different optimal lag lengths is also greater than the critical value at 5% level of 
significance which is -2.890000. Consequently, we fail to reject the null 
hypotheses of unit root for the level of the two series. This implies that each of the 
series is non-stationary at level. In contrast to standard information criteria which 
had to fit higher lags such as lag 2 or lag 3 in order to establish non-stationarity of 
both series at levels, MK-PCC lag selection methodology established non-
stationarity of both series without fitting any lag. 

Table 3.  Summary of results for ADF unit root test for both series after first   
   difference 

 AIC FPE BIC HQIC MK-PCC 

USMGS∇  -12.88040(3) -16.88413 (3) -12.17434 (2) -17.17434 (3) -16.88413 (0) 

USMTB∇  -17.93451(3) -17.61138 (3) -17.93451 (2) -17.93451 (3) -17.61138 (0) 
The null hypothesis of unit root is rejected if the test statistic is less than the 5% 
critical value 

Table 4.  Summary of results for DF-GLS unit root test for both series after first 
   difference 

 AIC FPE BIC HQIC MK-PCC 

USMGS∇  -5.409803(3) -5.409803 (3) -6.478566 (2) -5.409803 (3) -10.67095 (0) 

USMTB∇  -17.95375(3) -17.63360(3) -17.95375(2) -17.95375 (3) -17.63360 (0) 
The null hypothesis of unit root is rejected if the test statistic is less than the 5% 
critical value 
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Tables 3 and 4 present the results of unit root tests for the first difference of 
the two series under investigation using ADF and DF-GLS tests. The ADF test-
statistic under different optimal lag lengths is less than the critical value at 5% 
level of significance which is -3.417060. Similarly, the DF-GLS test-statistic 
under different optimal lag lengths is also less than the critical value at 5% level 
of significance which is -2.890000. Consequently, we reject the null hypotheses 
of unit root for the two series at first difference. This implies that each series is 
integrated of order 1 since they become stationary after first difference. The 
empirical results shown in tables 3 and 4 above show that while stationarity of  
the first difference of both series was achieved at lag zero under MK-PCC lag 
selection methodology, the standard information criteria had to fit higher lags  
such as lag 2 or lag 3 in order to achieve the same results.  

5. Engle-Granger cointegration test  

We fit autoregressive models of order 1 to 12 to the residuals of the 
cointegrating regressions and the various optimal lag lengths suggested by 
different lag selection criteria are presented in brackets in table 5 below. The ADF 
and DF-GLS unit root tests are performed on the residuals from OLS estimation 
for USMGS and USMTB pairs. All regressions reported are cointegrated at the 5 
per cent level. This suggests that the estimated equations reflect a stable long‐run 
relationships. 

Table 5. Engle-Granger cointegration test using ADF test 
VARIABLE AIC FPE BIC HQIC MK-PCC 

USMGS-USMTB  
RESIDUAL -3.6199(5) -3.6199(5) -3.7089(4) -3.6199(5) -3.4822(0) 

USMTB-USMGS   
RESIDUAL -4.7785(10) -4.5175(10) -4.6322(4) -4.2392(4) -3.6883(0) 

The null hypothesis of “no cointegration” is rejected if the test statistic exceeds 
the 5% critical value. 

Table 5 presents the results of the Engle-Granger cointegration test using 
ADF unit root test for the stationarity of residuals from each regression equation. 
For cointegrating regression with USMGS as dependent variable, it is observed 
that the test statistic for the ADF version of the Augmented Engle-Granger (AEG) 
test at different optimal lag lengths suggested by conventional lag selection 
criteria and MK-PCC criterion exceeds the critical value at 5% level of 
significance. Consequently, we reject the null hypotheses of “no cointegration” at 
these various optimal lags. This implies that USMGS and USMTB series are 
cointegrated at these optimal lags. However, for cointegrating regression with 
USMGS as dependent variable, the test statistic for the ADF version of the 
Augmented Engle-Granger (AEG) test at different optimal lag lengths suggested 
conventional lag selection criteria is less than the critical value at 5% level of 
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significance except for MK-PCC for which the test statistic exceeds the critical 
value. Hence, we fail  to reject the null hypothesis of “no cointegration” under 
optimal lags suggested  by AIC, FPE, BIC and HQIC respectively indicating that  
USMTB and USMGS are not cointegrated at lag 10 and lag 4 that were suggested 
by standard information criteria but are cointegrated at lag 0 selected by MK-
PCC. 

