
FROM THE EDITOR 

This “Special Issue” is devoted mainly to papers on classification and data 
analysis prepared by the authors participating in the International Federation of 
Classification Societies Conference (IFCS-2002) held in Cracov, Poland, in July 
16th-19th, 2002. This part of the journal was organized and edited by our 
Associate Editor, Professor Krzysztof Jajuga from the Wroclaw Academy of 
Economics, Poland. He has also prepared the Foreword, which is presented after 
my comments upon this issue. I would like to remind you that this is already a 
second issue of our journal devoted to classification and data analysis of the 
IFCS. The first issue was published in 1995 (vol.2, Number 2, June 1995). 

There are also two articles in section Other Articles in this issue. Section 
Reports ends this issue with two reports. 

There are following eight articles devoted to some problems of classification 
and data analysis: 
1. H. H. Bock, Clustering Methods: From Classical Models to New Approaches. 
2. W. J. Krzanowski, Orthogonal Components for Grouped Data: Review and 

Applications. 
3. Cz.. Domański, Some Remarks on the Tasks of Statistics on the Verge of the 

Twenty  First Century. 
4. A. Zeliaś, Some Notes on the Selection of Normalisation of Diagnostic 

Variables. 
5. .D. Banks and R. T. Olszewski, Combinatorial Search in Multivariate 

Statistics. 
6. M. Greenacre and J. G. Clavel, Simultaneous Visualization of Two Transition 

Tables. 
7. E. Gatnar, What is Data Mining? 
8. D. Larsen, Impact of Latent Class Clustering of NSF Doctoral Survey Data on   

Adjusted Rand Index Values. 
The second part of this issue under the title Other articles contains two 

articles: 
1) A. Młodak, Some Approach to the Problem of Spatial Differentiation of 

Multi–feature Objects using Methods of Game Theory. 
2) P. Singh and N. Mathur, An Alternative to an Improved Randomized 

Response Strategy. 
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At the end of this issue there are two reports: 
• The first report, prepared by K. Jajuga, is from the International 

Federation of Classification Societies Conference – IFCS-2002, 
Cracow, July 16th-19th, 2002. 

• The second report, prepared by A. Zelias, is from the Ninetieth 
Anniversary of the Foundation of the Polish Statistical Association - 
the Scientific Conference, Cracow, Poland, 14th-15th July 2002. 

 

Jan Kordos 

 The Editor 
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CLASSIFICATION AND DATA ANALYSIS 
 

           

FOREWORD 

The present special issue of “Statistics in Transition” is devoted to the 
problems of classification and data analysis. In particular this issue is connected 
to the international conference “Classification, Data Analysis and Related 
Methods” which took place in Cracow, Poland, in July 16-19, 2002. This 
conference was organized by the International Federation of Classification 
Societies (IFCS).  

International Federation of Classification Societies is the scientific 
organization with the aim of development of the theoretical and practical issues 
related to the classification and data analysis methods. IFCS was founded in 
Cambridge in 1985. Currently there are 12 member societies, including Section of 
Classification and Data Analysis of Polish Statistical Association (SKAD). 

This volume contains several papers in the area of classification and data 
analysis. Some of these papers were presented during the conference. Among 
them are two papers presented as Keynote Lectures during the conference. These 
articles were written by Hans-Hermann Bock and Wojtek J. Krzanowski. Some 
other contributions were written by the authors (including Polish authors), who 
participated in the conference and in their scientific work made significant 
contributions in the area of statistical data analysis.  

In addition, this volume contains the report from the mentioned conference, 
prepared by the Chairman of the Scientific Program Committee, Krzysztof Jajuga 
and the Chairman of the Local Organizing Committee, Andrzej Sokołowski. 

I would like to thank Professor Jan Kordos for his great contribution in the 
preparation of this volume. My great thanks go also to Daniel Papla, who 
provided valuable help in the editorial work on this volume. 

                     
 
                               Krzysztof Jajuga 
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CLUSTERING METHODS: 
FROM CLASSICAL MODELS TO NEW APPROACHES 

Hans-Hermann Bock1 

ABSTRACT 

This paper provides a survey on recent advances in clustering and points 
to new applications. We describe probabilistic clustering models for noisy and 
outlying data and survey some theorems on principal points and self-consistent 
center systems. We introduce 'convexity-based' clustering criteria, provide a 
corresponding optimization algorithm which uses maximum-support-plane 
partitions and show situations where these criteria are useful, e.g., in two-way 
clustering for contingency tables. Testing for a clustering structure is 
considered in the framework of mixture models and multimodality where new 
asymptotic results are obtained by Gaussian approximations. Finally, we 
comment on some recent and efficient clustering algorithms and mention new 
data types where clustering methods are needed. 

Key words: Clustering, probability models, k-tangent algorithm, 
clustering tests, convexity-based clustering, micro arrays. 

1. Introduction 

Clustering methods provide a powerful tool for analyzing data sets with 
applications in quite different domains such as, e.g., marketing, web commerce, 
biology, pattern recognition and image processing, document retrieval, and 
linguistics. In this article, 'clustering' means subdividing a set Ο = {1, ..., n} of n 
objects into a system of 'homogeneous', hopefully well separated classes C1, ..., 
Cm ⊂ Ο which will be called clusters, thereby using a matrix X = (xkj)n×p of 
observed data where each row corresponds to an object and each column to one of 
p observed variables. We will consider here only real-valued variables such that 
the properties of an object k are characterized by the (column) vector xk = (xk1, ..., 
xkp)', a data point in the p-dimensional space Ρp. It is expected that objects from 
                                                           
1 Hans-Hermann Bock, Institut für Statistik, RWTH Aachen, D-52056 Aachen, Germany, 

bock@stochastik.rwth-aachen.de. 
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the same cluster Ci comprise mainly 'similar' or neighbouring data points, whereas 
data points from different clusters will be 'dissimilar' and not too close to each 
other, as a rule. 

During the last 40 years, a plethora of clustering methods have been 
proposed, differing, e.g., in the type of underlying data, the classification type 
(disjoint or overlapping classes, hierarchical systems, ...), the precise definition of 
the term 'cluster' (center-oriented, connected components, density clusters, ...), the 
given optimality criterion, etc. On the other hand, a lot of theoretical 
investigations has been conducted with the idea to reveal the structural and 
computational properties of the proposed methods in typical 'standard' situations, 
to derive a 'good' clustering criterion for an underlying 'clustering model', to 
evaluate the resulting clusters and to check the relevance of the constructed 
classification by 'homogeneity' or 'clustering tests'. Another direction of research 
was devoted to the generalization of classical criteria, to the relationship between 
clustering approaches, computational learning strategies and neural networks, to 
the adaptation of methods to new data types or applications (e.g., symbolic data, 
micro arrays, web data, ...), and to the graphical visualization of clustering results 
(projection pursuit, Kohonen maps, ...). 

This paper is devoted to a review of some recent advances which have been 
obtained in four sub-domains of clustering methodology and which characterize 
some typical lines of research today. Section 2 will report on two clustering 
models which comprise noise and outliers, respectively, and lead both to a new 
'robust' clustering method. In section 3 we discuss a 'continuous' clustering 
problem (for distributions instead of data) and describe some recent results on 
principal and self-consistent point systems. A relatively new 'convexity-based' 
clustering criterion is considered in Section 4 which generalizes the classical 
variance (SSQ) clustering criterion and the corresponding k-means method, 
replacing 'minimum-distance partitions' by 'maximum-support-plane partitions'. 
This method leads to various interesting applications relating, e.g., to data 
compression, optimum discretization of Ρp, to the χ2 non-centrality parameter and 
Csiszár's φ-divergence, and to two-mode clustering for contingency tables. In 
Section 5 we address the problem of testing for 'homogeneity': First we consider a 
maximum likelihood ratio test under the mixture model where non-identifiability 
poses a theoretical problem, and review some recent progress in overcoming this 
difficulty. Moreover, we describe a modification of Silverman's test for 
multimodality which resides on a new bootstrap strategy and leads to an exact 
asymptotic significance level. In section 6 we point to some clustering heuristics 
which were recently developed in the data mining and computer science 
community. Finally, we comment on the emergence of new data types in fields 
such as web mining, microbiology, and survey statistics, thereby tracing some 
new lines of development.  

2. Probabilistic clustering models involving noise and outliers 
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There exist many probabilistic models which describe a clustering structure 
of data (Bock 1996a, 1996d). In this section we consider three basic models and 
describe their implications when designing a reasonable clustering method, 
especially in the case of noisy data and outliers. For ease of presentation we will 
consider only real-valued data such that the objects are characterized by n data 
points x1, ..., xn in Ρp. Adopting a probabilistic approach, they are considered as 
realizations of n independent random vectors X1, ..., Xn in Ρp. 

Our clustering models assume that there exists a given number m of clusters 
or classes labelled by i = 1, ..., m and that each cluster i is characterized by a 
class-specific probability density fi(x) on Ρp which has typically the form fi(x) = 
f(x; ϑ i) with a density family {f(⋅;ϑ )|ϑ  in ∈ Θ} where the parameter ϑ  belongs 
to a suitable parameter space Θ. 

The fixed-partition model: 

A first model assumes that there exists a fixed but unknown m-partition Χ = 
(C1, ..., Cm) of the set Ο = {1, ..., n} and m unknown class-specific parameter 
values ϑ 1, ..., ϑ m ∈ Θ such that 

Xk ∼ fi(x) = f(⋅; ϑ i) for all k ∈Ci and i = 1, ..., m.             (1) 
Under this model, the maximum likelihood (m.l.) method for 'estimating' the 
unknown partition Χ and the parameter vector θ = (ϑ 1, ..., ϑ m) yields the m.l. 
clustering criterion: 

gn(Χ; θ) ( )[ ]
θ

ϑ
,1

min;log1:
Χ

→−⋅= ∑∑
= ∈

m

i Ck
ik

i

xf
n

                     (2) 

Various well-known clustering criteria can be derived from this model by suitable 
specification of the densities f(⋅; ϑ ); see, e.g., Bock (1974, 1996a, 1996b, 1996c). 

The random-partition model: 

This model assumes that m classes C1, ..., Cm ∈ Ο of objects are generated by 
sampling n objects randomly and independently from a global population Π of 
objects which is subdivided into m 'sub-populations' Π1, ..., Πm. Let pi ∈ [0,1] 
denote the probability that a sampled object belongs to the population Πi (with pi 
≥ 0 and 1=∑i ip ) and define the random binary 'class indicators' Ik by Ik := 1 (or 

0) iff k ∈ Ci (or k ∉ Ci) for k = 1, ..., n. Then the m classes Ci := {k ∈ Ο}|Ik = 1} 
build a random partition Χ = (C1, ..., Cm) of the set of objects Ο. Our data are now 
n random pairs (I1, X1), ..., (In, Xn) where the Ik cannot be observed and where, 
conditional on k ∈ Ci (or Ik = i), Xk has the density f(x; ϑ i) as in (1).  

For this clustering model the m.l. method leads to the log-likelihood criterion 
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Partial minimization with respect to the unknown probability vector π = (p1, ..., 
pk) yields nCp ii /ˆ =  and leads, after substituting ip̂  for pi in (3), to the 
modified clustering criterion 
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The mixture model: 

In the previous model, the observable data X1, ..., Xn are obviously 
independent, all with the same marginal density 

f(x; θ, π) := ∑
=

m

i
ii xfp

1
);( ϑ  x ∈ Ρp.                                     (5) 

Thus, if we restrain our consideration to the marginal distributions and to the 
parameters only, we can obtain estimates for θ and π by maximizing the log-
likelihood function: 
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There exists a large literature on mixture models (see, e.g., Everitt 1981, 
Titterington and Makov 1985, Titterington 1990, Bock 1996a, McLachlan and 
Peel 2000). Even if the mixture model provides no clustering approach in the 
strong sense, we can at least obtain a fuzzy classification of the objects by 
calculating, from the estimates iϑ̂  and ip̂ , the posterior probabilities for k 
belonging to the population Πi, i.e., the 'membership degrees' πik := 

)ˆ,ˆ;(/)ˆ;(ˆ πθϑ kiki xfxfp , for all classes i and each object k. 

The classical normal distribution clustering model 

It is well-known that the fixed-partition clustering model (1) yields, in the 
case of m spherical normal distributions fi ∼ Νp(zi, σ2 Ip) with variance σ2 and the 
unit matrix Ip = diag(1, ..., 1), the classical variance (SSQ) clustering criterion 

gn(Χ, Ζ) := 
ΖΧ,1
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where Ζ = (z1, ..., zm) ∈ Ρmp comprises the class-specific expectations. Here partial 
minimization with respect to Ζ leads to the system Ζ* = ),...,( **

1 mzz  of class 

centroids 
iCi xz =*  (i = 1, ..., m), and therefore to the equivalent criterion: 
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In a similar way we may derive many other clustering criteria by assuming special 
distribution types and parameter configurations in (1), e.g., 
• allowing for different variances and/or covariance matrices in the classes, 
• by replacing the class-specific 'center points' zi by class-specific 'central 

subspaces' (⇒ principal component clustering), 
• by adding restrictions to the class centers z1, ..., zm (e.g.: all are comprised in 

the same subspace of Ρp (⇒ projection pursuit clustering), etc. 
For details the reader may refer to Bock (1974, 1996a, 1996b, 1996c, 

1996c), Banfield and Raftery (1993). Various fuzzy analogues are described, e.g., 
in Bock (1979a, 1979b), Rousseeuw, Kaufmann and Trauwaert (1996) and 
Höppner, Klawonn and Kruse (1997). 

However, when applying these methods in practice, we face the problem that 
not all data points follow strictly the assumed model. Often the set of 'relevant' 
data points is contaminated by noisy data, and there may be aberrant 
observations, i.e. outliers. There are various heuristic proposals in the literature in 
order to cope with such situations (e.g., Jolion and Rosenfeld 1989, Wishart 
2003). In the following we mention two recently developed, model-based 
approaches which provide a theoretically well-based clustering criterion. 

(1) Modeling noisy data in clustering 

Banfield and Raftery (1993) defined 'noisy' data as data points which have 
no clustering structure insofar as they are uniformly distributed in some 
(sufficiently large) domain Q ∈ Ρp. Their clustering model assumes that there is, 
in the set Ο of all available objects, an unknown set C0 ⊂ Ο of 'noisy' objects and 
that the remaining set Ρ := Ο – C0 of 'regular' objects is partitioned into m 
homogeneous classes C1, ..., Cm. The probabilistic assumptions are as follows: 
• All data vectors X1, ..., Xn are independently distributed in Ρp. 
• Noisy data points form a Poisson process in Ρp with intensity λ > 0. As a 

consequence, the number |C0| of noisy points in Q is random with a Poisson 
distribution P(|C0| = s) = e–λV (λV)s/s! for s = 0, 1, 2, ..., where V is the p-
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dimensional volume of the domain G, and the noisy data are uniformly 
distributed in Q. 

• For regular objects, i.e., for k ∈ Ρ, we have: 

Xk ∼ fi(x) = f(⋅; ϑ i) for all k ∈ Ci, i = 1, ..., m. 

Invoking now the m.l. approach, we find that the partition Χ = (C0, C1, ..., Cm) of 
the set of objects Ο, the class-specific parameters ϑ i, and the intensity λ are to be 
determined from the clustering criterion with noisy data: 

gn(Χ, θ, λ):= [ ] [ ]
λθ
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Banfield and Raftery describe examples which identify the noisy observations and 
group the regular data in a satisfactory way. 

(2) Modeling outliers and robust clustering 

In practical work, another annoying situation is provided by the occurrence 
of outliers in the data set. This necessitates some type of 'robust' clustering. A 
corresponding model and method have been proposed in the articles by Gallegos 
(2001, 2002, 2003) from which we describe a situation where 'regular' data are 
normally distributed with the same covariance matrix Σ in all classes. 

First let us recall a classical, fixed-partition normal clustering model: 

Xk ∼ Νp(zi,Σ) for all k ∈ Ci and i = 1, ..., m                     (10) 

with an unknown k-partition Χ = (C1, ..., Cm), m class centers z1, ..., zm ∈ Ρp and 
the unknown covariance matrix Σ. Denoting by 

W(Χ) := ∑∑
= ∈

′−−
m

i Ck
CkCk

i

ii
xxxx

1

))((                               (11) 

the within-cluster scatter matrix of the data, it can be shown (Bock 1974, Späth 
1985) that for this special model the m.l. clustering criterion (?) is equivalent to 
the determinantal criterion 

g(Χ) := det(W(Χ)) ⇒ 
Χ

min .                                        (12) 

Gallegos designs a corresponding outlier clustering model by modifying a 
classical outlier model (see, e.g., Mathar 1981). She assumes that there is a known 
number s of outliers in Ο which are compiled in the (unknown) outlier set C0 ⊂ Ο. 
Let Ρ := Ο – C0 denote the set of r = n – s 'regular' data and Πm(Ρ) the family of 
all m-partitions Χ = (C1, ..., Cm) of Ρ with |Ci| ≥ p + 1 for all i. Then her fixed-
partition outlier clustering model is given by: 
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• All data vectors X1, ..., Xn are independently distributed in Ρp. 
• For regular objects, i.e., for k ∈ Ρ, we have: 

Xk ∼ Νp(zi,Σ) for all k ∈ Ci and i = 1, ..., m. 

• For outlier objects, i.e., for k ∈ C0, we have: 

Xk ∼ Νp(ζk,Σ) 

with m + s unknown centers z1, ..., zm and ζk (for k ∈ C0). In this case, the m.l. 
method leads to the following determinantal clustering criterion with outliers: 

))(det(minmin
)(,

Χ
ΡΠΧΡΟΡ

W
mr ∈=⊂

                                     (13) 

It is obvious that for each outlier data point xk (i.e., with k ∈ C0) the m.l. estimate 
for the corresponding center ζk is given by kk x=ζ̂ . Moreover, for a fixed outlier 
set C0 (i.e., a fixed set Ρ), we may minimize det(W(Χ)) by classical algorithms. 
However, it is not at all obvious how to overcome the combinatorial problems 
related to the determination of an optimal outlier set C0 and thereby to obtain a 
generalized k-means clustering method. A suitable combinatorial algorithm has 
been developed by Gallegos (2002). It uses, when modifying C0, the ordering of 
the objects according to their Mahalanobis distances to the current class centers. 
This algorithm seems to work for sample sizes such as n = 5500 with s = 500 
outliers, in 2 to 5 dimensions, and resulting in a small percentage of wrongly 
classified outliers. 

Remark: The criterion (13) and the resulting estimate for the covariance matrix Σ 
are closely related to Rousseeuw's minimum covariance determinant estimator 
(Rousseeuw 1983, Pesch 1999, Rousseeuw and van Driessen 1999). In fact, for m 
= 1, i.e., one single class, the previous clustering model is identical to 
Rousseeuw's classical outlier model. 

3. Principal and self-consistent center systems 

Whereas the clustering criteria from section 2 are designed to find an 
optimum m-partition Χ* of the finite set of data points {x1, ..., xn}, we may ask if 
we can formulate an analogous partitioning or segmentation problem for the 
whole space Ρp, thereby assuming a given probability distribution P on Ρp and 
generalizing the previous criteria and clustering methods in a suitable way. For 
ease of presentation, we will consider typical cases where P has a Lebesgue 
density f(x) for x ∈ Ρp and speak of a continuous clustering (segmentation, 
quantization) problem. 
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In this article we will concentrate on the continuous version of the discrete 
variance criterion (7): Find a partition Β = (C1, ..., Cm) of Ρp and a system Ζ =(z1, 
..., zm) of class centers zi ∈ Ρp such that 

g(Β, Ζ) := 
ΖΒ ,1

2 min)( →−∑∫
=

m

i B
i

i

xdPzx                               (14) 

In fact, this problem has been considered by Bock (1974, chap. 15.b) who shows 
that – similarly to the discrete case – partial minimization leads to the 
equivalent problems 

g(Β) := [ ]
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where the optimum centers *
iz  := E[X | X ∈ Bi] have been substituted and 

γ(Ζ) := { }
Ζ
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where Β(Ζ) := ( **
1 ,..., mBB ) denotes the Voronoi (minimum-distance) partition of 

Ρp which is generated by the fixed center system Ζ with classes *
iB  := {x ∈ Ρp ||x 

– zi||2 = minj=1,...,m{||x –zj||2}} for i = 1, ..., m. 

In fact, this latter problem has been popularized by Flury (1990, 1993) and 
any solution Ζ* = ( **

1 ,..., mzz ) of (14) or (16) has been termed there a principal 
point system (PPS). The PPS approach can be considered as a modification of 
principal components in multivariate analysis, as a trivial variant of principal 
component clustering (Bock 1974, chap. 17, Bock 1987), and a special case of 
principal planes or curves (Hastie and Stützle 1989). In the clustering context, the 
continuous problems (15) to (16) find their applications in survey statistics, 
multivariate stratification, data compression and digitalization, 
telecommunication, and image analysis. 

From a theoretical point-of-view we would expect that the optimal center 
system Ζ(n) obtained from the discrete variance criterion (7) and (8) converges, for 
an increasing number n of samples, to a PPS Ζ* obtained from (14) or (16) if the 
data vectors X1, X2, ... are all distributed with the same distribution P. This 
conjecture has, in fact, been proved under various assumptions (see, e.g., Bryant 
and Williamson 1978, Hartigan 1978, Pollard 1982, Bock 1985) which all require 
that there exists only one single asymptotic PPS Ζ*. So it would be interesting to 
know more about the uniqueness of a PPS. 