Table 6. Engle-Granger cointegration test using DF-GLS test 

VARIABLE AIC FPE BIC HQIC MK-PCC 
USMGS-USMTB  
RESIDUAL -3.6722(5) -3.6722(5) -4.0692(4) -3.6722(5) -3.4563(0) 

USMTB-USMGS   
RESIDUAL -4.6524(10) -4.6967(10) -4.5326(4) -4.5326(4) -3.6005(0) 

The null hypothesis of “no cointegration” is rejected if the test statistic exceeds 
the 5% critical value. 

Table 6 presents the results of the Engle-Granger cointegration test using DF-
GLS unit root test for the stationarity of residuals from each regression equation. 
For cointegrating regression with USMGS as dependent variable, it is observed 
that the test statistic for the DF-GLS version of the Augmented Engle-Granger 
(AEG) test at different optimal lag lengths suggested by conventional lag 
selection criteria and MK-PCC criterion exceeds the critical value at 5% level of 
significance except for BIC which suggested optimal lag 4 for which the test 
statistic is less than critical value. Consequently, we reject the null hypotheses of 
“no cointegration” at these various optimal lags. This implies that USMGS and 
USMTB series are cointegrated under optimal lags suggested by AIC, FPE, HQIC 
and MK-PCC respectively but they are not cointegrated at lag 4 suggested by 
BIC. However, for cointegrating regression with USMTB as dependent variable, 
the test statistic for the DF-GLS version of the Augmented Engle-Granger (AEG) 
test at different optimal lag lengths suggested conventional lag selection criteria is 
less than the critical value at 5% level of significance except for MK-PCC for 
which the test statistic exceeds the critical value. Hence, we fail  to reject the null 
hypothesis of “no cointegration”under the optimal lags suggested by AIC, FPE, 
BIC and HQIC respectively  indicating that  USMTB and USMGS are not 
cointegrated at lag 10 and 4 that were suggested by these standard information 
criteria but are cointegrated at lag 0 selected by MK-PCC. 

 5.1. Estimation of Engle-Granger error correction model 

Following Engle and Granger (1987), we specify error correction model for 
the cointegrating relationship between USMGS and USMGTB as follows: 

( ) ( ) ( )
1 1

0 1 1
1 1

ˆ
p q

i j t tt t i t j
i j

usmgs usmgs usmtb uτ γ λ α ε−− −
= =

∆ = + ∆ + ∆ + +∑ ∑       (12) 
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( ) ( ) ( )
2 2

0 2 1
1 1

ˆ
p q

i j t tt t i t j
i j

usmtb usmtb usmgs wδ φ α −− −
= =

∆ = + ∆ + Φ ∆ + +∈∑ ∑      (13) 

where 1α  and  2α  are adjustment coefficients, 1p , 1q , 2p and 2q  are the optimal 
lags  required to whiten the error terms in (12) and (13) respectively. In equation 
(12), USMGS is taken as dependent variable and USMTB is explanatory variable. 
Similarly in equation (13), USMTB is taken as dependent variable and USMGS is 
taken as explanatory variable. However, in order for valid inferences to be made 
from ECM models specified in (12) to (13) above, it is necessary that the 
coefficients of the lagged residuals represented by 1α  and 2α  , which serve as 
the “speed of adjustment parameters”, are significant and their coefficients are 
negative. Mathematically, deviations from long-run equilibrium relationship 
between two variables can only be corrected if our cointegrating vector is 
negative. The value of adjustment parameter is a crucial parameter of interest that 
is expected to be less than 1 in absolute terms to guarantee the stability of the 
system and for the variables in the long-run relationship to be cointegrated. The 
number of lags to be included in the ECM equations is determined by the number 
of lags required to whiten the error terms. The ECM models constructed for 
USMGS and USMTB series were both valid based on the aforementioned criteria. 

5.2. Residual analysis  

Prior to estimation of the Engle-Granger error correction model, a crucial 
issue is whether the error terms are uncorrelated, homoscedastic and normally 
distributed. Residual analysis was conducted using Breusch-Godfrey LM test for 
serial correlation, ARCH-LM for heteroskedasticity and Jarque-Bera for 
normality test. The appropriate number of lags is 2 which is the optimal lag order 
required to whiten the error term. Bivariate analysis showed that both pairs of 
USMGS and USGMTB were cointegrated at 5% significance levels. The results 
of the diagnostic tests on residuals are presented in table 7 below. 