In recent years, this question has been intensively investigated. It is closely 
related to the concept of a self-consistent point system Ζ, i.e., a center system Ζ = 



STATISTICS IN TRANSITION, October 2002                                                             

 

733 

(z1, ..., zm) ∈ Ρmp with the property that the corresponding Voronoi partition Β* := 
Β(Ζ) generates these centers in the sense that 

zi = E[X | X ∈ *
iB  for i = 1, ..., m                             (17) 

(Flury 1990). A pair (Β, Ζ) with this property has also been called a 
stationary pair and it is well-known that stationarity is a necessary condition for 
any PPS (see, e.g., Bock 1974). For an arbitrary density f, Flury (1990) and 
Mizuta (1998) provide necessary and sufficient conditions for an optimum with m 
= 2 classes, for m = 3 classes see Shimizu, Mizuta and Sato (1997, 1998). 
Stationary pairs and configurations for normal distributions have been determined 
and displayed by many authors: For the univariate normal case Ν1(0, 1) see Cox 
(1957), and Bock (1974, p. 179), for the two-dimensional spherical normal 
distribution Ν2(0, I2) see Flury (1990), Bock (1998), Shimizu et al. (1998) with m 
=3, ..., 11 classes from which we may guess the corresponding PPS (which is not 
unique due to the radial symmetry of Ν2). For ellipsoidal normals see Kipper and 
Pärna (1992), Tarpey, Li and Flury (1995), Shimizu et al. (1998), and Tarpey 
(1998). Zoppè (1997) considers also the case of an exponential distribution. For 
mixtures see Zoppè (1997) and Yamamoto and Shinozaki (2000). 

The unicity problem has often been investigated in parallel with the 
symmetry problem, i.e., the question if a symmetric density f(x) (with center x = 
0) admits also non-symmetric PPSs. The current state-of-the-art in this domain is 
characterized by the following theorems: 

Theorem 3.1: The one-dimensional case p = 1 

(a) The PPS is unique if log f(x) is concave (Trushkin 1982, Karlin 1982, Tarpey 
1994); examples are provided by Ν(0,1), Pearson II and Kotz-type 
distributions etc. (Tarpey 1998). 

(b) Symmetry of a PPS (w.r.t. the origin x = 0) does not follow from the 
symmetry of f. Counterexamples are provided, e.g., by Karlin (1982), Mizuta 
(1995), Zoppè (1997) and (g) below.  

(c) For m = 2 classes, symmetry and uniqueness hold if 
• f is symmetric,  
• the distribution corresponding to the density f is 'new better than used',  
• the function x/(2F(x) – 1) is nondecreasing for x > 0 (Yamamoto and 

Shinozaki 2000).  
Here F(x) = P(X ≤ x) is the distribution function corresponding to f. 

(d) The last condition in (c) holds if f is symmetric and unimodal. 
(e) Mixture densities of the type f(x) = (g(x – m) + g(x + m))/2 with a symmetric 

and log-concave density g fulfil the conditions in (c), thus have a unique PPS 
with m = 2 points. 

(f) For s ≥ 3 degrees of freedom, Student's ts distribution fulfils (c) (but is not 
log-concave). 
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(g) A scale mixture Ν(0,1) + Ν(0, σ2))/2 has a unique pair of principal points if 
and only if σ < 4.03537. 
See also Li and Flury (1995) and Shimizu et al. (1999) for a sufficient 

condition if k ≥ 2. 
For the multivariate case, there are still no satisfactory results. Some 

structural properties are provided by 

Theorem 3.2: The multivariate case 

(a) For p-dimensional spherical normal distributions with p ≥ 2 the PPS is not 
unique (since rotations do not change the PPS property). 

(b) Consider a density of the form f(x) = c ⋅ g(x'Σ–1x) with a positive definite 
matrix Σ, i.e. an elliptical distribution centered at 0. Then the subspace S := 
[z1, ..., zm] in Ρp which is spanned by the points of a PPS Ζ = (z1, ..., zm) is 
spanned by q eigenvectors (principal factors) v1, ..., vq of the matrix Σ where q 
:= dim(S) (Tarpey, Li and Flury 1995).  
In this domain there exists a large number of unresolved problems. In 

particular, we have no results about the structure of a PPS or a stationary 
configuration for a density f describing a clustering structure (e.g., a mixture of m 
normal distributions). 

4. Convexity-based clustering criteria 

In this section we consider some type of clustering criteria which has been 
developed during the last years and involves a convex function φ. It will be seen 
in the sequel that by choosing this function in a suitable way we can formulate 
and resolve several interesting problems in statistics and data analysis.  

Some motivation is provided by the classical variance criterion (7) where 
formula (8) shows that it is equivalent to the maximization of the following 
criterion: 

Gn(Χ) := ∑
=

→⋅
m

i
C

i
i

x
n

C

1

2
max

Χ
 

Replacing the square ||x||2 here by an arbitrary convex function φ(x) we obtain a 
quite general convexity-based clustering criterion: 

Gn(Χ) := ( )∑
=

→⋅
m

i
C

i
i

x
n

C

1

max
Χ

φ                                (18) 

There exists also an 'continuous' analogue of this 'discrete' problem which is 
essentially a segmentation, discretization or quantization problem: Consider a a 
random vector X in Ρp with distribution P. We want to find an m-partition Β = (B1, 
..., Bm) of the whole space Ρp which is optimal in the sense: 
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G (Β) := [ ]∑
=

→∈⋅∈
m

i
ii BXXEBXP

1

max)|()(
Β

φ    (19) 

It is obvious that the discrete problem (18) is returned from (19) when substituting 
P = Pn, the empirical distribution of the data x1, ..., xn. So we will mainly 
concentrate on the continuous problem. 

Convexity-based clustering criteria were introduced by Bock (1983, 1991, 
2002a) who developed an iterative k-means-like clustering method (e.g., for 
optimum stratification). Strasser and Pötzelberger (2001) generalized the 
criterion, investigated the mathematical properties of the resulting partitions and 
provided an asymptotic theory for n → ∞, similar to the classical SSQ case. 

It is obvious that an exact optimization is impossible for the criterion (19). 
However, we can design a heuristic maximization algorithm in analogy to the 
classical k-means algorithm for the variance criterion if we can find a two-
parameter criterion K(Β, Ζ) such that optimization of K(Β, Ζ) with respect to both 
parameters Β and Ζ is equivalent to the minimization of G(Β) with respect to Β 
alone (just as with (7) and (8)). Then we can apply an iterative alternating 
optimization strategy to K(Β, Ζ) as in the classical case. 

The construction of K is not at all self-evident. First we recall that for each z 
∈ Ρp the function u = φ(x) has a support hyperplane u = t(x; z, a) := a'(x – z) + φ(z) 
(with a coefficient vector a ∈ Ρp) with the properties 

φ(x) ≥ t(x; z, a) for all x ∈ Ρp and φ(z) = t(z; z, a) for x = z.           (20) 

For ease of presentation we will assume φ to be differentiable such that a = 
a(z) := gradx φ(x) |x = z and the hyperplane is the tangent hyperplane of the surface 
u = φ(x) at the support point x = z. 

Returning to the clustering problem (19), we will introduce for each class Bi 
⊂ Ρp an (arbitrary) support point z ∈ Ρp and compile these points in the support 
system Ζ = (z1, ..., zm). We will also consider the tangent (support) hyperplane Hi 
of φ for the support point zi which is described by u = t(x; zi) := ai'(x – zi) + φ(zi) 
(with ai := a(zi)) and is always below u = φ(x). Finally, we consider the piecewise 
linear function u = p(x; Β, Ζ) which is defined in the domain Bi by the hyperplane 
Hi, i.e., p(x; Β, Ζ) := t(x; zi) for x ∈ Bi. Obviously p(x; Β, Ζ) ≤ φ(x) for all x. – 
Now the following theorem specifies the required two-parameter criterion: 

Theorem 4.1: The continuous one-parameter maximization problem (19) is 
equivalent to the two-parameter 'minimum volume problem' defined by: 

K(Β, Ζ) := E[φ(X) – p(X; Β, Ζ)] = [ ]∑ ∫
=

→−
m

i B
i

i

xdPzxtx
1 ,

min)();()(
ΖΒ

φ         (21) 

Similarly, the discrete clustering problem (18) is equivalent to: 
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K(Χ, Ζ) := [ ]
ΖΧ,1

min);()(1
→−∑∑

= ∈

m

i Ck
ikk

i

zxtx
n

φ                  (22) 

Note that the criterion K(Β, Ζ) can be interpreted as a weighted volume between 
the surfaces u = φ(x) and u = p(x) in Ρp+1. 

Now we can (approximately) maximize the clustering criterion (19) by 
partially minimizing the equivalent criterion (21), first with respect to the support 
system Ζ and then with respect to the partition Β, and iterating these two steps as 
in the k-means algorithm (similarly for the discrete criterion (22)). It appears that 
partial minimization is possible in an explicit way such that we can formulate the 
following iterative optimization algorithm (with steps t = 0, 1, 2, ...) which is 
called the maximum-support-plane (MSP) algorithm. Since we have assumed a 
differentiable convex function φ, it is in fact a k-tangent algorithm. 

The k-tangent or maximum-support-plane (MSP) algorithm 

• t = 0: Select an arbitrary initial m-partition Β(0) = ( )0()0(
1 ,..., mBB ) of Ρp. 

• t → t + 1: 

(i) Determine the system Ζ(t) =( )(
1

)(
1 ,..., t

m
t zz ) of support points that minimizes the 

criterion K(Β(t), Ζ) with respect to all Ζ. This system is given by the class-specific 
expectations (centroids) [ ])()( | t

i
t

i BXXEz ∈=  of the classes )(t
iB , i.e., by Ζ(t) := 

(E[X | X ∈ )(
1

tB ],..., E[X | X ∈ )(t
mB ]). 

(ii) Determine the partition Β(t+1) = ( )1()1(
1 ,..., ++ t

m
t BB ) of Ρp that minimizes the 

criterion K(Β, Ζ(t)) with respect to all m-partitions Β. This optimum partition Β(t+1) 
is given by the maximum-support-plane partition (here: a maximum-tangent-
plane partition) that is generated by the current support system Ζ(t), i.e., with 
classes  

)1( +t
iB  := {x ∈ Ρp | t(xk; )(t

iz ) = maxj=1,...,mt(xk; )(t
jz )}                  (23) 

for i = 1, ..., m where t(x; )(t
iz ) corresponds to the tangent hyperplane Hi of φ in 

the support point )(t
iz , the centroid of the class )(t

iB . 
• Stopping criterion: 

Both steps are iterated for t = 1, 2, ... until the partitions Β(t) do not change any 
more or until the support points E[X | X ∈ )(t

iB ] attain an (approximately) 
stationary state. 

Some applications and special cases 
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Various problems in statistics and data analysis lead to optimization criteria of the 
type (18) or (19). We mention four special cases: 

(1) Maximizing the non-centrality parameter of the χ2 goodness-of-fit test 

If Y is a random vector in Ρp with distribution P, the well-known χ2 goodness-of-
fit test checks the hypothesis H0: P = P0 for a given distribution P0. It uses the test 
statistic χ2 := n ( )( ) ( )∑ =

−
m

i iii DPDPnN
1 0

2
0 //  where Δ = (D1, ..., Dm) is a given 

partition (segmentation) of Ρp and Ni the number of observations points x1, ..., xn 
in Di. The asymptotic performance of this test when testing against an alternative 
P = P1 (e.g., its Pitman or Bahadur efficiency) can be characterized by the non-
centrality parameter 

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )( )∑∑∑
===

⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
=

m

i
ii

m

i i

i
i

m

i i

ii DDP
DP
DPDP

DP
DPDPG

1
0

1

2

0

1
0

1 0

2
01 1~ λφΔ  (24) 

where λ(Di) := P1(Di)/P0(Di) is a discretized likelihood ratio and φ the convex 
function φ(λ) := (λ – 1)2. 

Looking for an optimum stratification Δ means maximizing the non-centrality 
parameter (24). It appears that this problem is a special instance of the 'convexity-
based' clustering problem (19). In fact, if we introduce the likelihood ratio x = 
λ(y) = f1(y)/f0(y) of the densities of P1 and P0 and consider the random variable X 
:= λ(Y) (of dimension p = 1) we see easily that maximizing G~ (Δ) is equivalent to 
finding an optimum partition Β = (B1, ..., Bm) of the λ-space Ρ 1

+  in the sense that 

G(Β) := ( ) [ ]( )
B

m

i
ii BXXEBXP max|

1
00 →∈⋅∈∑

=

φ (25) 

Here the partitions Δ of Ρq and Β of Ρ 1
+ are related by Di = {y ∈ Ρq | λ(y) ∈ Bi} and 

we have used the fact that the discretized likelihood ratio can be written as a 
conditional expectation of the form 

E0[X | X ∈ Bi] = E0[λ(Y) | Y ∈ Di] = P1(Di)/P0(Di) = λ(Di).             (26) 

Thus, the previous k-tangent algorithm can be used in order to find an optimum 
stratification Δ for the χ2 test (Bock 1983). 

(2) Maximizing the φ-divergence between discretized distributions 

More generally, we may look for a partition Δ of Ρq which maximizes the 
performance of other tests between H0: P = P0 and H1: P = P1. Corresponding 
measures have often the form of Csiszár's φ-divergence (Csiszár 1967): 
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Gφ (Δ) := ( ) ( )( ) ( ) [ ]( ) ( )
Β

Β max|
1

0
1

0 →=∈=∑∑
==

GBXXEBPDDP
m

i
ii

X
m

i
ii φλφ  (27) 

with a convex φ and Β as before. Special cases include the Kullback-Leibler 
discriminating information: 

GKL(Δ) := ( ) ( )
( ) ( ) ( )( )

Β
maxlog

1
0

1 1

0
0 →⋅=⋅ ∑∑

==

m

i
ii

m

i i

i
i DDP

DP
DPDP λφ     (28) 

with φ(λ) := – log λ and the variation distance 

GVD(Δ) := ( ) ( ) ( ) ( )( )
Β

max
1

0
1

10 →⋅=− ∑∑
==

m

i
ii

m

i
ii DDPDPDP λφ         (29) 

with φ(λ):= |λ – 1|. Again, maximization can be performed by the MSP algorithm 
(for details and examples see Bock 1991, 1994, 2002a). 

(3) Kohonen's iterative projection method 

Strasser and Pötzelberger (2001) have shown that for an arbitrary convex function 
φ the maximization problem (19) is equivalent to the problem 

Fm(a1, ..., am) := ( ){ }∫ ∈=
→−′

p
p

mR
Raa

j
c

jmj
xdPaxa

,...,,...,1 1

max)(max φ            (30) 

where φc(a) := sup { })(xxa jRx p φ−′
∈

 is the conjugate convex function of φ (with a 
direction vector a ∈ Ρp). Since for the Euclidean norm φ(x) := ||x|| we have φc(a) = 
0 (=∞) for ||a|| ≤ 1 (for ||a|| > 1) the problem (19): 

G(Β) = ( ) [ ]
Β

max|
1

→∈⋅∈∑
=

m

i
ii BXXEBXP                      (31) 

is equivalent to the problem (30), i.e. 

Fm(a1, ..., am):= { }
jaaa

m

i B
i

R
jmj jm

i
p

xxdPaxdPxa
 allfor  1with ,...,1,...,1 1*

max)()(max
≤==

=→′=′ ∑ ∫∫         (32) 

where *
iB  := {x ∈ Ρp | xai

′  = maxj=1,...,m { xa j
′ } } for i = 1, ..., m. 

This latter problem corresponds to a problem investigated by Kohonen 
(1984): Consider an m-partition Β = (B1, ..., Bm) of Ρp and for each class Bi a 
direction ai ∈ Ρp. Project all x ∈ Bi on the direction ai. Look for a Β and m 
directions a1, ..., am such that the 'average projection length' is maximized and, 
insofar, the subspaces spanned by the ai discriminate optimally the m classes of Β. 
Whereas Kohonen has presented a stochastic approximation method for solving 
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(32) we can use here the previous MSP algorithm here for resolving the 
equivalent problem (31) (with a modification allowing for the non-
differentiability of φ(x) = ||x||). 

(4) Simultaneous clustering of the rows and columns of a contingency table 

Consider two random variables U and V with categories in Υ = {1, ..., a} and 
ς = {1, ..., b}, respectively and denote by f(u, v) := P(U = u, V = v) the joint 
probability function of (U, V). This distribution is typically compiled in a 
contingency table Ν =(f(u, v))a×b (and could, e.g., be an observed empirical 
distribution). If the numbers a and b of categories are large, it may be desirable to 
reduce the large table Ν to a smaller one of size m×l, say, just by aggregating the 
categories of Υ into m classes A1, ..., Am, i.e., to consider an m-partition Α = (A1, 
..., Am) of Υ and, similarly, an l-partition Β = (B1, ..., Bl) of ς. We want to perform 
this aggregation in a way such that a possible dependence structure of the original 
variables (U, V) is optimally unfolded in the reduced table Ν(Α, Β)m×l with entries 
P(Ai×Bj) := P(U ∈ Ai, V ∈ Bj). One way to quantify this idea is to maximize the 
Kullback-Leibler information 

GKL(Α, Β) := ( ) ( ) ( )
( ) ( ) ΒΑ ,1 1

maxlog →
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ×
−⋅∑∑

= =

m

i

l

j ji

ji
ji BPAP

BAP
BPAP        (33) 

i.e., the divergence between the distributions given by P(Ai×Bj) and P(Ai)⋅P(Bj) 
(independence case). 

A basic strategy in order to (approximately) resolve this simultaneous 
optimization problem is by alternating partial maximization: We improve a given 
initial pair (Α(0), Β(0)) of partitions first by maximizing GKL with respect to Β, then 
with respect to Α and iterating these steps in turn. It has been shown by Bock 
(2001, 2003) that each partial maximization step corresponds to a convexity-
based clustering problem and that therefore the MSP algorithm can be used for 
partial maximization. In the case of Β this can be seen as follows: 

For a fixed partition Α of the rows of Ν, we denote 
• by P0 the marginal distribution of V with counting density fV(v) = P(V = v), 
• by P1i the conditional distribution of V under U ∈ Ai with counting density  

f1i(v) := P(V = v | U ∈ Ai) = ( ) ( )∑
∈ iAu

iaPvuf /,  

such that 

• λi(v) := f1i(v)/fV(v) = ( ) ( ) ( )[ ]vfaPvuf V
i

Au i

/, ⎥
⎦

⎤
⎢
⎣

⎡
∑
∈

 is a class-Ai-specific 

likelihood ratio (i = 1, ..., m) and 

• λ(v) := (λ1(v),...,λm(v)' ∈ Ρ p
+  the vector of all likelihood ratios. 
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With this notation we can write the criterion GKL(Α, Β) in the form 

GKL(Α, Β) = ( ) ( ) ( )
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where the function φΑ(λ) := ( ) [ ]∑
=

−⋅
m

i
iiAP

1

logλ  is obviously convex for λ ∈ Ρm. 

Therefore (34) has just the form of the convexity-based basic criterion (19) and 
we can maximize (33) or (34) with respect to Β by using the former MSP 
algorithm. – For other two-way simultaneous clustering criteria see Bock (2003) 
and Krolak-Schwerdt (2003) . 

5. Testing for homogeneity versus clustering 

Applying a clustering algorithm to some data presupposes, at least 
implicitly, that there exists a clustering structure in the data. In the alternative case 
of a 'homogeneous' population, any clustering method will typically produce more 
or less artificial clusters without substantial importance. This raises the problem 
of testing the 'homogeneity' of the data, i.e., the hypothesis H1: m = 1, versus an 
alternative of 'clustering' in the framework of the models presented in section 2. 

This problem and corresponding 'cluster tests' have been intensively 
investigated in the past (see, e.g., Hartigan 1978, 1985b, Bock 1985, 1996a, 
Bryant 1991). In the following we will describe two situations where we think 
that some important success has been attained in the recent past. 

(1) Testing for the number of mixture components 

The first one starts from the mixture model (5) with a given density family 
{f(⋅;ϑ ) | ϑ  ∈Θ} and considers the hypotheses Hm that the number of components 
is a preset integer m ≥ 1. Various choices for the testing problem are possible, 
e.g., H1 ↔ H2, and Hm ↔ Hm+1. Here we consider the problem H1 ↔ Hm (with a 
given m ≥ 2) and the corresponding classical maximum likelihood ratio test 
(MLRT) which rejects 'homogeneity H1' in favour of 'clustering Hm' if the test 
statistic 
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is larger that a critical threshold c = c(α) for a given significance level α. 

The determination of the percentage point c(α) is a serious problem. In fact, 
it has been observed, e.g. by Hartigan (1985a, 1985b), that the classical likelihood 
theory breaks down in this case such that the classical χ2 approximation for λn is 
wrong. This is due to the fact that the homogeneity hypothesis H1 is not 
identifiable in the usual parametrisation of Hm by θ = ( 1ϑ , ..., mϑ ) and π = (p1, ..., 
pm) and, moreover, H1 is located at the boundary of the parameter space. This can 
be seen from an example with m = 2 components: 

H2: f(x) = (1 – π2) f(x; 1ϑ ) + π2 f(x; 2ϑ ) with π2 ∈ [0, 1], 1ϑ , 2ϑ  ∈ Ρp  

H1: f(x) = f(x; 1ϑ ) with 1ϑ , ∈ Ρp 

Obviously H1 results from H2 for:
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There were many attempts to find suitable χ2 approximations for normal 
mixtures, beginning with Wolfe's basic paper (Wolfe 1971) and later on by 
simulation or bootstrapping (McLachlan 1987, Thode et al. 1988, Mendell et al. 
1991, 1993); see also Böhning et al. (1994). Theoretical results concerned, e.g., 
some type of consistency of the m.l. estimates nθ̂ , nπ̂  saying that for any 
neighbourhood W of the set of parameter values (θ, π) describing H1 (under Hm), 
we have limn → ∞ 1HP (( nθ̂ , nπ̂ ) ∈ W) (Redner 1981). Bickel and Chernoff (1993) 
have shown that for any unbounded parameter space the MLR statistic approaches 
∞ as fast as log(log n) if n →∞. Ghosh and Sen (1985) were the first to derive an 
asymptotic distribution of λn under the homogeneity hypothesis H1, assuming a 
two-component normal mixture model (1 – p) Ν1( 1ϑ , 1) + pΝ1( 2ϑ , 1) with a 
fixed 1ϑ . Their results require a bounded interval 1ϑ , 2ϑ  ∈ Θ = [a, b] and a 
separation condition | 1ϑ  – 2ϑ | > ε > 0 in order to restore identifiability. This is 
not very realistic in practice. 

It was only in recent years that a modified asymptotic likelihood theory has 
been proposed, e.g. by Dacunha-Castelle and Gassiet (1999), Berdai and Garel 
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(1994, 1996) and Garel (2001, 2002), and the separation condition was 
eliminated. In the case H1 ↔ H2 the general approach of Garel consists in 
deriving, for a given parameter (θ, π) from the domain Φ describing H2, a suitable 
asymptotic expansion Tn(θ, π) for the likelihood ratio and to show that the process 
(Tn(θ, π))(θ, π)∈Φ converges to a Gaussian process (T(θ, π))(θ, π)∈Φ, and that this 
approximation still holds when considering the maximum over (θ, π) ∈ Φ. 

For illustration we describe a result from Garel (2001) who considers H1 ↔ 
H2 for a two-component normal mixture (5) with a known first expectation 1ϑ  = 
0, a constrained second expectation 2ϑ  ∈ Θ = [–a, a] (a bounded interval) and the 
probability p := p2 ∈ [0, 1]. A Taylor expansion approximates, for a fixed u = 2ϑ , 
the likelihood ratio by the value 

Tn(u) := (n)–1/2 ( )∑
=

−

−

−n

k u

uuX

e

e k
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1
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and it is shown: 

Theorem 4.1: 

For n → ∞ we have 

)1(0)(
2

}0{
)(sup

pn oun
u

n IuT +≥
−Θ∈

⋅=λ .                                    (36) 

Theorem 4.2: 

For n → ∞, the stochastic process (Tn(u))u∈Θ converges weakly to a centered 
Gaussian process (T(u))u∈Θ with unit variance and covariance function 

C(u, v) := ( )( )11

1
22

−−

−
vu

uv

ee

e . 

Therefore, percentage points for λn can be obtained, for a large n, from the 
distribution of the maximum of the Gaussian process (T(u))u∈Θ, restricted to the 
parameter values u∈Θ –{0} with T(u) ≥ 0. In practice, this latter distribution can 
be determined from a sufficiently large number of simulations of the process T. – 
Additionally, Garel (2001) proposes some useful bounds for percentage points 
and develops similar approximations for the general case where more or all 
mixture parameters 1ϑ , 2ϑ , 2

1σ , 2
2σ  are unknown. The case of three normal 

mixture components is considered in Garel (2002). 

(2) Testing for multimodality – Silverman's test revisited 
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Whereas the clustering models reported in section 2 are prototypes for a 
parametric approach, we may formulate clustering structures in a nonparametric 
framework as well and characterize clusters by the modes and troughs of the 
underlying (typically unknown) probability density f(x) or, in an empirical 
version, of its estimate ( )xf n̂  obtained from the data points x1, ..., xn. Then each 
'cluster' corresponds to a mode (local maximum) of the density f and comprises all 
(data) points which can be assigned to this mode by a 'hill climbing process' 
('clusters of relatively large density' in Bock (1974), 'mode clusters'). 

In particular, when testing the hypothesis H1 of 'homogeneity' versus the 
alternative Hm of 'a clustering structure with m classes' (with a fixed m ≥ 2) we are 
led to the following specifications: 

H1: f is unimodal (homogeneity) 

Hm: f has m modes (clustering). 
A suitable multimodality test has been proposed by Silverman (1981, 1983) 

for the one-dimensional case. He considers, for n data points sampled from f, the 
classical kernel density estimate 

( ) ∑
=

⎟
⎠
⎞

⎜
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⎛ −

⋅=
n

k

k
n h

xxK
nh

hxf
1

1:;ˆ  x ∈Ρ1                                 (37) 

with the standard normal kernel K(x) = (2π)–1/2 2/2xe− and a bandwidth h > 0. He 
uses the fact that (for this kernel) the number Mn(h) of modes of ( )hfn ;ˆ ⋅  is a non-
increasing function of h such that it makes sense to consider the critical threshold 

( )hfhh n
n

crit ;ˆ|0inf{ˆ )( ⋅>=  has exactly m modes}.                  (38) 

Silverman's multimodality test of level (error probability) α rejects the 
homogeneity hypothesis H1 in favor of Hm if )(ˆ n

crith  > c(α) with a critical threshold 
c(α). 

Silverman proposed to approximate the percentage points c(α) of )(ˆ n
crith  under 

H1 by a bootstrap method based on random sampling from the data set {x1, ..., xn}. 
However, it is known that this estimate is not asymptotically accurate insofar as 
even for n → ∞ the test's exact level deviates from the nominal one α. In fact, the 
bootstrap part of his method does not consistently estimate the distribution of 

)(ˆ n
crith  under H1, even up to scale and location transformation. This problem has 

initated several theoretical investigations on the behaviour of )(ˆ n
crith . For instance, 

Mammen, Marron and Fisher (1992) have shown that )(ˆ n
crith  is of the order n–1/5 

insofar as  
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whereas under H2 )(ˆ n
crith  may even not converge to 0. Fisher, Mammen and Marron 

(1994) have addressed numerical properties of Silverman's technique. 

Quite recently, Hall and York (2001) have analyzed the level inaccuracy of 
the test for H1 versus H2 in Ρ1 (theoretically and numerically). In particular, they 
proposed some calibration of the test statistic and of the critical threshold in order 
to attain a correct level accuracy, either by tables, by formulas, or by determining 
a 'critical distribution' of the modified test statistic. In order to cope with the 
occurrence of spurious modes caused by outlying data, they consider even the 
case where (even if the underlying density has an infinite support) the modes are 
confined to a finite interval Ι of Ρ1. 

From a technical point of view the procedure resides on a bootstrapped 

version of 
)(ˆ n

crith : For given data x1, ..., xn, let ( )⋅critf̂  := fn(⋅;
)(ˆ n

crith ) denote the 

corresponding density estimate (37) for h = 
)(ˆ n

crith . Consider a resample 
*
1X , ..., 

*
nX  drawn from the distribution 

)(ˆ n
crith , and put 

( ) ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⋅=

n

k

k
n h

XxK
nh

hxf
1

*
* 1:;ˆ  x ∈ Ρ1.                         (39) 

Now let *ˆ
crith  denote the version of critĥ  obtained in this setting for X1, ..., Xn (i.e., 

the infimum of all h > 0 such that ( )hfn ;ˆ * ⋅  has one mode only). 

The new test statistic is the bootstrap distribution *
nP  of the rescaled 

threshold *
nT  := *ˆ

crith \ critĥ , and the level α test of H2 against H1 is to reject 

homogeneity H1 if *
nP ( *

nT  ≤ τ | x1, ..., xn) ≥ 1 – α for a suitable threshold τ = τ(α). 

It is shown that the bootstrap distribution function )(ˆ tGn  := *
nP ( *

nT  ≤ t 
| x1, ..., xn) (with t ≥ 0) converges weakly to a nondecreasing stochastic 
process ( ) 0)(ˆ

≥ttG  whose distribution does not depend on unknown 
parameters and whose paths (distribution functions) are continuous with 
probability 1. So we can calculate a constant τ(α) which fulfils P( Ĝ (τα) ≥ 
1 – α) = α (Hall and York provide a table for τα). With this specification of 
τα (method 1), the modified bootstrap test is asymptotically correct, in that 
for n → ∞ 
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1HP ( *
nP ( *

nT  ≤ τα | X1, ..., Xn) ≥ 1 – α) → P( Ĝ (τα) ≥ 1 – α) = α 

Alternatively, τα may be estimated from simulations of the distribution Ĝ  
(method 2). Other cases such as Hm ↔ Hm+1 can be treated in a similar way. 

For some related or other multimodality tests see, e.g., Good and Gaskins 
(1980), Izenmann and Sommer (1988), Fisher et al. (1994), Bock (1996a) and 
Minotte (1997). 

5. New algorithms and new applications 

When browsing through the recent literature, e.g., in the computer science 
and Data Mining domain, we find a lot of proposals for new clustering strategies, 
often designed for special purposes or improving on speed and storage space. 
However, it appears often that 'new' algorithms are no more than copies or 
adaptations of traditional clustering algorithms. For example: 
• DENCLUE (Hinneburg and Keim 1998) is essentially the classical hill-

climbing algorithm for locating modal clusters as described, e.g., in Schnell 
(1964), Ihm (1965), Bock (1974).  

• DBSCAN (Ester et al. 1996) is based on the graph-theoretical linking methods 
described already by Wishart (1969) and the (k, d)-clusters proposed by Ling 
(1972).  

• K-Harmonic Means Clustering (Zhang, Hsu and Dayal 2000) is identical to 
Bezdek's fuzzy clustering method (Bezdek 1974) with fuzziness exponent r = 
2 (see Bock 1979a, 1979b). 
Nevertheless, the indicated papers provide often some progress insofar as 

they are related to new software which uses the full possibilities and capacities of 
modern computer equipment and data base management with the result that the 
methods can now be applied routinely in practice whereas at the time of their 
invention they needed too much time and/or too much storage space. 

A major issue in clustering is the occurrence of high dimensional data and 
the availability of very large data sets. The latter situation has always been a 
challenge for classificationists, and the former one is closely related to the 
inherent sparsity of the data points (e.g., when the sample size is of the same order 
as the dimension) where even the concept of proximity or clustering may break 
down. A plethora of corresponding algorithms has been developed in the last 
years in the fields of artificial intelligence, data mining, database management and 
informatics, but is not so well known in the communities of statisticians. Without 
going into details here, we mention two typical approaches: 

(1) Projection methods 

When dealing with high-dimensional data, a helpful strategy for locating 
clusters is to search for clusters which are characterized by low-dimensional 
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class-specific subspaces (as 'centers'), or for global projections where clustering 
can be detected. On the other hand, such projection methods are useful also when 
analyzing very large databases in order to reduce the large amount of information. 
Classical methods such as principal component or subspace clustering (Bock 
1974) and projection pursuit clustering (Bock 1987) have been completed by 
heuristical search algorithms, for example: 

– ORCLUS and PROCLUS are algorithms that proceed by an iterative search for 
subspaces and by suitable minimum-distance assignments, eventually combined 
with a hierarchical merging strategy which reduces iteratively the number of 
classes and the dimensions of the class-specific hyperplanes (Aggarwal, Park et 
al. 1999, Aggarwal and Yu 2000);  

– CLIQUE identifies dense clusters in subspaces of maximum dimensionality 
(Agrawal et al. 1998). The algorithm begins with the dimension one and increases 
the dimension in several passes.  

(2) Grid-based methods 

These methods are density-oriented and look essentially for mode clusters. 
In order to tackle with a large amount of data and, simultaneously, a high 
dimension they partition the data space Ρp into small cells by using a grid formed 
by appropriate (p – 1)-dimensional (not necessarily orthogonal or equidistant) 
cutting hyperplanes. Cutting planes are constructed by heuristic rules involving 
projections, marginal point densities and density troughs, eventually coarsening 
successively the grid and the data. For example:  

– DENCLUE (Hinneburg and Keim 1998) uses a grid-based strategy, but stores 
only grid cells which contain data points. It connects all (non-empty) 
neighbouring cells of a highly-populated cell (density attractors).  

– BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies, see 
Zhang, Ramakrishnan and Linvy 1997) uses a hierarchical data structure called 
Cluster-Feature-tree. It stores similar data items in a node of the CF-tree.  

– STING (STatistical INformation Grid, see Wang, Yang and Muntz 1997) 
divides the space into rectangular cells and stores the statistical properties (means, 
variance, ...) of the objects of a cell in the nodes of a quadtree-like structure.  

– WaveCluster (Sheikhoeslami et al. 1998) is a wavelet-based approach which 
uses a rectangular grid. Its main idea is to apply a wavelet transformation to the 
(content of the) grid cells and to determine dense regions in the transformed 
domain be searching for connected components.  

– OptiGrid (Hinneburg and Keim 1999) is a grid-partitioning technique designed 
for high-dimensional data. In several iterative loops, the algorithm selects some 
suitable contracting projection operators, determines in each of the projected data 
sets a density though and a corresponding local cutting plane, and then selects 
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some optimum cutting planes from which the grid and the clusters are 
constructed. Additional steps may lead to a refined clustering. 

New data types in new fields of application 

Finally, we want to point to some new domains where clustering problems 
occur, possibly formulated in terms of 'non-classical' data types or for quite 
specific applications. 

A first remark concerns the field of molecular biology where entities 
(persons, bacteria, viruses, proteins) are characterized by DNA strains, molecular 
structures and gene constellations. During the last years, various clustering 
methods have been designed for such data, but the large amount of variables, the 
combinatorial structure of strain elements, and the underlying (chemical, 
spatial,...) constraints render this field very difficult. A particular field of research 
is the analysis of gene expression data} obtained from micro arrays; see, e.g., 
Hedge (2000), Dudoit et al. (2002), Allison (2002), Dudoit et al. (2002), Krause 
(2002), Lausen (2003), and Ziegler et al. (2003). Here clustering methods are 
indispensible in order to reveal useful groups of genes (e.g., related to specific 
diseases), groups of proteins, groups of animals, etc. Some recent approaches are 
described by Eisen (1998), Ben-Dor et al. (1999), Golub et al. 1999, Hartuv et al. 
(1999), Alizadeh et al. (2000), Hastie, Tibshirani and Eisen (2000), Heydebrinck 
et al. (2001), Krause (2002), Ramoni et al. (2002), Yeung et al. (2001), 
Markowetz and Heydebrinck (2003), and McLachlan et al. (2003). 

Marketing and economics were always a classical domain for applying 
clustering methods, e.g., for detecting homogeneous groups of consumers, groups 
of (substitutable) products, enterprise types, etc., in the framework of Data 
Mining and KDD. Here clustering methods were mostly based on quantitative and 
qualitative variables. Nowadays, however, the emergence of internet applications, 
web technology and E-commerce has created new data types in the form of 
navigation paths which describe the way in which, e.g., a web user navigates 
backwards and forward in the website catalogue of an enterprise. Analysis and 
clustering of such data should reveal the needs and preferences of the user and the 
identification of user types in order to presenting and offering automatically 
suitable products which the user may like to buy (recommender services). Various 
methods have been proposed in this domain which is still in full progress; see, 
e.g., Gaul and Thieme-Schmidt (2000), Böhm et al. (2003), Punin et al. (2003). 

Finally we point to the consideration of symbolic data where variables may 
be sets of categories, intervals, or frequency distributions. For example, a 'data 
vector' which describes the properties of a club (item k) in terms of the car types, 
the age and the gender of its members, could have the form xk = ({Audi, Peugeot}, 
[35, 45], (male: 65%, female: 35%)) meaning that the club is composed by 
members who drive Audi or Peugeot, are aged between 35 and 45, and such that 
65% of the club members are men. Such data occur, e.g., in survey statistics 
where individual data may be aggregated, e.g., on a local or regional level before 
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being integrated into a global, e.g., national or European database. There are 
many proposals for analyzing such 'symbolic' data and, e.g., to detect groups of 
similar clubs, cities, products, ... For details see, e.g., Bock and Diday (2000) and 
the recent electronic Journal of Symbolic Data Analysis 
(http://www.jsda.unina2.it). 
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ORTHOGONAL COMPONENTS FOR GROUPED DATA: 
REVIEW AND APPLICATIONS 

W.J. Krzanowski1 

ABSTRACT 

Principal component analysis is a key technique in the analysis of 
multivariate data, encompassing three possible objectives: description, 
interpretation and modelling of the data. Orthogonality is a central plank in all 
three aspects. However, a-priori grouping of individuals is not accommodated 
within the technique. Traditionally, canonical variate analysis is used when 
data have this structure, but this technique has a number of drawbacks as 
regards each of the three objectives. Consequently, attempts have been made 
over the past twenty-five years to uphold the principal component approach 
while allowing for group structure in the data. The resultant techniques have 
been published in a wide range of journals, so the main purpose of the present 
article is to draw this work together in a single review. We also highlight a 
variety of generic applications in which the techniques have been used. These 
include discriminant analysis, cluster analysis, distance-based analysis, spatial 
analysis and industrial process control. 

Key words. Eigenvalues; eigenvectors; linear transformations; spectral 
models; subspace projection. 

1. Introduction 

Principal component analysis (PCA) is one of the most heavily used of 
multivariate techniques, and it has found applications in a wide variety of 
substantive areas (see, e.g., Jackson, 1991, or Jolliffe, 1986). Mathematical 
development took place throughout the 20th century, and the three prime 
objectives in most applications of the methodology were identified at 
approximately evenly-spaced intervals during this period. Pearson (1901) took a 
geometrical standpoint, using the representation of p variables measured on a 
sample of n objects as a set of n points in p dimensions, and introduced the 
technique as one that successively identifies the r-dimensional subspaces of 
                                                           
1 Address for correspondence: School of Mathematical Sciences, University of Exeter, Laver 

Building, North Park Road, Exeter EX4 4QE. 
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closest fit to such a set of points for r = 1, 2, ..., p–1. This formulation underpins 
the use of PCA for description of the multivariate data. By contrast, Hotelling 
(1933) took an algebraic approach, and established that Pearson's principal 
components were also the orthogonal directions in space that successively 
maximised the variance of the data points. In other words, the r-dimensional 
subspace of closest fit to the data is also the one in which the scatter of the points 
is maximised, and this feature is central to the use of PCA for interpreting the 
multivariate data via reification (Krzanowski, 2000 p. 54). The third major 
advance was by Anderson (1963), who took a statistical approach and developed 
the distributional theory underlying principal components. This unified previous 
ad-hoc results, and opened up the possibility of PCA being used to model a set of 
multivariate data. 

Orthogonality of components plays a key role in each of these objectives. In 
multivariate description, orthogonal components ensure that subspaces are 
derived from the original data space by orthogonal projection, thus ensuring that 
there is no distortion of the original configuration. In multivariate interpretation, 
having orthogonal components means that identified sources of “important” 
variation are uncorrelated, while in multivariate modelling orthogonal 
components provide a simple population dispersion structure. However, a-priori 
grouping of units is not catered for in any of these formulations. Instead, 
imposition of such grouping structure on the data led to the development of 
canonical variate analysis (CVA) in the second half of the 20th century. 
Objectives of this technique broadly parallel those of PCA. Rao (1948) derived 
the unweighted version as appropriate for defining the r-dimensional subspace in 
which the total Mahalanobis squared distance between all pairs of groups is 
maximised, and Ashton et al (1957) highlighted this approach as the one 
providing the best description of between-group differences. Bryan (1951) 
provided the algebraic details for generating components that successively 
maximise the between-group relative to the within-group variance, and this 
permits between-group differences to be interpreted in analogous manner to PCA 
interpretation. Finally, Campbell (1984) formulated a model-based version of 
CVA in which the population means are expressed as a function of the population 
canonical variates, which enables the modelling of data to be extended to 
situations involving a-priori group structure.  

However, despite the evident parallels between CVA and PCA, the former 
technique embodies some fundamental differences from the latter. First, it 
produces non-orthogonal components, which induce a deformation of the 
multivariate space if used as the axes of a subspace representation. Second, if 
there are g groups then the maximum number of components that can be produced 
by the technique is the smaller of g – 1 and p, which means that very few 
components can be obtained when g is small. Third, there are problems of 
singularity when either p is very large or n is very small, situations that occur 
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frequently in applications such as in spectroscopy or chemo metrics that involve 
automatic data recording devices.  

Attention has thus been paid over the past twenty-five years to providing 
various extensions to PCA that can be used in the presence of group structure in 
the data and that do not suffer from the above drawbacks. The purpose of this 
article is to review these developments, and to show how they can be used in such 
generic areas as discriminant analysis, cluster analysis, distance-based analysis, 
spatial analysis and process control. The review will be split into the three 
objectives listed earlier, namely description, interpretation and modelling. First, 
however, we establish some notation and terminology.  

2. Fundamentals 

We suppose that the data comprise n observations x1, x2, ..., xn on a p-
element vector X. The sample mean vector will be denoted by x , and the sample 
covariance matrix by S. We have already referred to the representation of this 
sample as n points in p-dimensional space; in the presence of g a-priori groups or 
populations, the n observations are divided into g sets  
(xij, i = 1, ..., g; j = 1, ..., ni) and the cloud of points into g more or less distinct 
sub-clouds. Group mean vectors will be denoted gxxx ,...,, 21 , the between-group 

covariance matrix ( )( )∑
=

−−
−

=
g

i

T
iiin

g 11
1 xxxxB , and the within-group 

covariance matrix ( )( )∑∑ −−
−

=
i j

T
iijiijgn

xxxxW 1
. 

Many multivariate techniques involve linear combinations  
XlY T

i=i , i.e. Y = LTX where li is the ith column of L. In particular, PCA is 
defined by Y = LTX where LTSL = D (diagonal) and LTL = I 
and CVA by 
Y = LTX where LTBL = D (diagonal) and LTWL = I 
We consider now other possibilities for such transformations. 