Table 7. Summary of results of diagnostic tests on residuals 

Tests Test Statistic p-value Conclusion 

Jarque-Bera 21.18518 0.000025 Normally distributed 

ARCH-LM 972.3744 0.0000 No Heteroskedaticity 

Breusch-Godfrey LM test 4194.212 0.0000 No Serial Correlation 

The p-values in table above are compared with 0.05 significance level. 
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Table 8.  The Engle-Granger Error Correction Model Estimates for     
   USMGS- USMTB Pair 

 Coefficient t-value Probability 

( ) 1t
USMGS

−
 0.396037 8.42717 0.04700 

( ) 2t
USMGS

−
 -0.267194 -5.60852 0.04764 

( ) 1t
USMTB

−
 -0.031421 -1.00462* 0.03128 

( ) 2t
USMTB

−
 0.050940 1.62607* 0.03133 

Residual -0.023292 -2.53590* 0.00918 
Constant -0.001496 -0.13809 0.01083 

2R  0.151445 

 

2.Adj R  0.144557 
Sum of Squares Residual 44.95889 
S.E  Equation 0.270158 
F-statistic 21.98793 
AIC 0.229978 
BIC 0.272740 
   *indicates significance at 5% level 

Table 8 presents the empirical result from the short-run dynamics based on the 
Engle-Granger error correction model when USMGS is taken as dependent 
variable in the cointegrating regression. In estimating this ECM model, two lags 
for the explanatory variable were found to be sufficient to whiten the residuals. In 
the Engle-Granger cointegration methodology, the coefficient of the lagged 
residual   shown in table 8 is of particular interest because it represents the speed 
of adjustment as well as stability of the system. The absolute value of the 
coefficient is 0.023292 which is less than 1 indicating that the system is stable. 
However, the coefficient is quite small which indicates that about 2.3292% of any 
deviation from the long-run path is corrected within a month which translates into 
about 27.95% adjustment per year.  

Table 9.  The Engle-Granger Error Correction Model Estimates for     
   USMTB-USMGS Pair   

 Coefficient t-value Probability 

( ) 1t
USMTB

−
 0.308307 6.53244 0.04720 

( ) 2t
USMTB

−
 -0.115712 -2.44775 0.04727 

( ) 1t
USMGS

−
 0.321225 4.52965* 0.04092 

( ) 2t
USMGS

−
 -0.213002 -2.96287* 0.04189 

Residual -0.023995 -1.78542* 0.01344 
Constant -0.003360 -0.20555 0.01635 
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Table 9.  The Engle-Granger Error Correction Model Estimates for     
   USMTB-USMGS Pair  (cont.) 

 Coefficient t-value Probability 
2R  0.189927 

 

2.Adj R  0.183352 
Sum of Squares Residual 102.3760 
S.E  Equation 0.407670 
F-statistic 28.88513 
AIC 1.052882 
BIC 1.095644 
   *indicates significance at 5% level. 

Table 9 presents the empirical result from the short-run dynamics based on the 
Engle-Granger error correction model when USMTB is taken as dependent 
variable in the cointegrating regression. In estimating this ECM model, two lags 
for the explanatory variable were also found to be sufficient to whiten the 
residuals. In the Engle-Granger cointegration methodology, the coefficient of the 
lagged residual shown in table 9 above is of particular interest because it 
represents the speed of adjustment as well as stability of the system. The absolute 
value of the coefficient is 0.023995 which is less than 1 indicating that the system 
is stable. However, the coefficient is quite small which indicates that about 
2.3995% of any deviation from the long-run path is corrected within a month 
which translates into about 28.79% adjustment per year.  

6. Conclusion 
This paper examined the problem of lag length selection within the 

framework of the Engle-Granger cointegration test. We demonstrated that the 
conventional lag selection criteria such as AIC, FPE, BIC and HQIC standard 
information criteria have the problem of over-specification of lag length. We 
introduced a new criterion called the modified Koyck mean lag approach based on 
partial correlation criterion (MK-PCC) which outperforms conventional standard 
information criteria by avoiding over-specification of lag length commonly 
associated with frequently used conventional lag selection criteria. 
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