3. Interpretation 

One problem frequently met is when several groups of invidividuals have 
had the same variables measured on them, PCA has been conducted on each 
group separately, and then it is desired to compare the first k components (say) of 
each group (i.e. to compare Li, i = 1, ..., g). This may occur, for example, if the 
groups are individuals subjected to different experimental conditions, or if they 
are observations taken in different environments, or at different times. 
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The first attempt at tackling this problem was by Krzanowski (1979), who 

showed that the eigenvectors bi (i = 1, ..., k) of ∑
=

=
g

j

T
jj

1
LLH  give the successive 

components that “agree most closely” with all g sets of PCs. The corresponding 

eigenvalues are ∑
=

=
g

t
tii

1

2cos δλ  where ( )
i

T
tt

T
iti bLLb1cos−=δ  is the 

discrepancy between bi and Lt. Some limited simulation studies were conducted 
by Krzanowski (1982) into the null distribution of critical angles produced by the 
technique, but essentially it has been used descriptively rather than inferentially in 
applications. 

By contrast, Keramidas et al (1987) proposed a more inferential method. 
They first advocated the identification of “well determined” components across 
all groups, followed by graphical comparison of the latter between the g groups. 
This comparison could be effected by Gamma probability plots of squared 
Euclidean distances between each group component and either a pre-specified or 
a “typical” component, and an extension to comparison of subspaces was 
outlined. A number of examples illustrated the utility of the technique. However, 
one evident drawback is that a large number of groups is a necessary condition of 
successful application of the probability plots (and all the examples had such 
large numbers). If the number of groups is relatively small, the technique 
described in section 5.2 below may be more appropriate.  

4. Description 

Here we consider methods that have been proposed for projecting the data 
into low-dimensional subspaces, subject to the constraints that the subspaces are 
defined by orthogonal components and the projection is such as to highlight 
differences between groups. 

Since PCA produces orthogonal components ordered by sample variance, 
one obvious possibility is to use re-ordered principal components. Instead of 
ordering them by i

T
iid Sll= , order them by 

ei = 
i

T
i

i
T
i

Wll
Bll

or equivalently 
i

T
i

id
Wll

 

This uses ordinary PCA but arranges the components by the CVA criterion, 
and was proposed by Krzanowski (1992) following Chang (1983) who suggested 
Mahalanobis distance as the ordering criterion for the two-group case. 

Of course the problem is that the wrong criterion is being optimised, so 
while the first k re-ordered principal components may be better at representing 
group differences than the original top k components, they do not necessarily 
have the right optimality properties. As an approximation to the desired 
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optimality Yendle & MacFie (1989) proposed their method of discriminant 
principal components: rescale each variable with the inverse of its pooled within-
groups standard deviation and then do PCA of the between-groups covariance 
matrix from the scaled data. While this goes part of the way, it still ignores the 
within-groups covariances so will not necessarily produce the best representation. 
Another possibility, again sub-optimal, is the use of partial least squares 
(Garthwaite, 1994; Martens & Martens, 2001) which can be implemented in the 
present context by setting group dummy variables Yi followed by the multivariate 
regression formulation of the technique. However, while this method incorporates 
group information into an orthogonal-component derivation, it does not 
necessarily do so in an optimal fashion. 

The optimal approach is given in the stream of publications dealing with 
orthogonal canonical variates, i.e. with orthogonal components that maximise 
between-to-within group variance. This stream was initiated by Foley & Sammon 
(1975) for the two-group special case, but was taken up for the general case by 
Okada & Tomita (1985). Their approach was a sequential process: given the first 
r components l1, ..., lr, find a basis b1, ..., bp–r for their orthocomplement  
(e.g. Gram-Schmidt); setting this basis as columns of P, form Wr = PTWP and  
Br = PTBP; the iterations krrk cBWc 1

1
−

+ =  will then converge to lr+1 = c. 
Duchene & Leclercq (1988) organised this process as a matrix eigenvector 

extraction, and generalised it to allow any mixture of CVA & PCA criteria, while 
Hamamoto et al (1991; 1993) improved the algorithm to optimise discriminant 
feature selection and conducted a comparison of discriminant performances. 
However, chemometric and other applications in which p is much larger than n 
are not amenable to these methods because of problems with inverting W. 
Krzanowski (1995) proposed handling the case of singular W by initial projection 
into a subspace, optimisation in this subspace, and then back-projection into the 
full space. Kiers (1997) provided improved optimisation algorithms which permit 
simultaneous rather than sequential derivation of components, while Kiers & 
Krzanowski (2000) suggested an extension to obtain projections accentuating 
extreme groups. This involves defining Bi to be the between-group matrix for the 
two-group case of group i and the union of all other groups, and then maximising 

over l and i either lTBil or 
i

T
i

i
T
i

Wll
Bll

 subject to orthogonal vectors l. 

To illustrate some of the above techniques, consider a set of data in which 24 
food samples were rated on 31 sensory characters by trained judges (Ian Wilson, 
personal communication). The 24 samples were divided into 4 groups: group 1 
comprised 6 reformed meats, group 2 contained 5 types of sausage, group 3 had 7 
whole meats and group 4 was made up of 6 varieties of beefburger. Note that here 
p is greater than n – 4, so the data produced a singular W and orthogonal 
canonical variates had to be derived using the method of Krzanowski (1995). 
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Figure 1 shows the 24 samples plotted against the first two (re-ordered) 
principal components. Only group 3 seems to be reasonably compact, while the 
other groups are all intermingled. Figure 2 shows the 24 samples plotted against 
the first two partial least squares components. The samples in group 3 have 
become more tightly clustered, but the other three groups are still quite 
intermingled. Figure 3 shows the 24 samples plotted against the first two 
orthogonal canonical variates. Groups 2 and 3 are now seen to be very tightly 
clustered and well separated from the other samples, while groups 1 and 4 
(reformed meats and beefburgers!) are relatively indistinguishable. 

Figure 1. 

 
 

 
 
 
Figure 2. 
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Figure 3. 
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4.1 Application: projection pursuit clustering 

Bock (1986) and Heiser & Groenen (1997) have established connections 
between multidimensional scaling (MDS) and cluster analysis, while Bock (1987) 
has proposed the following clustering method in MDS by projection pursuit. Let 
Ι(Α,Χ) be the projection index, as a function of the d-dimensional projection Α 
and the clustering Χ. The steps of the algorithm are: 
1. Produce an initial clustering of points. 
2. Optimise Ι over Α for fixed Χ. 
3. Optimise Ι over Χ for fixed Α. 
4. Return to 2 until there is no further improvement in Ι. 

Bock effectively used Ι = trace(LTBcL), LTL = I, where the subscript c 
denotes calculation with regard to current clustering Χ. Bolton & Krzanowski 
(2003) investigate several indices based on orthogonal canonical variates, 
including: 

Ι1 = ∑
=

d

i ic
T
i

ic
T
i

1 lWl
lBl & iji

T
i δ=ll   

Ι2 = 
∑
∑

ic
T
i

ic
T
i

lWl
lBl

& iji
T
i δ=ll  

Several examples show that these indices perform well in separating groups 
that are known to be present. Note however that Ι and Ι2 coincide when the data 
are initially sphered. 

5. Modelling 

The first attempt at modelling principal components in the presence of 
groups was by Flury (1984), who proposed the common principal component 
(CPC) model: X has a N(μi, Σi) distribution in population πi (i = 1, ..., g) where Σi 
= ΛΔiΛT and ΛΔiΛT = I. Here Λ contains a set of eigenvectors common to all 
populations, while the Δi are population-specific diagonal matrices of eigenvalues. 

Given samples of sizes ni from populations πi, with sample means ix  and 
covariance matrices Si, the first step in an analysis is to obtain estimates L, Di of 
Λ, Δi (i = 1, ..., g). There are two possible approaches: 
• Maximum likelihood [F-G algorithm; Flury & Constantine (1985)], assuming 

normality of populations. Here L is chosen to minimise ∏
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡g

i

n

i

i
T i

1

diag
S

LSL
 

and then Di is set equal to LTSiL. 



STATISTICS IN TRANSITION, October 2002                                                             

 

767 

• Least squares [Clarkson (1988)], if no distributional assumptions are made. 

Here L is chosen to minimise ( )[ ]∑ ∑∑
=

≠

g

i
j i

T
in

1
1

LSL  and then Di is set equal 

to LTSiL.. 

With either method, we would then use the transformation Y = LTX where 
LTSiL ≈ diag(Di) and LTL = I. Adequacy of fit of this model can be checked 
either informally or formally: 
• Informal: inspect the correlation matrices 2/12/1 −−= ii

T
ii LESLER  where  

Ei = diagDi. All off-diagonal elements should be “close to” zero if the model 
is adequate. 
Formal: compute the likelihood-ratio test statistic 

( )∑
=

−=
g

i
i

T
iinT

1

1ln LDLS . This has an asymptotic ( )( )
2

2/11 −− gppχ  distribution if 

the model is adequate. 

Flury (1988) gives many substantive applications (anthropometry, biometry, 
finance etc); see also Boik (2002). Flury (1986) and Yuan & Bentler (1994) 
provide some asymptotic distribution theory, while Reyment (1997) applies the 
model to logratios in geological compositional  data. 
An alternative, more general, formulation of this model has been given by 
ten Berge (1986) and Kiers & ten Berge (1994). Let: 
Z be the (n × p) data matrix (“standard scores”), 
L be the (p × k) matrix of component weights, and 
P be the (p × k) “pattern” matrix used to reconstruct Z from columns of the 
component scores matrix ZL. Then PCA is given by the P and L which minimise 

( ) 2Tf ZLPZPL, −=  

and for g groups we can generalise the optimality criterion to 

( ) ∑
=

−=
g

i

T
iiiiggf

1

2

11 ,...,;,..., PLZZPPLL  

Optimisation of this criterion is effected by alternating least squares, and the 
solutions can be subject to constraints. Four possibilities exist: 
1. (Unconstrained) ff sep min* =  over separate Li, Zi i∀ ; 

2. (SCA–L) ff min* =L  subject to Li = L i∀ ; 

3. (SCA–S) ff min* =S  subject to ( ) iii
T
ii ∀= LZZS ; 

4. (SCA–P) ff min* =P  subject to Pi = P i∀ . 
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The Flury CPC model is equivalent to SCA–L. 

5.1. Applications of the CPC model 

5.1.1. (i) Discriminant analysis 

Standard (two-group) discriminant analysis theory (Krzanowski, 2000) says 
that we should allocate x to one of N(μ1, Σ1), N(μ2, Σ2) according as 

( ) ( ) 2
1

21
1

1
1

2
1

12
1 μΣμΣxΣΣxx −−−− −+−−= TQ  

is ≥ or < a constant (which depends on the μi and Σi. 

Given training samples from each population, we estimate μi by the sample 
means. Estimation of Σi can take various routes: 
1. (Unconstrained) ii SΣ =ˆ  for i = 1, 2 (yielding the usual quadratic 

discriminant function). 
2. (CPC) T

ii LLDΣ =ˆ  for i = 1, 2. 
3. (Proportionality) Assuming Σ2 = ρΣ1 implies that Δ2 = ρΔ1 and leads to 

constrained CPC (Flury, 1988). 
4. (Equality) WΣ =i

ˆ  for both i (yielding the usual linear discriminant 
function). 
It has been shown that parsimonious models are often best, even when they 

are not “true”. In particular, model 3 works well. [Flury & Schmid (1992); Flury 
et al (1994)] 

5.1.2. (ii) Generalising CVA 

Canonical variate analysis requires the assumption of equal population 
dispersion matrices Σi. The technique can be generalised by using the CPC model, 
and exploiting the equivalence between CVA and MDS based on Mahalanobis 
distance (Krzanowski, 2000, p302). For this we need to derive a distance between 
populations that follow the CPC model. Several such distances are available: 
• Hellinger/Matusita distance: 

The affinity ρij between fi(x) and fj(x) is given by ( ) ( ) xxx dff ji∫ , and from 

this we can then define the distance δij between the distributions by any of 
( )ijρ−12 , cos–1ρij or 

–lnρij  (Gower, 1967). For the CPC model we have (Krzanowski, 1990): 
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where i
T

i xLy = . An application of this distance to classification of orchids 
has been given by Tyteca & Dufrêne (1993). 

• Rao distance: 

The distance between f(x|θ1) and f(x|θ2) is defined to be the geodesic distance 

s(θ1, θ2) with respect to the metric 

( )∑∑ jiij ddgds θθθ2  

in the parameter space Θ, where 
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For the CPC model we find (Krzanowski, 1996): 
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Krzanowski (1990) has demonstrated the difference that is obtained between use 
of standard canonical variate analysis and MDS on Matusita distances for a data 
set (Venezuelan students) in which the hypothesis of equal population dispersion 
matrices is rejected while the common principal component model provides an 
adequate fit. Applying MDS with Rao's distance to this data set produces almost 
exactly the same picture as MDS with Matusita's distance. 

5.1.3 (iii) Spatial analysis 

Suppose that X(s) = [X1(s), ..., Xp(s)]T is a p-valued 2nd-order stationary 
point process observed at locations s with: 
• pointwise dispersion matrix ∑ = cov(X(s)); 
• lag δ dispersion matrix Ω(δ) = cov(X(s), X(s + δ)); 

• semi-variance matrix ( ) ( ) ( )[ ] ( )δΩΣδXδsXδΓ −=−+= cov
2
1 . 
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We look for components XlT
iiY =  which have “good” properties, but how do we 

define “good”? 

Switzer (1985) seeks the Yi that successively maximise autocorrelations ri (δ) 
at a given lag δ, and shows that the coefficients li are solutions of ( Ω(δ) – riΣ)li = 
0. The resulting Yi are mutually uncorrelated, both at a point and at lag δ. 

Hence the Yi will be mutually uncorrelated at a set of lags δ1, ..., δg if (Bailey 
and Krzanowski, 2000): 

(Ω(δk) – riΣ)li = 0 for k = 1, ..., g, 

i.e. (Γ(δk) – (1 – ri)Σ)li = 0 for k = 1, ..., g, 

i.e. (Q(δk) – (1 – ri)I)mi = 0 for k = 1, ..., g, 

where Σ = UFUT, Q(δ) = F–1/2UTΓ(δ)UF–1/2, and l = Um. 

An (approximate) solution is thus given by a CPC analysis of Q(δk), k = 1, ..., g. 
Further spatial justification of this model can be provided in terms of “co-
regionalisation” and “intrinsic correlation” models, while practical questions 
include choice of lags δk and estimation of matrices. See Bailey and Krzanowski 
(2000) for details. 

5.1.4. (iv) Process control 

Multivariate control charts based on Hotelling's T2 are well established, but 
don't identify why a process has gone out of control. One possible remedy might 
be to conduct a PCA of process data, followed by application of univariate control 
charts to each component separately, adjusting for autocorrelation and desired 
overall average run length (ARL). However, it can be shown that such 
adjustments are incorrect because, although the principal components are 
“instantaneously” uncorrelated [i.e. corr(Yi(t), Yj(t)) = 0 for i ≠ j], they are not 
“temporally” uncorrelated [i.e. corr(Yi(t), Yj(t –δ)) ≠ 0 for i ≠ j]. This feature is 
illustrated in the top part of Figure 4, which shows the cross-correlograms 
between two pairs of principal components for a six-variable set of process data 
collected daily over a period of nearly two years from the fluidised catalytic 
cracking unit of an industrial plant (Dr Phil Jonathan and Julie Badcock, personal 
communications). The cross-correlations build steadily with increasing lag, and 
exceed the critical null hypothesis value for all lags beyond a certain point. 

Defining Σ, Ω(δ) and Γ(δ) as for the spatial case but now for (1-dim) 
temporal data, better components should be given from a CPC analysis over a 
range of lags  δk. This can be seen in the bottom part of Figure 4, where the cross-
correlations between two corresponding pairs of CPC components for the 
fluidised catalytic cracking data stay within the null hypothesis limits everywhere 
except for a small set of lags. A fuller investigation of performance of this 
approach is currently under way. 
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Figure 4. 

 

 
 

5.2. Extension to subspace modelling 

Let us again suppose that X has a N(μi, Σi) distribution in population πi for i 
= 1, ..., g. Then Flury (1986) extended the CPC model to the partial common 
principal component model by assuming that only q of the components are 
common to each population, while the remaining p – q are “population specific”, 

i.e. Σi = ( ) ( )( ) ( ) ( )( )Ts
i

c
i

s
i

c ΛΛΔΛΛ MM  where Λ(c) has q columns and the ( )s
iΛ  each 

have p – q. 
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Approximate maximum likelihood estimates are available from adaptation of 
the F-G algorithm, and the likelihood-ratio test of this model has the same form as 
for the full CPC model but degrees of freedom depend on number of common 
components. A small modification enables a “common subspace” to be  
identified. 

However, the basic problem with Flury's CPC subspaces is that they involve 
unordered eigenvectors which have an arbitrary matching from group to group, 
rather than forming subspaces based on the top components of each group. Schott 
(1991) therefore introduced a different model, which assumes that the first m pcs 
of each population lie in the same subspace. This model can be tested by testing 
whether T

imim
T
iiim λλ...λλP ++= 11  is the same for i = 1, ..., g. To do this we need 

the following calculations: 
Form the spectral decomposition of (n1S1 + ... + ngSg), partitioning the matrix 

of eigenvectors so that the first m columns are in K1 and the remaining columns 
are in K2: 
i.e. (n1S1 + ... + ngSg) = (K1MK2)E(K1MK2) T. 

Then obtain the sample equivalent of Pim by replacing the λim by their sample 
equivalents lim: 

i.e. T
imim

T
iiim llllP ++= ...ˆ
11 . 

Finally form ( ) ( ) ( )iiiiiim
T

i nn tΦΦtKPKt ∑∑ −−−== 111
21 ;ˆvec ; and 
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1 1
2 ppqqΦ  where 

aij, pij is the jth eigenvalue/vector of K1SiK1, and 

bij, qij the jth eigenvalue/vector of K2SiK2. 

Then the test statistic is Tgm = ( ) ( )∑
=

− −−
g

i
ii

T
iin

1

1 ttΦtt , and under the 

hypothesis of common subspaces, Tgm has an asymptotic ( ) ( )
2

1 mpmg −−χ  distribution. 
Schott(1991) considers also the correlation matrix case and robust covariance 
estimation, as well as checking on the test performance by simulation. 

Schott (1999) extends the results to a test of the hypothesis that the first m 
pcs in each population lie in a subspace of dimension r for m < r < t, where t = 
min(gm, p). The case r = m + 1 is of particular interest (“almost coincident 
subspaces”). A sequential procedure is outlined, and examples are given. 

5.3. Model generalisations 
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There have been two noteworthy generalisations of the CPC model in recent 
years. 

i. Banfield and Raftery (1993) introduced the formulation 
T
kkkkk a LDLΣ = , 

where any of ak, Lk and Dk are allowed to be either group-specific or 
common across groups. Taking all possible combinations, and including the 
cases Lk = I and ILDL =T

kkk , leads to 14 different models. Banfield & 
Raftery (1993) have used this formulation in normal mixture modelling for 
cluster analysis, Bensmail & Celeux (1996) for regularization in discriminant 
analysis, and Bensmail & Bozdogan (2002) for kernel density modelling in 
nonparametric mixture cluster analysis. 

ii. Boik (2002) has provided a more comprehensive spectral decomposition: 
T
kkkk LDLΣ =  where Lk = L0Ψk. and 

kj

k
t

d
jk ΨΨ 1=⊗= , for 

L0 (p × p) orthogonal and  
kjtΨ  (rij × rij) orthogonal. 

This is a very flexible model, allowing shared eigenspaces without 
coincident eigenvalues, features common within subsets of groups, and 
partial  commonality within selected groups. Boik (2002) demonstrates its 
use on a range of examples. 

6. Comments 

We have traced recent developments of orthogonal components in the 
presence of group structure under the three headings of interpretation, description 
and modelling. Most of the work under the first and third of these headings has 
appeared in the traditional statistical literature and would be viewed as 
mainstream statistical development by practitioners. By contrast, the work on 
description has predominantly appeared in journals devoted to pattern 
recognition, computing or chemometrics, so is perhaps less familiar to 
statisticians. It is not without various points of debate. For example, some would 
argue that it is better to focus on uncorrelated  scores, as in ordinary canonical 
variates, rather than on uncorrelated derived variates as in the orthogonal version. 
However, it is not the aim of this article to enter into such debates, but simply to 
bring the full range of available computational tools to the attention of the 
statistician. Orthogonal canonical variates should be placed alongside the ordinary 
variety as an extra weapon in the analytical armoury, for use whenever 
circumstances warrant. 

Notwithstanding this aspect, it is clear that the most vigorous development in 
this area has been in terms of common principal component and extended models 
for grouped multivariate data. This development has evidently not yet fully run its 
course, and we can look forward to further advances in the future. 
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SOME REMARKS ON THE TASKS OF STATISTICS  
ON THE VERGE OF THE TWENTY FIRST CENTURY 

Czesław Domański1

ABSTRACT 

This article tries to show the development of statistics as the self-
independent branch of science. It was established not before the second 
quarter of the former century. It has been treated as the method of obtaining 
information from observed data and as the logic of making decisions in 
conditions of uncertainty. Statistical knowledge has become more and more 
precious for representatives of all occupations. Nowadays statistics is 
understood as a logic, by means of which we can transform data into 
information. 

1. Introduction 

Statistics as the self-independent branch of science was established not 
before the second quarter of the former century. It has been treated as the method 
of obtaining information from observed data and as the logic of making decisions 
in conditions of uncertainty (Rao 1994). Statistical knowledge has become more 
and more precious for representatives of all occupations. The fact that we can find 
statistics almost everywhere results from necessity of understanding statistics 
which is more important than understanding any other branch of science. 
The etymological definition of statistics can be formulated as follows:  
• It is data obtained by certain steps.  
Therefore, the most important task is giving answers to the following questions: 
• What do data signify?; 
• How to use things that are signified by data to specific purposes? 

In other words, we must know the kind and scope of information will enable 
us to solve concrete problem contained in data. 
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Claude Shannon, who laid foundations for information theory gave the most 
logical and concise answer to the question “What is information?” The answer 
was: “Eliminating uncertainty”. 

Data create material which allows us to say how far an answer to a given 
question is correct or how confident about the answer we can be. Data should be 
transformed in order to eliminate the uncertainty. Knowledge about the size of 
uncertainty contained in data is the key to make the correct decision. It allows us 
to compare the consequences of various possibilities and to choose one that is the 
least harmful. 

Nowadays, statistics is understood as a logic, by means of which we can 
transform data into information. Generally there is a necessity of developing 
statistics as the methodology of making decisions based on data existing under 
uncertainty. Significance of information is considerably larger than the experience 
or technical knowledge, in preparing and carrying out each investment project. 
We realize this more and more often. 

We can assume that the modern statistics is developing as a meta-science. 
The future of statistics understood in such a way lies in a suitable transmission of 
statistical ideas to scholars of other branches of knowledge. It will depend on the 
way of expressing basic problems by the representatives of these branches and 
most of all on their awareness and understanding of statistics. 

Statisticians have to live up to the organisational and conceptual 
expectations and challenges concentrated around the contents of their branch. 
Organisational problems are connected with fast conversion of satellite data, 
meteorological data, capital market data, genetic information and so on. Computer 
experts try to cope with gathering information but there is still one problem – 
evaluation of their quality and interpretation of this information.  

One very often comes across with the statistical research which is not even 
consulted with an expert – statistician, not mentioning his participation in these 
research. There are many possibilities of obtaining wrong data. The research 
shows that 2/3 of errors which can appear in analytic research are connected with 
research design, construction of questionnaire and statistical observation (data 
gathering). If errors connected with the analysis and interpretation of results are 
noticed early enough they can be corrected. On the other hand we are not able to 
correct the errors which appeared while designing a project. The main result of 
the research process is usually a publication. Therefore scientific periodicals 
should do their best to eliminate research results standing below a certain level. 
Each statistical publication or publication based on statistical material should be 
reviewed by an expert – statistician.  

Nowadays many papers in which statistical analysis is incorrectly used are 
published. We often meet the incompatible results used in analogous papers 
which can be caused by the statistical incompetence of authors. 

2. Tasks of statistics 
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The development of computer science, and most of all the development of 
electronics and as a consequence the development of computer technology 
brought the following challenges : 
1. The new technical possibilities of calculations, fast access to data, saving huge 

amount of data on small data carriers, fast copying, complex applications, 
linking various data bases and so on. 

2. Broadening of data basis to include the administrative information. Nowadays 
law secures the use of administrative files for statistical purposes. 

3. Creating merged specification including statistical and administrative data 
about people, companies, buildings and so on, within national identification 
number. 

4. Decentralizing computer science – every researcher has a personal computer 
which lets him perform operations that in the past were impossible without 
costly equipment. 

5. Unrestricted possibilities of application of mathematical, statistical, 
econometric and operation research methods, both classical and nonparametric 
ones, exact and asymptotic ones, based on theoretical and simulation models.  

6. Interpretation of results and their selection and preparing to the decision 
making process. 

More and more often statistics is used as the “source of cognition” and also 
as “the way of thinking”. Statistical thinking needs appropriate preparation which 
means understanding of concepts, ability of comparing various data sets and 
knowledge, for example, why two sets of numbers, which refer to the same 
phenomenon, can show differences. The cases of using individual facts for 
generalizations have nothing in common with statistical thinking. Unfortunately 
we witness very often that convincing power of individual, even anecdotic, facts 
makes on audience bigger impact than precise quantitative analysis.  

Obviously we must realize that very few people depend only on one source 
of knowledge. Relatively few researchers base their methods only on statistical 
thinking. Even in political and government circles in which historical role of 
statistics is considerable; the role of statistical thinking is not even satisfactory as 
we would like it to be. This situation should be changed by wider use of computer 
technology. 

We still are at the early stage of technological revolution which greatly 
broadens the possibilities of applying statistical data and using them in political 
debates and many other fields of social activities. This revolution began when the 
Internet was invented. Statistics that in the past were hardly available and could 
be found only in publications now are easy to find in a couple of minutes. It can 
be copied to personal computers and, in a growing numbers of cases; it can be 
worked on directly. 

It is hard to predict all consequences of huge access facilities to official 
statistical data. One of them will undoubtedly be a biased way of using data and 
making a lot of mistakes. Soon, it will be of great importance to help unprepared 
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users to perform data analysis and interpretation. It will also result in bigger 
pressure on improving the co-operation between data gathering and classification. 

The fast development of computer technology will cause easier access to 
information and as a consequence create new tasks for statistics: 
• adaptation of statistics to the user’s needs, 
• evaluation of data and data interpretation and analysis, 
• punctuality of statistical research realisation using the newest methodologies 

and technologies. 
At the beginning of the 21st century we can name three factors crucial to the 

role of statistics and the directions of its development: 
1. The introduction of the model of open and competitive market economy in 

particular countries. 
2. Technological revolution which has taken place in information sector and had 

a great influence on society transformation. 
3. The creation of global “economic village”. This process is necessary in market 

economy and it is possible just due to the technological revolution. 
The factors listed above cause huge changes in political, economic and 

social life. They contribute to the tightening of interdependence between countries 
in which the local authorities act completely independently from their partners 
with large difficulties. At the same time we observe radical changes in economic 
and social life which need general change of thinking and activity style. It 
becomes necessary to inform, explain and educate people so they could 
understand the scale of changes and take actively part in them. 

Statistics allows to predict directions of society evolution, define the 
conditions of making decisions by providing reliable and up to date information 
about actual situation and its changes in various sectors of the economy and social 
groups. 

Authorities of various levels often do not realize that they need statistics to 
formulate, follow and define their activities. Statistical information is also 
necessary to estimate the size of social groups needing special care: the poor, the 
disabled, the old-aged.  

Citizens of every country are in need of statistics providing information 
about their territory and their neighbours. Thanks to statistics people are able to 
participate actively in democratic process. On the ground of observing economic 
activity of a city, region or community, statistics allows to define its own 
economical status and help to set the future strategy. 

Market economy can not provide statistical data which is necessary for its 
own activity, statistics is a kind of infrastructure of market economy but still data 
gathering is a long lasting and expensive process in which market economy 
objects do not want to participate. In this situation national and municipal 
governments are responsible for running statistical system. 

Fast changes in society are in general connected with growing uncertainty. 
As a consequence, authorities, businessmen and citizen groups need more and 
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more statistical information which is hard to get and interpretation of it often 
demands an expert-statistician. 

3. Statistical teaching programmes 

Introduced tasks of statistics can be tackled mainly by appropriate teaching 
programmes on various teaching levels. 

We can assume that statistical knowledge has become necessary both as an 
element of general education of all active people and professional preparation of 
even larger group of future specialists. 

Bessaut and Mac Phearson propose statistics to be lectured in technical 
schools with reference to concrete applications areas which are fundamental from 
the point of view of prospective employers needs in the conditions of the 
information society. 

They distinguish 5 most important blocks: 
1. Mathematical statistics: data gathering, data analysis, theory (for example, 

elements of probability, confidence intervals, correlation and regression 
analysis, statistical tests). 

2. Statistics not basing on mathematics: communication, designing, design 
management. 

3. Statistical computer science: text transformation, data transformation, 
statistical calculations. 

4. Mathematical basis: differential and integral calculus and linear algebra. 
5. Statistics in different disciplines – knowledge and experience in data 

interpretation in context of particular applications fields. 
These proposals confirm a widespread idea that statistics teaching can be 

effective only when ensures getting comprehensive knowledge from lots of 
branches of science. Statistics can not be treated as “the set of methods which are 
incoherent with one another”. These methods should be expressed by their 
connection with variety of applications. 

Varieties in statistical lecturers scientific profile and differentiation of 
students interests influence the contents and methods of teaching. We can observe 
particularly three kinds of scenarios: 

i. Statistical concepts and methods are lectured according to standards of 
statistics course structure with an illustration of application of particular 
formulas in solving particular practical tasks. 

ii. We must concentrate almost only on explaining statistical notions and the 
ability of using them in particular branches of science with formulas and 
calculations methods explained in a pretty limited way. We emphasise on 
explaining the aims of statistics and interpretation of gained results. 

iii. We mainly stress on informative-analytic aspects concerning available 
computer programming used to statistical aims with a small degree of 
statistical theory and formulas. We concentrate students attention on the 
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methods of data management and on the realization of statistical 
procedures with the use of accessible software. 

Scenarios presented above contain the most important issues. The graduated 
students should get to know them and in the same time they should gain 
appropriate abilities of statistical reasoning. The problem is usually connected 
with the evaluation of teaching skills in statistics which is connected with all 
teaching process. 

4. Final remarks 

Statisticians must cope with challenges connected with all the stages of 
statistical research and data gathering, data basis organisation, data analysis, 
presentation, interpretation and publication. 

Conceptual problems include new ways of thinking, new methods of 
treatment of our art which will demand new methodologies with participation of 
the newest computer technology. 

We must solve the problem how to explain incomprehensive difficult 
methodological problems formulated by mysterious mathematical symbols which 
are unnecessary to economist, sociologist, biologist, engineer, doctor, journalist, 
businessman, member of Parliament, government and municipality representative, 
government agency representative. 

It is necessary to change our educational programs. We must construct 
programs which at the same time stimulate creativity and development of basic 
abilities of gathering and using information. 

Realization of these programs should provide the basic mechanisms and 
habits of permanent schooling which is necessary in the 21st century. Statistics is 
unusual branch of science. It is comprehensive and universal. There are not any 
disciplines which interfere in other branches of science so widely and so often as 
statistics does. At the same time statistics as a branch cannot, in principle, exist by 
itself because its nature is to serve to other branches. 

We need “statistics in society”. We now see the necessity of promoting 
statistics among citizens. We should notice their needs, they expect it from us. We 
can ask: are we with them?, in other words: do representatives who serve society 
(i.e. civil servants, managers, consultants, experts, scientists and others) acquire 
statistical methods as the integral part of their own affairs or do they only dodge? 

We must be adapted to new realities and be there before others “apparent 
statisticians”. 

We must work out not only new standards of our discipline but also find new 
connections with government, local government, industry, science world and 
other disciplines. We are becoming the information society, although some 
regress can be seen in the drop of the national production of computer programs, 
but without statisticians this regress can be even faster because huge data basis 
can become completely useless. 
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SOME NOTES ON THE SELECTION  
OF NORMALISATION OF DIAGNOSTIC VARIABLES  

Aleksander Zeliaś1

ABSTRACT 

The paper presents the discussion on the selection of normalisation of 
diagnostic variables. In the paper a few methods of normalisation of diagnostic 
variables are presented. The most important methods are: standardisation, 
unitarisation, quotient transformation, rank method. The statistical properties 
of the methods discussed by author are studied. The selection of a relevant 
normalisation formula is also discussed. 

Ke ywords: diagnostic variables, normalisation, quotient transformation, 
rank method, standardisation, unitarisation. 

1. Introduction 

The purpose of the article is to present selected methods of normalisation of 
diagnostic variables. The following are the most frequently used methods of 
normalisation of characteristics: standardisation, unitarisation, and quotient 
transformation rank method. 

Normalisation of variables facilitates comparative analysis of multi-
characteristic economic entities with respect of levels of variables used as 
assessment criteria of a given complex phenomenon. The selection of a relevant 
normalisation formula is one of the keys to the success of constructing aggregated 
variables. The researcher’s awareness of his goals and awareness of the 
advantages and disadvantages of individual transformation formulas may make 
easier by a profound knowledge of the phenomenon. 

This article has the following layout: chapter two provides a summary of 
complex phenomena which is indispensable for further analysis, chapter three 
deals with the main selection criteria underpinning the selection of variables and 
chapter four presents the descriptive approach and the stochastic approach as used 
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in normalisation processes of diagnostic characteristics. In chapter five the author 
considers normalisation methods of diagnostic variables most frequently 
encountered in pertinent literature. The last chapter recapitulates the key issues.  

2. Complex phenomena in taxonomic research 

In conducting taxonomic research into qualitative phenomena one must 
compare multi-characteristic objects and order the set of characteristics available. 
The goal is to arrange the objects in a linear fashion with respect to their 
diagnostic variables. The object group may include countries, regions, 
administrative units (gminas (communities), poviats, voivodships), enterprises, 
households etc. These objects can be compared, one to another, by using an 
available set of diagnostic variables (characteristics) which typify these objects 
because of the development of a selected qualitative phenomenon which, rather 
than directly, can be researched and assessed indirectly (as it cannot be measured 
directly) e.g. economic and social development of countries, regions (usually 
voivodships), management quality, financial standing of enterprises, product 
analysis in the market, assessment of the effectiveness of promotional activities, 
level of environmental degradation, the standard of living of the population, level 
of poverty in society, level of agricultural production (plants and animals). 

In all of the above-mentioned situations, diagnostic variables characterising 
a given phenomenon must be subjected to normalisation by means of one selected 
normalisation method. An aggregate variable becomes the main criterion of a 
procedure of ordering multi-characteristic objects in a linear manner.  

An aggregated variable is developed in the following manner: 1) purpose 
and scope of research are determined; 2) data are collected; 3) diagnostic 
characteristics are selected; 4) variables are normalised, 5) variables are 
aggregated. 

3. Principal criteria used to select diagnostic variables 

Aggregate characterisation of economic phenomena relies on the so-called 
aggregated variables (aggregated, taxonomic measures of development) The 
replacement of a set of many diagnostic variables of a descriptive character, e.g. 
variables describing the population’s standard of living, with an aggregated 
variable permits not only the reduction of their overall number but also full 
elimination of colinearity (their excessive correlation). In dividing objects into 
similar type groups high correlation of variables is undesirable.  

Multi-dimensional object sets are characterised by: 

                                  Q = {Q1, ..., Qm},                                                 (1) 

where m is the number of analysed objects whilst a set of diagnostic variables is: 
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                                            X = {X1, ..., Xk},                                                  (2) 

where: 

k − number of analysed variables, assuming that m >> k. 

The variables X1, ..., Xk  allow distinguishing amongst objects and some do so 
better than others. Moreover, these variables will often possess different number 
crunching and various ranges of variation, which often precludes their direct 
comparison. 

The knowledge of the object of research is a precondition of appropriate 
selection of diagnostic variables X1, ..., Xk. Knowledge of the object of research 
and even a researcher’s intuition are essential here. Variables X1, ..., Xk  under 
consideration must arise out of clear-cut pertinent links with the qualitative 
phenomenon under consideration. In the event that there are no adequate theories, 
one could use e.g. the opinion of a competent team of experts.  

In order to divide a given set of objects Q1, ..., Qm into separate and 
relatively uniform sub-sets composed of objects with a similar value of 
variablesX1, ..., Xk , we treat objects Q1, ..., Qm as vectors whose coordinates are 
values of variables reached by the vectors. Thus we have: 

                                      Qi = [xi1  xi2 ... xik],                                                (3) 

where: 

xij (i = 1, ..., m; j = 1, ..., k) − value of j variable in an i multi-dimensional object. 

A set of objects Q1, ..., Qm  described in the above manner can be presented 
in the form of the so-called observation matrix: 

                   .                                     (4) 
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Having defined its completeness  it becomes a classification base of a set of 
multi-characteristic objects Q1, ..., Qm. In matrix (4) objects are researched, which 
we treat as vectors defined by means of formula (3), whilst the columns contain 
values of diagnostic variables  X1, ..., Xk. 

It should be added that the capacity of the database presented as a matrix  (4) 
is determined by the product of the dimensions of the matrix: m × k, where: m − 
number of objects, k − number of diagnostic variables. 

It is worth noting that too many diagnostic variables X1, ..., Xk in a set will 
often impede or even prevent classification of multi-characteristic objects. This is 
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the reason why a pre-selected set of variables X1, ..., Xk. must be subjected to 
further selection in terms of:  
1) criteria of assessment of formal and pertinent qualities of variables, 
2) criteria of the value of information provided by variables. 

The above implies that in selecting diagnostic variables one should rely not 
only on pertinent arguments, but also statistical considerations (Hellwig, 1969; 
Zelias, 1982; Pociecha, 1996). 

Whilst analysing diagnostic variables in terms of their formal and pertinent 
aspects, one should distinguish in the initial set of variables X1, ..., Xk. at least 
three distinct sub-sets: 1) stimulants (S), 2) destimulants (D), 3) nominants (N). 
Stimulants are variables whose high values permit classifying a given object as 
superior from the point of view of an aggregated variable. With de-stimulants the 
opposite holds true, i.e. high values justify classifying an object as being inferior. 
The third diagnostic variable, which appears rather infrequently in empirical 
research is called the nominant. The nominant is a variable, which has the most 
favourable nominal value in terms of the assessment of objects, e.g. share of 
investment in GDP or population rise, which in some countries may be stimulants, 
and in others de-stimulants of growth. Variable nominats are 
increasing/decreasing functions, so their absolute values increasing to a nominal 
level have a positive impact on the assessment of a phenomenon, whilst further 
increase above the nominal level has a negative impact on the same. It is obvious 
that in the practical application of taxonomic methods one should focus on both 
stimulants and de-stimulants, and eliminate neutral variables, which are in no way 
connected with a researched complex phenomenon. The character of diagnostic 
variables should be, in principle, determined based on pertinent criteria. In the 
event that there is no applicable theory, one can make use of statistical methods 
based on correlation computation or the opinion of a team of competent experts. 

Further research necessitates the transformation of de-stimulants into 
stimulants. For example in terms of the level and standard of living, the number of 
people per one room is a de-stimulant. If we compute the opposite of that 
indicator we will have a new variable which will be a stimulant and will mean the 
number of rooms per one person. 

It should also be stated that one must always prefer such a transformation of 
variable de-stimulants into variable stimulants, which will permit one to attribute, 
transformed variables to certain economic interpretations. 

Given that users of research data have various needs and expectations, one 
can analyse complex qualitative phenomena by using: 1) the statistics-based 
approach; 2) the dynamic approach. In the case of the statistics-based approach, 
the phenomenon under analysis is subjected to an analysis over a given period 
(moment). The required statistical data form a two-dimensional matrix X, which is 
computed based on formula (4). In the dynamic approach, the phenomenon 
researched is analysed in objects, and additionally over time. The acceptance of 
statistical data representing numerous consecutive periods means that the data will 
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make a three-dimensional data matrix, which will be defined by the following 
formula: 

                                                                     (5) ( ) ( )[ ]X
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where n means the number of researched periods.  

The product of the dimensions of the matrix determines the above means that 
the capacity of a database presented as matrix (5): m × k × n, where n  represents 
the number of analysed periods.  

4. Descriptive approach and stochastic approach in normalisation  
of diagnostic variables 

A qualitative phenomenon can be analysed based on:  
1) the descriptive approach (deterministic); 
2) the stochastic approach. 

It is assumed that in the stochastic approach, a set of objects is composed of 
a randomly selected sample of the population. Such an approach is called 
stochastic as it presupposes that researched variables describing analysed objects 
are selected at random, which entails a need to introduce some of the concepts 
used in mathematical statistics (classic and frequentist probability, expected 
value, variance, estimators, assessments, assessment errors, significance tests, 
etc). In many empirical tests this approach cannot, as a rule, be justified by 
anything. Neither do we know what practical sense the results obtained from 
numerical calculations make. 

In the descriptive approach there is no mention of the randomness of the 
sample. Collected objects are all objects that are available. Thus the variables are 
not random ones, but merely regular variables in the true sense of the word.  

The former approach is used chiefly in natural sciences that are in biology, 
chemistry, and physics. This is connected with the possibility of repeating the 
scientific experiment under the very same conditions. In the second approach one 
does not have any opportunity to research into the process of complex economic 
phenomena in artificial conditions. The conditions under which the numerical 
data were obtained are impossible to re-create here: the data derive chiefly from 
statistical reporting. In the course of economic research, frequently a set of 
business entities is taken into consideration, together with the entire population 
(set of voivodships, poviats or gminas) making the research exhaustive 
(comprehensive). Considering the above a descriptive approach is more 
justifiable. The author believes that the descriptive approach can be applied more 
widely than the stochastic approach to do research into economic phenomena . 
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5. Normalisation methods of diagnostic variables 

From the point of view of taxonomic research it is important to ensure that 
the final diagnostic variables are comparable. This means, amongst others, that it 
is necessary to strip variables of their natural units, through which diagnostic 
characteristics are expressed and bring the variables to a state when they lend 
themselves to comparison, which implies smoothing of the range of variability of 
the characteristics. In order to achieve this, use is made of methods of 
normalisation of diagnostic variables measured on an interval and ratio level of 
measurement, whose general formula can be expressed as follows1: 

                    ′ =
−

= +X X a
b

Xβ α   when  X ∈ S,  b ≠ 0,                         (6) 

where:  
    X       − diagnostic variables (X ∈ S),              
  ′X    − transformed variables, 
  a, b   − normalisation parameters, 

β =
1
b

 − coefficient with the diagnostic variable X, 

α = −
a
b

 − constant. 

The transformed variable ′X  has the following descriptive parameters: 

                                             ′ =
−x x a
b

,                                               (7) 

                                            s
s
bx
x

′ = ,                                                   (8) 

                                               V s
x ax′ = −

,                                              (9) 

where a and b are defined in the same way as in formula (6). The arithmetic mean 
′x of a transformed variable depends on the arithmetic mean of variable X ( )x  

and normalisation parameters a and b. On the other hand, standard deviation  
depends on the standard deviation of the real variable X (s

sx

x) and the value of b, 

                                                           
1 We assume that a set of diagnostic variables describing economic entities is a set of stimulants (X 
∈ S). If we have de-stimulants, (X ∈ D), we use the transformation: ′X  = (a − X):b, where 
parameters a and b are defined in the same way as in formula  (6). We also assume that the set of 
values of diagnostic variables there are no outstanding values (rare or unrelated). 
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whilst the variation coefficient V  depends on the arithmetic mean and standard 
deviation of variable X and the value of parameter a. 

x′

The most commonly used normalisation methods of diagnostic 
characteristics include: 

1) Standardisation by two methods, when parameter a is equal to the arithmetic 
mean of variable X ( )a x= ,     

b − standard deviation (b = sx)  and a = 0,  b = sx. 

By applying the above assumptions to formula  (6) we will obtain: 

                        ′ =
−

x
x x

si
i

x

,    sx > 0   (i = 1, ..., m),                          (10) 

                        ′ =x
x
si

i

x

,   sx > 0.                                                        (11) 

2) Unitarisation, when a equals zero, average value, lowest and highest value,   
b − range of standard variable X R x xx i i i i( max min ).= −  

Below are selected normalising formulas based on unitarisation methods: 
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3) Quotient transformation, when a = 0,  b is any number d=other than the value 
of range Rx  (b is most often the arithmetic mean of variable X, minimum 
value of the variable, sum of the realisations of the variable one by one, sum 
of squares of variable measurements, root of sum of squares of observations. 
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The above means that: 
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It is easy to note that in standardisation methods, the coefficient β  in 
equation (6) is the opposite of standard deviation of normalisation variable X (β  = 
1/sx),  in methods relying on unitarisation, coefficient β = 1/ Rx, where Rx is a 
range of variable X, whilst in methods defined by means of quotient 
transformations, the coefficient is the opposite of the  base of normalisation of 
variable X. Additionally, in methods relying on a quotient transformation, the 
constant α of formula (6) normally equals zero. 

In selecting a normalisation procedure one must remember that in the case of 
standardisation carried out by means of formula (10), when parameter a equals 
the arithmetic mean of variable X, b equals standard deviation, transformed 
variable ′X  has an average totalling zero ( )′ =x 0 and standard deviation 

totalling one ( )sx′ = 1 .  Thus not only the average value but also variation is made 
uniform. This eliminates variation as a base of differentiation of economic 
entities. The appearance of negative values of transformed variable ′X  is another 
important result. 
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It is easy to note that the transformation of variable X  into variable ′X  
based on formula (10) produces wide ranging variation bands for each normalised 
diagnostic variable. When a diagnostic characteristic is a stimulant, the limits of 
the variation band of a normalised characteristic can be expressed by means of the 
following formula: 

                        .,
max

,
min

SX
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xx

s

xx
x

x

ii

x

ii
i ∈

−−
∈=′                         (22) 

The range of this interval  is defined by four characteristics of variable X: 
x s xx i i, ,min  and  . max

i ix

The standardisation method relying on formula (11), where  a = 0 i  b = sx, is 
characterised by average normalised values, ′ =x x sx/  and a variation constant 
of these values,  Standard deviation is of course sx ′ =

2 1. sx′ = 1. 
Use of formula (11) produces normalised variable ′X ’ fitting into the 

interval: 
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min max
, ,  X ∈ S.                                     (23) 

In that case, the limits of variation of the interval of normalised variable ′X  are 
not constant but variable and depend on three parameters   and 

 

s xx i i,min

max
i ix .

It is worth noting that in this case on the one hand there is nothing to prevent 
normalisation of diagnostic characteristics, which are negative, positive and zero 
values. We should also note that normalisation will produce the following values: 
zero for xi = 0, positive for xi > 0 and negative for xi < 0. 

Use of the unitarisation methods will cause the range of a normalised 
characteristic ′X  to be constant and amount to one in all four formulas 
( = ,  = min max ).

i i
a a x a x a x b Ri i0 , , ,= x= =   

Use of parameter  a  at its highest value will cause the transformed variable 
to have non-positive values. 

Let us also note that a variable normalised in keeping with formula (12) is: 

                             ′ ∈x
x

R

x

Ri
i i

x

i i

x

min max
, ,                                             (24) 

 

 



796                                                                         A.Zeliaś: Some Notes on the Selection…  

                             Rx′ = 1.                                                                        (25) 

(24) and (25) indicate that variable  ′X   normalised in keeping with formula (12) 
has a constant range equalling a unit, whilst the floor and ceiling of the range of 
normalised variable may have different location on the real axis. 

In respect of formula  (13), the values of ′X  normalised variable fit into the 
following range  

                                ′ ∈
− −

x
x x
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x x

Ri
i i

x

i i

x

min max
,                                  (26) 

and: 

                               Rx′ = 1.                                                                      (27) 

On the other hand, quotient transformation is made in keeping with formula 
(6), in which coefficient β = 1/b, and b is the so-called base of  variable X 
normalisation, and α = 0. Quotient transformations so defined  (cf. formulas 
(16)−(21)) satisfy the following recommendations: 1) additivity requirement 
(laying down formal basis for the conduct of basic arithmetic operations/activities 
in sets of primary values of variables with different number crunchiness), 2) non-
negativity requirement (all realisations of variables are non-negative). On the 
other hand, they do not satisfy the requirement of a constant interval of variation 
of normalised values in terms of a constant range and constancy of extreme 
values, e.g. one often attempts to ensure that normalised values of diagnostic 
variables fit into a range of  <0, 1>. 

In empirical research, the most often used normalisation base of variable X is 
its arithmetic mean (b x= .)  So transformed variables have the following four 
desirable qualities: 
1) they are comparable (additivity requirement), as measurement units have been 

eliminated from the different number crunching variables; 
2) they have varied variances; 
3) the arithmetic mean of each equals the number of researched objects; 

By applying formula (18), we will have: 

                                 ′ ∈x
x

x

x

xi
i i i imin max

, ,  X ∈ S.                              (28) 

As (28) indicates, one cannot assume that the lower and upper limits of 
dispersion ranges are equal for all variables included in the set of diagnostic 
characteristics. 
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We should further note that the normalisation of variables   X1, ..., Xk   by 
reference /by determining a reference system, in terms of computations, is 
markedly simpler than standardisation, further helping one to avoid the 
inconvenience of having to deal with negative values of standardised 
variables . Normalisation based on formula (6), when a = 0, ′X X k1 , ..., ′ b x= , 
allows, in contrast with standardisation, which causes each variable to have equal 
influence on the results of research, retaining varied variances of variables, hence 
giving them varied importance ,

11 kk xxxx VVVV ==== ′′ L  where V  and  V  (j = 

1,..., k) are coefficients of variance of variables  and   (j = 1,...,k). 
x j′ x j

′X j X j

Table 1. Distribution of variable values after normalisation 

Normalisation 
formula 

Arithmetic mean of 
transformed variable 

( )′X  

Standard deviation 
of     transformed 

variable ( )′X  
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variables ′X  
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Source: M. Walesiak, 2002, p. 21. 

Generally, all of the normalisation formulas presented so far, which are 
linear transformations of observations of each variable, maintain skewness and 
kurtosis of the variables distribution (see: M. Walesiak, 2002, p. 20). 
Additionally, all normalisation formulas retain an unchanged value of the linear 
correlation coefficient in respect of each pair of variables. 
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The value of characteristics ′ ′x s Rx, i ′′x  for selected normalisation 
procedures is presented in table 1. 

Table 1 indicates that normalisation formulas (unitarisation, quotient 
transformation with a base of normalisation equalling to a range) guarantee 
normalised values of variables variance and also constant range for all variables. 

Standardisation and transformation with a normalisation base equal to 
standard deviation enforce uniformity of the values of all variables in terms of 
variance.  

If we take the quotient transformation with a normalisation base equal to the 
maximum and the root of the sum of squares of observations, then the normalised 
values of variables will ensure varied variance, arithmetic mean and range. 

Moreover, quotient transformation with a normalisation base equal to the 
sum and arithmetic mean ensure for normalised values of variables verse/varied 
variance, range and constant arithmetic mean for all variables.  

The last group of normalisation procedures of diagnostic variables includes 
the rank method procedures. It is generally used to arrange objects based on 
qualitative variables measured on a scale (these are situations that are very 
frequent in marketing research).  Variables measured on an ordinal level of 
measurement are subjected to a rank procedure, so that each i realisation of 
variable X in a series of its values arranged (non-decreasingly or non-
increasingly) is assigned an adequate rank. If we consider m elements, then the 
“best object” is ranked m, whilst the “worse object” is ranked 1. 

The appropriate ranks for m objects will be: 

                              (i = 1,...,m)                              (29) ′ =

⎧

⎨
⎪

⎩
⎪

x
x

m x
i

i i

i i

1 dla min

dla max

It is worth noting that ∈<1, m>  (i = 1,...,m), and the range of so 
normalised a variable equals the number of objects less one  ( = m −1). The 
range is constant for all variables normalised by means of the rank method. 

′xi

Rx′

Ranking satisfies the additivity requirement, as it makes disparate 
characteristics comparable (normalised values of variables are numbers without 
crunching) and the non-negativity requirement (all normalised values of variables 
are non-negative). 

When we deal with variables measured on  powered scales, i.e. interval and 
ratio ones, we normally use standardisation, unitarisation and quotient 
transformation. 

It is worth noting that the variables measured on a interval and ratio scale 
can be processed with the a rank method ,which explains the ease with which they 
transit  from a powered to a weaker scale, however such a procedure must 
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invariably be associated with loss of statistical data, which manifests itself, 
amongst others, in restrictions on use of various statistical methods. 

One must also consider a case where variables can be positive, zero and 
negative. This often happens in the course of analysing the financial standing of 
companies, banks and other business ventures. This implies that one must select a 
normalisation method, which transforms real variables of any value (xi ∈ R, where 
R is a set of real numbers). 

Using one of the normalisation formulas (10)−(21), one obtains the 
following normalised matrix: 

                              ,                                       (30) 
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where   (i = 1,...,m;  j = 1,..., k)  −  normalisation of the value of j variable in i 
object , which are directly comparable. 

′xij

6. Conclusions 

The selection of a proper formula to normalise diagnostic variables is one of 
the key issues involved in the construction of aggregated variables. In making 
such a choice one may benefit from a profound knowledge of  the phenomenon 
under analysis, one’s goal and cognisance of various transformation formulas. 
However, it is more important than ever to take into consideration economic 
analysis, especially when one can encounter a theory that presents the 
characteristics defining a complex phenomenon clearly enough.  

One should also acknowledge that the results of  linear ordering of objects 
depend also on the selection of a proper formula normalising diagnostic variables. 
Researches who make use of multi-dimensional comparative analysis methods in 
carrying out their empirical work, highly value those formulas that guarantee 
stable or nearly stable areas of variance of normalised variables. Likewise, they 
frequently make use of the constancy of parameters characterising normalised 
variables. 

Selecting a normalising transformation one must bear in mind that 
normalisation has an impact on the results of  linear ordering of objects by 
effecting the relationships between descriptive parameters of real and transformed  
diagnostic variables (cf. formulas (7)−(9)). Furthermore, there are no grounds to 
believe that one can design a universal normalisation formula, as each formula 
satisfies only selected criteria (e.g. deprivation of number crunching, which 
express diagnostic characteristics, varied variation measured by means of e.g.  
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standard deviation, constancy of the range of all normalised characteristics, non-
negativity of normalised qualities, possibility of normalising characteristics 
adopting both positive and negative values or only negative ones).   

To conclude, the author would like to emphasise that normalisation of 
diagnostic characteristics is extremely important and absorbing, the more so that it 
facilitates understanding of the interdependencies amongst problems and their 
complexity, not to mention the fact that it allows spotting threats early on in the 
course of research and taking adequate preventive measures. 
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COMBINATORIAL SEARCH IN MULTIVARIATE 
STATISTICS 

David Banks1 and Robert T. Olszewski2

ABSTRACT 

Modern computational statistics often requires extensive combinatorial 
search. But search is expensive, not just in terms of time, but also in terms of 
the penalty one pays for multiple testing associated with model selection. 
Therefore it is important for modern statistical procedures to search in the 
most efficient ways possible. This paper describes several methods for smart 
combinatorial search, and shows how they can apply to problems in 
multivariate regression, cluster analysis, and multidimensional scaling.      

Keywords: cluster analysis; curse of dimensionality; Gray code; 
multidimensional scaling; multiple testing; nonparametric regression.  

1. Introduction 

Modern multivariate analysis faces the curse of dimensionality. This was 
first coined by Richard Bellman, a mathematician, in the context of numerical 
approximation (Bellman, 1961, p. 106) The curse of dimensionality implies that 
when p, the number of variables per observation, is large then inference is more 
difficult. And the level of difficulty increases very rapidly with p.   

In modern computational statistics, there are several ways to show that as the 
number of explanatory variables increases, the problem of structure discovery 
becomes harder. This is closely related to the problem of variable selection in 
model fitting. Classical statistical methods, such as multiple linear regression 
analysis, avoided this problem by making the strong model assumption that the 
mathematical relationship between the response variable and the explanatory 
variables was linear. But most statisticians now prefer alternative analytic 
approaches, since the linearity assumption is usually wrong for the kinds of 
applications encountered in practice. This means they must attempt to find ways 
to mitigate the curse of dimensionality. 
                                                           
1 CBER, U.S. Food and Drug Administration 1401 Rockville, MD 20850  banksd@cber.fda.gov. 
2 Center for Biomedical Informatics University of Pittsburgh, Pittsburgh PA 15213. 
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There are three nearly equivalent ways to describe the curse of 
dimensionality, and each provides a usefully different perspective on the problem: 
• For large p, nearly all datasets are too small. 
• For large p, nearly all datasets are multicollinear (or concurve, the 

nonparametric generalization of multicollinearity). 
• The number of structural functions to consider grows quickly (faster than 

exponentially) with p.  
These problems are reduced if data are collected using an appropriately 

dispersed statistical design, such as Latin hypercube sampling (cf. Stein, 1987). 
However, except for simulation experiments, this is difficult to achieve.  

This paper focuses upon the third formulation of the curse. For specificity, 
consider the case of regression analysis; here one wants to find structure that 
predicts the value of the response variable Y from a vector of explanatory variables 
X in ⎥p, the p-dimensional Euclidean space. In this case one must consider various 
functional forms for models that relate the X to the Y; so consider the problem of 
fitting a polynomial model of degree less than or equal to 2. 

The important thing to note is that, as the third version of the curse 
expresses, there is an explosion in the number of possible models. When p=1 (i.e., 
a single explanatory variable), there are seven possible regression models:  

Y  =  β0 + ε 
Y  =  β0 + β1 X1 + ε 
Y  =  β0 + β1 X1 + β2 X1

2 + ε 
Y  =  β1 X1 + ε 
Y  =  β0 + β2 X1

2 + ε 
Y  =  β1 X1 + β2 X1

2 + ε 
Y  =  β0 + β2 X1

2 + ε 
where ε denotes noise in the observation of Y. For p=2 there are 63 models to 
consider (including interaction terms of the form X1 X2), and simple combinatorics 
shows that, for general p, there are 2[1 + p + p(p+1)/2] - 1 models of degree 2 or less. 
Since real-world applications usually explore much more complicated functional 
relationships than low-degree polynomials, modern computational statisticians 
need vast quantities of data to discriminate among the many possibilities when p 
is large (or even moderate).  

When fitting many models, it is necessary to make repeated significance 
tests to determine which mathematical terms add substantial explanation. But if 
one makes repeated significance tests, it is well known that a certain proportion of 
the tests will be misleading; in particular, one will include terms that are not 
useful. One approach to adjust for this is to use Bonferroni correction, or other 
procedures that control for multiple testing (cf. Westfall and Young, 1993). But 
these methods typically tend to be very conservative, and one pays an especially 
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high price when the tests are dependent, as happens when comparing models that 
incorporate very similar sets of explanatory variables.  

It used to be popular to avoid multiple testing and just include all of the 
explanatory variables, and in the early days of data mining many naive computer 
scientists did so. But statisticians knew that this violated the Principle of 
Parsimony and led to inaccurate prediction. If one does not severely limit the 
number of variables (and the numbers transformations of the variables, and the 
number of interaction terms between variables) in the final model, then one ends 
up overfitting the data. Overfit happens when the chosen model describes the 
random noise as well as the true signal.  

If one is interested only in prediction, the curse of dimensionality is less of a 
problem for future data whose explanatory variables have values close to those 
observed in the past. But an unobvious consequence of large values of p is that 
nearly all of the new observation vectors tend to be far from those previously 
seen. Furthermore, if one needs to go beyond simple prediction in order to 
develop uncertainty statements or interpretable models, then the curse of 
dimensionality can be an insurmountable obstacle. Usually the most one can 
achieve is local interpretability, and that happens only where data are locally 
dense. For more detailed discussions of the curse, readers should consult Hastie 
and Tibshirani (1990) and Scott and Wand (1991). 

In order to minimize the problem of overfit that results from the 
conservatism of multiple testing in the context of model selection, this paper 
considers various strategies for efficient combinatorial search. The heuristic 
behind this approach is that if one can minimize the number of models that are 
tested, then one can both improve computational speed and prevent the inclusion 
of spurious variables or false structure. The issues involved with efficient 
combinatorial search are illustrated with applications to problems in multivariate 
nonparametric regression, cluster analysis, and multidimensional scaling. The 
methodology relies upon combinatorial algorithms for enumerating binary 
sequences, listing permutations, and identifying all possible subsets of fixed size 
from a given set of elements. 

2. Nonparametric Multivariate Regression 

A central problem in modern computer-intensive statistics and data mining is 
finding good variable selection techniques for nonparametric (or flexible) 
multivariate regression. Suppose one wants to perform nonparametric multiple 
regression with p explanatory variables. Then there are 2p possible sets of 
variables that might be fed into the software that fits the model. Depending upon 
the application, there are many different kinds of software, such as MARS 
(Multivariate Adaptive Regression Splines; see Friedman, 1991), ACE 
(Alternating Conditional Expectations; see Breiman and Friedman, 1985), neural 
nets (cf. Bock, 1998 or Lebart, 1998 for applications to cluster analysis and 
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discriminant analysis, respectively) and so forth. The key to the success of a  
particular piece of software in a particular application often depends on how well 
that software is able to search among the possible variable combinations to find 
the best one to use in model fitting.   

Even for relatively small values of p, it is computationally infeasible to fit 
and examine all of the possible subsets of variables. And the available 
methodology for correction in multiple testing is so conservative that essentially 
no set of variables will meet adequate levels of significance, which is why most of 
the modern software packages for computer-intensive statistics do not control for 
the number of tests that are made. 

Traditional methods for model selection in multiple regression analysis 
include forward selection, backwards elimination, and stepwise linear regression 
(cf. Weisberg, 1985, Chapter 8). None of these attempts a full search of the space 
of possible models, and each executes a greedy search according to a specified 
testing procedure. Unfortunately, these methods break down for large values of p, 
both in terms of mean integrated squared error (cf. Banks, Olszewski and Maxion, 
2002) and in terms of multiple testing correction for accurate selection of 
variables (cf. Pinsker, Kipnis and Grechanovsky, 1987). For example, an 
extensive set of simulations in the case of stepwise selection for multiple linear 
regression when the true model is linear finds that, when using standard defaults 
in common packages, each spurious variable has almost a 15% chance of being 
falsely included, independently of whether other spurious variables appear.  

2.1. Experimental Design Methodology 

Instead of doing greedy search to find adequate multiple linear models, it is 
possible to use ideas from experimental design. A version of this strategy was 
independently proposed by Clyde (1999) in the context of model averaging. 

To implement this approach, one can view each explanatory variable as a 
factor in an experimental design. The factors all have two levels, corresponding to 
whether or not the explanatory variable is included in the model. This enables one 
to perform a 2p-k fractional factorial experiment in which one fits a multiple 
regression model to the included variables and records some prechosen measure 
of goodness-of-fit. Obviously, one takes k to be sufficiently large that it is 
possible to perform the computations in a reasonable amount of time and also to 
limit the effect of multiple testing. But since this is a computer experiment and 
one can fit models very quickly, this still enables one to collect a great many 
observations on different models. 

There are several possible measures of goodness-of-fit. Most were developed 
in the context of multiple linear regression analysis, but they can be extended 
(with varying degrees of success) to nonparametric problems. Standard choices 
include: 
• R2, the proportion of variance in the observations that is explained by the 

model. 
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• Adjusted R2, the proportion of variance in the observations that is explained by 
the model, but with an adjustment to account for the number of variables in the 
model. 

• Mallows’ Cp, a measure of predictive accuracy that takes account of the 
number of terms in the model. 

• MISE, the mean integrated squared error of the fitted model over a given 
region (often the hyperrectangle defined by the minimum and maximum 
values taken by each explanatory variable used in the model. 

The statistical properties of the first three measures are discussed in 
Weisberg (1985, p. 185-190); a good discussion of the MISE is given in Scott 
(1992, section 2.4). 

We recommend using the square root of the adjusted R2. This transformation 
of the measure of fit appears to stabilize the variance in the observations, thereby 
supporting use of analysis of variance techniques and response surface 
methodology in the search for the best-fitting model (cf. Myers, 1999). These 
techniques perform best when the observations from the computer experiment 
have an approximate normal distribution with common variance. 

In this framework, it is straightforward to use analysis of variance to 
examine which factors and factor combinations have a significant influence on the 
observations. Significant main effects correspond to explanatory variables that 
contribute on their own. Significant interaction terms correspond to subsets of 
variables whose joint inclusion in the model provides explanation, or whose joint 
inclusion lowers the measure of fit through redundant explanation. If one is 
performing multiple linear regression, then these results are implicit in the 
standard tests of significance for coefficients and the combinatorial search 
procedure adds no new insight; however, if one is performing a modern 
computer-intensive nonparametric regression, then the methods described here 
enable better search for influential variables. 

Based on the results of the designed experiment, one can ultimately find and 
fit the model that includes all variables corresponding to significant main effects 
or interactions. And the factorial design reduces the penalty one pays for multiple 
testing, as compared to exhaustive search or other less-efficient searches. 

2.2. Gray Code Search  

Factorial designs are not the only way to search. A different approach, based 
on combinatorial properties of binary sequences, may offer even more 
improvement. 

For multiple regression, the 2p possible models can be identified with the 2p 
vertices of the unit hypercube in p dimensions. The (0, 0,…,0) vertex corresponds 
to the model with all variables excluded (one just fits the average of the response 
variable), whereas the (1,1, …l) model is the regression in which all variables are 
included. From this perspective, a clever search of vertices of the hypercube 
would be an attractive search algorithm for finding a good regression model. 
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A Hamiltonian circuit of the unit hypercube is a traversal that reaches each 
vertex exactly once (and necessarily, it never travels the same edge twice). There 
are many possible Hamiltonian circuits - the exact number is not known in 
general, even asymptotically (cf. Gilbert, 1958). From the standpoint of model 
search, one wants a Hamiltonian circuit that has desirable properties of symmetry, 
and which treats all vertices in the same way (i.e., there should be no 
distinguished vertex, or model, in the circuit). 

If it were possible to traverse the edges of the hypercube visiting each vertex 
just once and maintaining a certain balance in the process, then the sequence of 
visited vertices would form the basis for an efficient search algorithm.   

The Gray code (1939) is a procedure for listing the vertices of the hypercube 
in such a way that there is no repetition, each vertex is one edge from the previous 
vertex, and all vertices in a neighborhood are explored before moving on to a new 
neighborhood. Wilf (1989) describes the mathematical theory and properties of 
the Gray code system. 

To explain the Gray code algorithm, consider the case of four explanatory 
variables, or the unit hypercube in ⎥4. Table 1 shows the rank of the vertex in the 
Gray code traversal, the binary digit representation of the rank, and the bit string 
of the visited vertex on the hypercube: 

Table 1. Gray code vertex rank, binary rank, and vertex string  
0   0000   0000                8   1000   1100 
1   0001   0001                9   1001   1101 
2   0010   0011              10   1010   1111 
3   0011   0010              11   1011   1110 
4   0100   0110              12   1100   1010 
5   0101   0111              13   1101   1011 
6   0110   0101              14   1110   1001 
7   0111   0100              15   1111   1000 

The Gray code has several kinds of subtle balance. For example, it can be 
generated by reflection and recursion.  Let Lp be the list of all possible binary bit 
strings of length p, arranged in the Gray code order. Then generate the first half of 
Lp+1 by writing a zero in front of each element in the list Lp. For the second half of 
Lp+1, write Lp in reverse order, and then prefix each element with a one. By 
concatenating the lists, one obtains Lp+1 (the reader should observe this pattern in 
Table 1).   

Suppose one prefixes each Gray code string with an infinite number of 
zeroes. This makes it possible to consider the numbers corresponding to the Gray 
code strings as an infinite series:   
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0, 1, 3, 2, 6, 7, 5, 4,12, 13, 15, 14, 10, 11, 9, 8, … 

Note that each number in the sequence is relatively close to its neighbors. A 
theorem due to Yuen (1974) shows that two strings in the Gray code whose 
Hamming distance is at least d must have ranks that differ by at least [2d/3] (here 
[·] is the nearest-integer function), and this provides the greatest possible 
separation. This means that the traversal explores models locally and 
exhaustively, rather than swooping back after a distant excursion.   

From our perspective, the key point from Yuen’s theorem is that if starts at 
an arbitrary model, then goes a large number of steps in the Gray code traversal, 
one ends up at a vertex corresponding to a model that is very different from the 
starting point. This property suggests that by taking every dth step, for d large, 
and then testing the corresponding model, one is performing a thorough search of 
the set of possible models.  

Wilf gives a theorem that is useful in rapidly generating the Gray code 
strings that correspond to particular ranks: 

Theorem 1:  Let m = 3 ai 2i  be the representation of integer m in binary notation.  
Let …b3 b2 b1 b0 be the string for the vertex of rank m in the Gray code. Then  

bi = ai + ai+1 (mod 2) 

for i=0,1,2, … (this solves the ranking problem for a Gray code, since it gives the 
code with rank m in the list). 

Proof:  (Wilf, 1989, p. 4.) The proof proceeds by induction on p.  When p=0, the 
statement is trivial. Assume now that Theorem 1 is true for all ranks in the Gray 
code list Lp-1 of binary sequences of length p ! 1. Consider the string of rank m on 
the Gray code list Lp of binary sequences of length p. If m < 2p-1 ! 1 then the result 
is immediate since the string of rank m is the same, except for the prefatory 0.  

If m ≥ 2p-1, then we can write m'= 2p –1 – m.   The theorem holds for the rank 
m' because m' < 2p-1 – 1.  And the bits in the strings of rank m and rank m' are 
related by  

ai(m ) = 1 + ai(m') for i = 0, 1, …, p-1.           � 
This theorem gives us a way to generate the Gray code string for a specified 

rank, and thus the theorem is sometimes called the “ranking theorem.” A theorem 
that goes the other way, to find the rank of a given code string, solves the 
unranking problem. To use Theorem 1 to efficiently explore a set of models, 
suppose one decides to examine only 100 models and then infer the final fit. If 
there are p explanatory variables, one takes d = [2p/100], and then finds the Gray 
code sequence of rank d, 2d, …, 100d. Each sequence defines a particular set of 
variables that may be included or excluded.   

In practice, one would examine the 100 model fitting results, probably in 
terms of the square root of the adjusted R2, and then home in on the region of the 
cube that provides good explanation. This enables one to quickly identify the 
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vertex or bit string corresponding to the set of variables that provides near-
optimal explanation. One might make additional Gray code searches in the region 
of the best results from the first search, and iterate to find the final model. 
Determining good rules of thumb for practice requires an extensive simulation 
experiment that would compare the effectiveness of Gray code search procedures, 
with corrections for multiple testing, against other standard procedures for model 
selection. 

3. Cluster Analysis 

Suppose one wants to do a cluster analysis in which each case has many 
explanatory variables. In this situation, there can be many different cluster 
structures. Also, the clusters that derive from conventional procedures (i.e., 
procedures that are not computationally tuned to be robust) tend to be unstable 
(cf. Fowlkes, Gnanadesikan and Kettenring, 1988).  

As an example to focus our attention, consider a market segmentation study 
using data from supermarket scanners. The data set tells exactly what, and how 
much, of each product was purchased by each customer over the period of a year.  
Some items, such as expensive shampoo and nail polish, divide the customers into 
clusters that can be retroactively interpreted as men and women. Other items, such 
as diapers and baby food, divide the customers into clusters that correspond to 
parents with infants and those without. And other products, such as tortilla flour 
and refried beans, or matzoth meal and kosher salt, or shitake mushrooms and 
bamboo shoots, are able to cluster people as Hispanic, Jewish, or Chinese, 
respectively, and thereby show ethnic patterns. In contrast, products such as eggs, 
butter, salt, and soap are noise variables, and provide little information about 
demographic cluster structure.  

In cluster analysis, we want automatic ways to ignore the noise variables and 
to focus on those variables that provide information about the cluster structure(s). 
And when the number of measurements per case is large, then there can easily be 
multiple cluster structures, as indicated in the supermarket scanner data example. 

No clustering method is uniformly superior in all applications. But one 
approach that seems promising in this context is to look first for cluster structure 
on a variable-by-variable basis. Clearly, records on the number of purchases of 
cosmetics or diapers or shitake mushrooms will probably show two very distinct 
groups; one cluster does not buy these items regularly, but a second cluster buys 
them routinely. So for many of the most useful variables, single variables can 
provide good segregation. 

It is computationally efficient to do cluster analyses of all of the cases for 
each of the variables separately. This is a univariate cluster analysis, and thus can 
be done quite rapidly, and the results can be stored for later use. If we take the 
market segmentation problem as our guide, then we expect each variable to divide 
the cases into at most two groups. In other applications, different heuristics would 
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apply, and the following discussion should be modified accordingly. But for our 
example problem, the primary result from this first step should be, for each 
variable, a list of the cases that fall into one cluster, a list of the cases that fall into 
a second cluster, and a measure of how well-separated the clusters are. 

Given those lists, the next step is to decide how closely two variables agree 
on the cluster structure. For any pair of variables, there are several possible 
measures of how closely their two lists agree. For example, one can construct a 
simple contingency table in which the rows represent the two lists from the first 
variable and the columns represent the two lists from the second variable. The 
entries in each cell correspond to the number of cases that are in each cross-
classification. Then any measure of deviation from independence, such as the 
traditional Pearson goodness-of-fit statistic, indicates significant agreement on the 
cluster membership of the cases between the lists generated by Variable 1 and 
Variable 2.  

Variables that show strong dependence would probably include nail polish, 
emery boards, and aftershave lotion. Variables that would show independence 
probably include nail polish, kosher hotdogs, and diapers. In order to highlight the 
cluster structure and enable interpretation, it is helpful if the variables that provide 
similar lists are grouped together for the analyst, while those variables that have 
little cluster structure or very different cluster structure are grouped apart.  

One approach that has been taken in the cluster analysis of such data is that 
described by Wilhelm, Wegman and Symanzik (1999). They describe the use of 
parallel coordinate plots to find, visualize, and interpret cluster structure. Parallel 
coordinate plots were proposed by Inselberger (1981) and provide an appealing 
alternative to Cartesian coordinate systems for visualizing high-dimensional 
structure. Essentially, instead of having the graphical image show axes meeting at 
right angles (which obviously breaks down when p > 3), parallel coordinate plots 
align each axis in parallel. The point that represents an observation in Cartesian 
systems becomes a line, linking the values of the observation on each axis. 

Figure 1 shows a parallel coordinate plot of eight cases, with seven variables 
for each case. For each case, a line links the seven observations on that case.  
Note that in terms of variables X1, X2, and X3, the graph shows strong cluster 
structure, with cases corresponding to circles and squares separating very cleanly 
on each axis. Similarly, for variables X4, X5, and X6, the cases no longer cluster in 
terms of squares and circles, but they do cluster strongly in terms of color, black 
or white, for each axis. Finally, for variable X7, there does not seem to be any 
cluster structure at all. In terms of the market segmentation example, one can 
think of the circles and squares as being men and women, and the black and white 
as denoting parents and non-parents.  

The problem of performing cluster analysis using parallel coordinate plots 
can be approached in many ways. But Figure 1 shows that it is very helpful, in 
terms of both cluster discovery and interpretation, if the axes that capture the 
same kind of cluster structure are arranged to be adjacent. Otherwise, the visual 
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signal is hard to detect in large datasets with many different variables. If one can 
find an arrangement that puts variables that contribute to common clustering 
structure together, this aids understanding. This can be viewed as a special kind of 
feature selection-instead of selecting features that contribute to structure, and 
leaving out features that are essentially noise, one must find the features that 
contribute to different kinds of cluster structure, and separate those out from the 
features that are essentially noise. 

To achieve this arrangement, one must search the space of all possible 
permutations of the axes. If this can be done efficiently, then one can reduce 
computational time and also minimize the number of statistical tests that are 
performed during the search, thereby limiting the impact of multiple testing on the 
number of false findings of significance. In the example we have discussed, based 
upon cluster-membership agreement for each variable, it is possible to use direct 
measures of agreement to find candidate axes for adjacent representation.  But in 
more general problems, where multivariate behavior is important for cluster 
structure, the full power of search over the set of all possible arrangements of the 
axes becomes vital.  

There are many ways to enumerate the list of all possible permutations 
variables; this is equivalent to listing the permutations of the indices 1, …, p.  
From a computational standpoint, it is appealing if the algorithm produces a 
sequence of permutations with the property that permutations that are near each 
other in the list are also near in terms of some appropriate metric on the space of 
permutations. The advantages from such a property are very similar to those that 
arise in the context of efficient search of binary vectors via Gray code 
enumeration. 
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Figure 1. Parallel coordinate plot with two cluster structures 
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Although there does not yet seem to be an analogue of Yuen’s theorem for 
permutations, the procedure that best imitates the Gray code properties is the 
Steinhaus-Johnson-Trotter algorithm (cf. Trotter, 1962 and Johnson, 1963). The 
key feature is that at each step, exactly two elements are interchanged and these 
two elements are adjacent to each other in the previous permutation. The 
algorithm can be defined recursively: Suppose one has the sequence of Steinhaus-
Johnson-Trotter permutations of p-1 integers. Then one can construct the 
sequence for p integers by inserting p into each permutation in all possible ways, 
beginning at the right of the first permutation and moving to the left, then 
sweeping from right to left, left to right, and so forth, always in alternation. This 
inductive description is relatively transparent to explain, but no induction is 
needed to actually generate the sequence; code for such generation is available in 
many places (cf. Niejenhuis and Wilf, p. 59-60) 

Table 2 shows how the induction argument works. The first permutation of 
four elements is 1,2,3,4 and the last is 2,1,3,4. The first column is the Steinhaus-
Johnson-Trotter sequence of permutations for three elements, from first to last. 
The following four sequences in each row are given by inserting the “4” into the 
initial triplet at the correct places. 

Table 2. Steinhaus-Johnson-Trotter permutations of four elements 

1,2,3      gives      1,2,3,4     1,2,4,3    1,4,2,3    4,1,2,3 
1,3,2      gives      4,1,3,2     1,4,3,2    1,3,4,2    1,3,2,4 
3,1,2      gives      3,1,2,4     3,1,4,2    3,4,1,2    4,3,1,2 
3,2,1      gives      4,3,2,1     3,4,2,1    3,2,4,1    3,2,1,4 
2,3,1      gives      4,2,3,1     2,4,3,1    2,3,4,1    2,3,1,4 
2,1,3      gives      4,2,1,3     2,4,1,3    2,1,4,3    2,1,3,4 

In practice, one doesn’t want to enumerate all of the permutations. Instead, 
one wants to study the adequacy of the clustering produced by different 
permutations. Suppose one intends to examine only 100 permutations at first and 
then search more carefully near those permutations that have the best statistical 
properties. To do this, one takes d=[p!/100] and then finds the permutation 
corresponding to rank d, 2d, …, 100d in the sequence. This is the same kind of 
search strategy used in Section 2.2.  

As before, this kind of search requires a quick algorithm for solving the 
ranking problem. That is, for a given integer between 1 and p!, one needs to be 
able to quickly find the corresponding permutation in the Gray code list. This is 
given in many places (cf. Stanton and White, 1986, p. 73). Using this, one can 
generate the permutations corresponding to, say, ranks d, 2d, …, 100d and assess 
how well they segregate the variables that determine the cluster structure(s). 

To assess the value of a particular sequence of axes, one can use any index 
that increases with increasing cluster structure on each axis and also increases 
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with agreement on the cluster membership between adjacent axes. Many indexes 
are possible, and it is necessary to perform a simulation experiment to determine 
which ones work best in practice and to provide heuristics for implementing 
search strategies of the kind described in this section.   

4. Multidimensional Scaling 

Multidimensional scaling is a procedure that takes a proximity matrix 
between cases, and then finds locations for the cases in a low-dimensional space 
that conform, as closely as possible, to the given inter-case proximities. In 
practice, the proximity matrix is usually measured with error, and one represents 
the cases by estimating locations in a two-dimensional plot that respect, as closely 
as possible, the orderings implied by the elements of the proximity matrix. Wish 
and Carroll (1982) and Kruskal (1975) provide readable introductions to theory 
behind multidimensional scaling.  

To make the multidimensional scaling problem concrete, suppose one has a 
list of United States cities and knows the time required for driving between each 
pair of cities. The inter-city proximity matrix contains the drive time, and the 
multidimensional scaling solution looks very much like the map of the United 
States (in some random orientation, since compass points are irrelevant to the 
algorithm). Minor distortions in the map distances are caused when mountain 
ranges force the roadways to take less direct paths, or when different routes have 
roads with substantially different speed limits. 

Now suppose that instead of driving time one has a matrix of flight time on 
commercial aviation. For this proximity matrix, the multidimensional scaling 
solution is highly distorted because United States carriers use the hub-and-spoke 
system. Passengers traveling from a small city to a distant small city must 
generally change airplanes at an intermediate large city. As a consequence, the 
two-dimensional map built from such data tends to place the large cities (i.e., the 
hub airports) in a central circle, and then the small cities are splayed around on 
the outer half of a circle centered on their nearest hub airport. The air travel 
solution tends to have more “stress” than road travel solution, since there is more 
intrinsic incompatibility within the proximity matrix used for flying.  

Stress is an important concept in multidimensional scaling, and it will drive 
much of the subsequent discussion. Suppose the proximity matrix contains values 
rij, those being interpretable as the approximate distance between case i and case j, 
and let dij represent the fitted distances between case i and case j in a Euclidean 
space of fixed dimension. (the rij will not, in general, satisfy the properties of a 
true metric, but the dij must). Let f (·) be the monotone deformation function used 
by the multidimensional scaling algorithm to bring the proximities as near to the 
fitted distances as possible. Then the raw stress value of the configuration is given 
by: 

Φ  =   ϕ  [ dij – f(rij) ]2
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where Φ can be viewed as a measure of the lack of fit. There are several other 
measures that may be used instead of stress, but most of these are quite similar in 
spirit and typically are based on sums of squares, perhaps weighted or penalized 
in some way. See Borg and Groenen (1997) for details. 

In practice, multidimensional scaling is highly sensitive to outliers. For 
example, suppose one is building a proximity matrix from driving times, but that 
along one leg of the trip, the driver has a breakdown and must wait a day while 
the automobile is fixed. This aberration in the data introduces enormous stress in 
the multidimensional scaling problem and frequently distorts the answer; it may 
happen that the resulting low-dimensional map no longer resembles the United 
States at all, and that crucial interpretability is lost. More commonly, a few large, 
aberrant values lead researchers to falsely conclude that the appropriate dimension 
for the multidimensional scaling solution is larger than it should be; the outlier 
causes the corresponding case to sit on top of a “mountain” in ⎥3 rather than lie in 
a planar map in ⎥2. 

To solve the problem of significant distortion introduced by a small number 
of noisy observations, one must seek a robust solution. In the spirit of S-
estimators (cf. Rousseeuw and Yohai, 1984), we seek to find a relatively small 
fraction of the cases which can be excluded from the analysis, but whose 
exclusion enables much lower-stress solutions. That search entails looking at all 
subsets of k cases out of n, and then applying the multidimensional scaling 
algorithm to the n ! k cases retained for analysis. The subset whose exclusion 
provides the least-stress solution provides a robustification of multidimensional 
scaling that is resistant to outliers. (A variant on this strategy is not to eliminate 
cases, but only to eliminate distances; since there are many more inter-case 
distances than there are cases, this is a harder problem.) 

We need to have the analogue of a Gray code for enumerating all possible 
subsets. It turns out that there are several possibilities (cf. Wilf, 1989, p. 10). But 
some of these possibilities do not exist for all values of n and k, and others add 
restrictions (such as monotonicity in the case labels) that do not seem statistically 
relevant. Therefore we prefer the revolving door algorithm for generating the list 
A(n,k), which consists of all subsets of size k from a set n, arranged so that only 
one element changes between each adjacent subset in the sequence.  

There is a convenient trick for producing these lists recursively. Given the 
lists A(n-1,k) and A(n-1,k-1), one can generate A(n,k) by first writing the list A(n-
1,k) and then appending, in reverse order, the list A(n-1,k-1) with n added as the 
last element in each subset. The reader can verify this algorithm in Table 3.  

 

Table 3. Revolving door subsets 

Sets of 3 from 5             Sets of 3 from 4          Sets of 2 from 4 
A(5,3)                         A(4,3)                          A(4,2) 
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1,2,3                            1,2,3                               1,2 
1,3,4                            1,3,4                               2,3 
2,3,4                            2,3,4                               1,3 
1,2,4                            1,2,4                               3,4 
1,4,5                                                                   2,4 
2,4,5                                                                   1,4 
3,4,5 
1,3,5 
2,3,5 
1,2,5 

In order to mimic the search procedures described previously, one needs a 
solution to the ranking problem for subsets. This enables one to pick and generate 
the subset having a particular rank on the Gray code list. Unfortunately, the 
authors are not aware of any solution to this problem in the current literature, but 
we are not combinatorial mathematicians and we invite correction for others more 
expert than ourselves. 

If no solution to the ranking problem is available, then the strategy can still 
be successful in small problems, or in problems for which extensive preparatory 
calculation is possible. This is because there is a fast algorithm to produce the 
revolving-door sequence that does not rely upon the recursive definition (cf. 
Nijenhuis and Wilf, 1978, p. 33-35). Therefore one can quickly enumerate the 
list, stopping only to store subsets that are far apart in the Gray code ordering. 
Those are the subsets that are used for applying the multidimensional scaling 
routine, and whose corresponding stresses will be used to identify cases that 
contribute largely to lack of fit in low dimensions. 

Each multidimensional scaling run provides information on the stress 
associated with a particular subset of the cases. Cases that are always associated 
with high-stress solutions should be removed as outliers. Cases that give low-
stress solutions should be retained. Often one wants to plot a curve of the stress 
against the number of dimensions in the fit, in order to decide when the scaling 
algorithm has reached the point of diminishing returns with respect to dimension. 

5. Conclusions 

This paper argues that combinatorial search issues are playing an 
increasingly significant role in modern computational statistics. Such searches 
arise in various ways, including: 
• Strategies for model selection, where the number of variables is too large to 

allow enumeration and testing of each model. 
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• Strategies for seriation, to enhance visual displays or to group objects 
according to some measure of similarity. 

• Strategies for identifying and removing outliers in complex, computer-
intensive analyses. 

Besides these cases, as treated in the present paper, it is easy to imagine that one 
would want to find efficient ways to search the set of rooted binary trees with n 
terminal vertices, for purposes of phylogeny (cf. Gordon, 1986, or Lapointe and 
Cucumel, 1997) or for CART analysis (cf. Shannon and Banks, 1997) or for 
cluster analysis (cf. Banks and Constantine, 1998).    

Our contribution to the search problem is to note that Gray codes have 
attractive features as a guide to efficient search. The traditional Gray code was 
applied to binary sequences, and listed the sequences in such a way that 
sequences that were near on the list differed from each other only in small, 
controlled ways. Subsequent researchers have found many other Gray code 
schemes for different kinds of combinatorial objects, such as permutations, 
subsets of fixed size, rooted trees, partitions, and so forth. The advantage of the 
Gray code list is that one can take large steps along the list, extracting a sequence 
or permutation or subset or tree at each step, and then do the computationally 
intense analysis on only the extracted objects. Since the objects are well separated 
in their corresponding Gray codes, then the objects are all mutually very different. 
This ensures that the search covers the space of possible objects more thoroughly 
than a simple random search would do.   

In order to make this kind of search strategy work, it is very desirable to 
have a solution to the ranking problem. This means that for a given positive 
integer, one is able to generate the object that has that rank on the Gray code list. 
Without a ranking theorem, it is usually necessary to generate the entire Gray 
code list, and then sort out the objects that are a fixed and large distance apart on 
the list. But for most problems, full enumeration quickly becomes infeasible, 
because the number of combinatorial objects tends to grow very quickly. 

Our broad strategy is to use the Gray code search to generate the objects, 
then perform whatever statistical analysis is appropriate for each object, and then 
compare those results to find out which regions of the Gray code list tend to 
optimize some criterion, such as goodness-of-fit, or similar cluster structure on 
adjacent axes, or minimum stress in a two-dimensional scaling representation. 
The exact approach depends upon the situation, and an iterative search-and-refine 
exploration is likely to produce better results than a single search. 

As the next step in this research program, we intend to perform a number of 
simulation experiments. These experiments will focus upon the variable selection 
(or feature selection) problem described in Section 2. Those experiments should 
provide comparative insight on the value of Gray code search versus selection 
based upon the results of fractional factorial designs versus selection based upon 
conventional regression methodologies.   
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SIMULTANEOUS VISUALIZATION  
OF TWO TRANSITION TABLES 

Michael Greenacre1 and José G. Clavel2

ABSTRACT 

The case of two transition matrices of frequencies is considered, that is two 
square asymmetric matrices of counts where the rows and columns of the 
matrices are the same objects observed at three different time points. 
Alternative ways of jointly visualizing the tables are considered. We 
generalize an existing idea, where a square matrix is decomposed into 
symmetric and skew-symmetric parts, to the case of two matrices. This 
approach leads to a decomposition into four components: (1) average 
symmetric, (2) average skew-symmetric, (3) symmetric difference from 
average, and (4) skew-symmetric difference from average. The method is 
illustrated with data from a study of changing values over three generations.  

Keywords: Correspondence analysis, matrix decomposition, skew-symmetry, 
transition matrices. 

1. Introduction 

We consider the data in Tables 1 and 2 (Garcia et al. 1997) concerning the 
values that three generations recognized as the most important. The data 
collection took place in the School of Economics at the University of Murcia in 
Spain. A sample of 129 students was asked to obtain the information from their 
families. The ten values from which they – and their parents and grandparents – 
could choose were: honesty, abbreviated as ho, family fa, culture cu, 
responsibility re, happiness ha, solidarity so, freedom fr, loyalty lo, 
industriousness in and tolerance to. The data are reported in the form of cross-
tabulations between grandparents and parents and between parents and students. 
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For example, from Table 1 we can see that, of the 35 grandparents that chose 
honesty as the most important value, six of the associated parents chose honesty, 
9 chose family, 1 chose culture, and so on.  

In the case of a single transition table of this kind, Greenacre (2000) 
proposed separate analyses of the symmetric and skew-symmetric parts of the 
table, based on an idea of Constantine & Gower (1978) and Gower (1980). He 
showed how this idea could be implemented in the correspondence analysis 
framework by setting up a block matrix of the table reproduced twice down the 
diagonal and in transposed form in the off-diagonal positions. That is, if N is the 
transition matrix, the block matrix analyzed is: 

                                                       (1) ⎥
⎦

⎤
⎢
⎣

⎡

NN
NN

T

T

As shown by Greenacre (2000), the simple correspondence analysis of this block 
matrix yields exactly the symmetric and skew-symmetric analyses in one joint 
analysis, with the principal axes of the two analyses appearing interleaved in the 
solution and in order of importance.  

The purpose of this paper is to go one step further by analyzing two square 
tables simultaneously in the same style. These two tables could be mobility tables, 
for example changing professions from grandfather to father and from father to 
son. Alternatively, the two tables could arise as a subdivision of a table according 
to a binary variable such as gender (male/female). In the former example we 
would be interested in comparing the transition in the first generational change 
with the second, in the latter example we would be interested in comparing the 
difference in the transitions between males and females.  

In Section 2 we give a brief technical summary of correspondence analysis 
and how it can be applied to the case of a single square matrix as well as to a pair 
of matrices. In Section 3 we show the results of applying this methodology to the 
data in Tables 1 and 2. We conclude with some discussion in Section 4.  

Table 1. Changing values from grandparents to parents 
 

GP to P HO FA CU RE HA SO FR LO IN TO  
ho 6 9 1 3 3 5 3 2 1 2 35 
fa 9 5 0 4 5 4 0 0 2 3 32 
cu 0 0 0 1 1 0 0 0 0 0 2 
re 0 0 0 0 1 2 1 0 0 0 4 
ha 5 3 1 2 3 1 0 0 0 0 15 
so 2 1 0 1 0 0 1 1 0 0 6 
fr 3 2 0 0 3 1 3 0 1 1 14 
lo 0 0 0 2 2 3 1 0 1 0 9 
in 0 0 1 1 0 1 0 3 0 0 6 
to 1 0 0 1 1 1 0 2 0 0 6 
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Table 2. Changing values from parents to students 

P to S HO FA CU RE HA SO FR LO IN TO  
ho 5 0 0 5 9 0 6 1 0 0 26 
fa 2 1 0 0 10 1 3 3 0 0 20 
cu 0 0 0 0 0 1 2 0 0 0 3 
re 0 0 1 0 4 0 6 3 0 1 15 
ha 1 1 0 0 12 0 4 1 0 0 19 
so 2 0 0 1 4 9 2 0 0 0 18 
fr 1 0 1 0 1 0 4 1 0 1 9 
lo 0 0 0 0 1 0 3 2 0 2 8 
in 0 1 0 0 0 1 2 0 1 0 5 
to 1 1 0 1 2 0 1 0 0 0 6 

2. Methodology 

2.1. Correspondence analysis 

Correspondence analysis (CA) can be defined as a method for weighted 
least-squares approximation of a matrix of counts. In general, suppose that the 
data matrix N has been divided by its grand total n to obtain P = N/n, called the 
correspondence matrix. Suppose P has row and column sums r and c 
respectively, and that Dr and Dc are diagonal matrices with the elements of r and c 
on the diagonal. Thus when N is a contingency table, P is the (sample) discrete 
bivariate distribution and r and c the marginal distributions. CA can be defined as 
the reduced-rank matrix approximation of P by weighted least squares, 
minimizing the following expression: 

( ) ( ) ( )
∑∑

−
=⎥⎦

⎤
⎢⎣
⎡ −− −−

i j ji

ijijT

cr cr
pp 2

11 ˆˆˆtrace PPDPPD                     (2) 

for a matrix  of given reduced rank. We know that the best rank 1 
approximation is given by  = rc

P̂
P̂ T, called the trivial solution, so that we can 

equivalently consider the approximation of the centred matrix P – rcT. The 
solution for any low rank is given by the singular value decomposition (SVD) of 
the matrix of standardized residuals ( )1/ 2 1/ 2T

r
- -D P rc Dc

-  (see, for example, 

Blasius and Greenacre, 1994): 

( )1/ 2 1/ 2 where T t T
r c a
- -- = =D P rc D UD V U U V VT = I

a

   (3) 

For constructing CA maps, the principal coordinates of the row and column 
points are given by and  respectively. For 
example, to plot the rows and columns in two dimensions, the rank 2 solution 

1/ 2
r a
-=F D UD 1/ 2

c
-=G D VD
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given by the first two columns of F and G are used. The resulting plot is called 
the symmetric map, as opposed to other so-called asymmetric maps, described in 
the following (see also Greenacre 1984, 1993). 

An alternative way of defining CA is as a weighted least-squares 
approximation of the row or column profiles of the table. A profile is a row or 
column of the matrix divided by its corresponding sum. For example, the row 
profiles are the rows of the matrix , in which case CA can be defined as the 
approximation of the row profiles by points in a low-dimensional subspace. 
Distances and scalar products in the space are computed using the chi-square 
metric, a weighted Euclidean metric using  as the weighting matrix. 
Furthermore, the row profiles are weighted by the respective elements of r, called 
the row masses. The objective function in this case is: 

1
r
-D P

1
c
-D

( ) ( ) ( )
∑ ∑

−
=⎥⎦

⎤
⎢⎣
⎡ −− −−−

i j j

ijiij
i

T

rcrr c
qrp

r
2

111 ˆ/ˆˆtrace QPDDQPDD             (4) 

Again we have a trivial solution because it turns out that the row vector cT 
comes closest to all the row profiles in terms of weighted least sum-of-squared 
distances, so that it is equivalent to approximate the centred profiles . 
Again this problem is solved using the SVD of the matrix 

, which is identical to the matrix of standardized residuals 
decomposed previously, so the solution is as before. Because we think of the 
matrix as a set of rows, it is often convenient to visualize the results using the 
asymmetric map. In this case the row profiles would be plotted using principal 
coordinates F as before, but the columns would be in rescaled coordinates called 
standard coordinates . These column points are the 
projections of the unit vectors onto the optimal subspace, and together F and Y 
constitute a biplot of the frequency table (Greenacre, 1992). 

T1
r 1cPD −−

-1/2
c

T-1
r

1/2
r )( D1cPDD −

1/ 2 1
c
-= =Y D V GDa

-

In both definitions of CA the total inertia of the table, a measure of the table's 
total variation, is equal to the weighted sum-of-squares of the centred matrix 
being approximated: 

( ) ( )∑∑ −=
i j

jijiij crcrp /inertia total 2                          (5) 

The inertia accounted for by the rank K* solution (or K* -dimensional solution) is 
equal to the weighted sum-of-squares of the matrix approximation, which is equal 

to . The minimum value of (2) (or (4)), which is the residual inertia not 

accounted for, is equal to the remaining sum-of-squared singular values: 
. 

∑ =

*

1
2K

k ka

∑ +=

K

Kk ka
1

2
*

The special case considered here is the application of CA to square tables 
where the rows and columns refer to the same set of objects. For a transition table 
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where the rows refer to the first time point and the columns the second (e.g., 
father and son), the row profiles are the relative frequencies of change from time 
one to time two.  

2.2. Analysing concatenated or stacked tables 

One way of visualizing two data matrices jointly, is to concatenate the 
matrices side by side, or to stack one on top of another. Since our interpretation of 
the transition matrices is in terms of row profiles, the preferred way of combining 
the tables in this case would be to stack them. CA is then applied to the 
concatenated table (Blasius 1994, Greenacre 1994). A common problem with the 
CA of such tables is, as pointed out by Greenacre (2000), the predominant role 
played by the diagonal of the table, in fact by the symmetric part of the table as a 
whole. 

2.3. Decomposition into symmetric and skew-symmetric components 

Greenacre (2000) adapted the ideas of Constantine & Gower (1978) and 
Gower (1980) to the decomposition of the correspondence matrix into symmetric 
and skew-symmetric components respectively, as follows: 

P = S + T                                                  (6) 
Tyo solve the centring problem, Greenacre considered the average of the row and 

column margins (1
2

= +w r )c  as the centre, so that the decomposition is 

actually: 
P – wwT = S – wwT  + T                                    (7) 

with the metric also being defined as . The corresponding decomposition of 
inertia is thus 

1
w
-D

( ) ( ) ( ) ( ) ( )∑∑∑∑∑∑ +−=−
i j

jiij
i j

jijiij
i j

jijiij wwtwwwwswwwwp 222 //    

(8) 

A convenient way to perform the CA on the separate matrix components was 
shown to be the simple CA algorithm applied to the block matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
=

NN
NN

N
T

T~
                                              (9) 

For a p× p matrix N, the CA of the block matrix yields 2p – 1 dimensions, p – 1 
of which coincide with the symmetric part of N. These dimensions correspond to 
coordinate matrices which have vectors of coordinates reproduced twice, i.e. of 
the form: 
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⎥
⎦

⎤
⎢
⎣

⎡
f
f

 

Clearly only one block of coordinates needs to be used for plotting, so that 
there is one set of points displayed. 

The other p dimensions (or p – 1 if p is an odd number) correspond to 
pairs of equal singular values (i.e., equal principal inertias), and are the so-
called bimensions of the skew-symmetric component, with pairs of row 
and column principal coordinate vectors of the form: 

rows: , columns :  ⎥
⎦

⎤
⎢
⎣

⎡
− 21

21

ff
ff

⎥
⎦

⎤
⎢
⎣

⎡ −

12

12

ff
ff

Each block of coordinates is a 90 degree rotation of the other. To apply the usual 
rules of interpretation it would be necessary to plot row and column points. But, 
as before, only one set of points needs to be plotted, say the first block of row 
points, since the 90 degree relationship means that we can interpret the areas of 
triangles as estimates of the elements of the skew-symmetric matrix (see 
Greenacre, 2000, and the application in Section 3). 

In practice we map the first two dimensions of the symmetric part and the 
first two dimensions of the skew-symmetric part, in separate maps. Thus in terms 
of parsimony, the symmetric/skew-symmetric decomposition has the same 
number of displayed points as an ordinary CA of the original table which would 
have two sets of points in one map. 

2.4. A pair of matched transition tables 

We can generalize the above ideas to the case of two transition tables which 
are matched in the sense that they have the same row and column labels, as in the 
present application. The idea is as follows. Suppose the two tables are M and N 
respectively, each p × p and each crosstabulating the same set of n individuals. 
We set up the following 4p × 4p block matrix: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

MNMN
NMNM
MNMN
NMNM

TT

TT

TT

TT

                              (10) 

This matrix has a 2 × 2 block pattern, where the matrix 

⎥
⎦

⎤
⎢
⎣

⎡
MN
NM
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plays the role of the single matrix we had before in (9). So the CA of (10) yields 
the analyses of the symmetric part: 

⎥
⎦

⎤
⎢
⎣

⎡

++
++

=⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
TT

TT

TT

TT

MMNN
NNMM

MN
NM

MN
NM

           (11) 

and the skew-symmetric part: 

⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

=⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
TT

TT

TT

TT

MMNN
NNMM

MN
NM

MN
NM

           (12) 

(in both cases we omit the division by 2 of the sum and the difference, which in 
any case does not affect the correspondence analysis). 

Now (11) and (12) are themselves block matrices, and Greenacre (2001) has 
shown the similar, but more general, result that the analysis of any block matrix 
of the form: 

⎥
⎦

⎤
⎢
⎣

⎡
AB
BA

 

yields an analysis of the sum A + B and the difference A – B. Hence the analyses 
of (11) and (12) yield two components each: 

(M + MT) + (N + NT) and (M + MT) – (N + NT) 
and 

(M – MT) + (N – NT) and (M – MT) – (N – NT) 

which gives a total of four components altogether: 

1. (M + MT) + (N + NT) (average symmetric part) 
2. (M + MT) – (N + NT) (difference in the symmetric parts) 
3. (M – MT) + (N – NT) (average skew-symmetric part) 
4. (M – MT) – (N – NT) (difference in the skew-symmetric parts) 

The application will demonstrate how these components appear in the 
solution in practice. 

3. Results 

We now look at the results of this methodology applied to the data of Tables 
1 and 2. Both transition tables are rather sparse because of the low sample size 
relative to the number of cells in the tables, so we should be careful in checking 
that the features that we observe in the maps actually exist in the original data. 
One way of ensuring correct interpretation of the maps is to look at the 
contributions to the inertia of each axis, and to restrict our interpretation to those 
points which make large contributions.   
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The CA of the concatenated tables is shown in Figure 1. Rows from the first 
transition are indicated by 1 and from the second by 2. There are three important 
groups of “receiving” values: solidarity (SO) at top left, friendship (FR) and 
loyalty (LO) on the right, and family (FA) and honesty (HO) at bottom left. Many 
of the changes between the first to the second transition are towards the right of 
the display, that is towards the “receiving” values of friendship and loyalty, in 
particular the values fr, lo, re, fa all move from the left, often from top left, 
towards these values. This means that in the parent–to–student transition there are 
changes from other values towards friendship and loyalty. The points so1 and so2 
show a change towards the solidarity value, that is, grandparents with solidarity 
values changed to other values, whereas parents with solidarity value have many 
children with this value too. 

Figure 1. Asymmetric map of stacked table of both transition 

 
 
The results of the joint analysis of the two tables are given in Table 3, and 

two of the four possible maps are given in Figures 2 and 3 as examples of the 
interpretation. First notice the patterns of the coordinates shown in Table 3. The 
classification is decided as follows: apply the signs to the matrices M, N, MT, NT 
(in the order as they appear in the first row or column of the block matrix). Thus 
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dimensions 1 and 3, for example, with sign pattern + – + –, correspond to the 
component M – N + MT – NT = (M + MT) – (N + NT), that is the difference in the 
symmetric parts. Accumulating inertias and percentages of inertia for each of the 
components we obtain in decreasing order: difference in symmetric parts 0.4746 
(35.6%), difference in skew-symmetric parts 0.3407 (25.6%), average of 
symmetric parts 0.2741 (20.6%) and average of skew-symmetric parts 0.2425 
(18.2%). 

Figure 2. Dimensions 1 and 3 of block tables of both transitions: difference 
between the symmetric parts 

 
 
Figure 2 shows dimensions 1 and 3, accounting for an inertia of 0.2619, 

which is 55.2% of the inertia of the difference in symmetric parts (the percentages 
shown in Figure 2 are relative to the total inertia of the four components). Figure 
3 shows dimensions 4 and 5, accounting for an inertia of 0.1778, which is 64.9% 
of the inertia of the average skew-symmetric part. 

Figure 3. Dimensions 4 and 5 of block tables of both transitions: average skew-
symmetric part 
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Table 3. Percentages of inertia and patterns of coordinates (ave S = average of 
symmetric parts, diff S = difference between symmetric parts, ave  
SS = average of skew-symmetric parts, diff SS = difference between 
skew-symmetric parts)  

Dimension Inertia Percentage Pattern Classification 
1 0,16928 12,70% + – + – diff S 
2 0,11057 8,30% + + + + ave S 
3 0,09262 6,95% + – + – diff S 
4 0,08886 6,67% + + – – ave SS 
5 0,08886 6,67% + + – – ave SS 
6 0,08147 6,11% + – – + diff SS 
7 0,08147 6,11% + – – + diff SS 
8 0,07913 5,94% + – + – diff S 
9 0,06430 4,83% + + + + ave S 

10 0,06286 4,72% + – – + diff SS 
11 0,06286 4,72% + – – + diff SS 
12 0,04614 3,46% + – + – diff S 
13 0,03335 2,50% + – + – diff S 
14 0,03311 2,48% + + + + ave S 
15 0,03235 2,43% + – + – diff S 
16 0,02258 1,69% + + + + ave S 
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Dimension Inertia Percentage Pattern Classification 
17 0,02131 1,60% + + – – ave SS 
18 0,02131 1,60% + + – – ave SS 
19 0,02124 1,59% + + + + ave S 
20 0,01755 1,32% + – – + diff SS 
21 0,01755 1,32% + – – + diff SS 
22 0,01637 1,23% + – + – diff S 
23 0,01050 0,79% + + – – ave SS 
24 0,01050 0,79% + + – – ave SS 
25 0,00958 0,72% + + + + ave S 
26 0,00845 0,63% + – – + diff SS 
27 0,00845 0,63% + – – + diff SS 
28 0,00623 0,47% + + + + ave S 
29 0,00525 0,39% + + + + ave S 
30 0,00478 0,36% + – + – diff S 
31 0,00184 0,14% + + + + ave S 
32 0,00059 0,04% + + – – ave SS 
33 0,00059 0,04% + + – – ave SS 
34 0,00035 0,03% + – + – diff S 
35 0,00021 0,02% + – + – diff S 
36 0,00002 0,00% + – – + diff SS 
37 0,00002 0,00% + – – + diff SS 
38 0,00000 0,00% + + – – ave SS 
39 0,00000 0,00% + + – – ave SS 

 
The interpretation of these maps is not easy, since each has a different style 

of interpretation. In Figure 2 we are interpreting differences between symmetric 
parts of the two matrices. The fact that loyalty and solidarity oppose each other 
corresponds to the “popposite” movements of these two values in Figure 1, each 
of these values is being reinforced from one transition to the next. In Figure 3, it 
is areas of triangles that have to be interpreted and the direction of flow is in this 
case anti-clockwise. For example, the positions of industriousness and freedom 
are far from the origin and make triangles with large areas with several other 
values (the areas are of triangles formed by pairs of points and the origin). Their 
positions show that flows are taking place away from industriousness (e.g., to 
loyalty), and from some values (e.g., responsibility) to freedom, which can be 
checked in the data. The frequencies are, however, quite low in general in these 
tables and the features being visualized are admittedly subtle. 

4. Discussion and conclusions 

We have shown two ways of tackling the analysis and visualization of a pair 
of transition tables. When the tables are dominated by their symmetric parts, then 
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the decomposition into symmetric and skew-symmetric parts makes sense, so that 
we can interpret the skew-symmetry without the overwhelming influence of the 
symmetric part.   

In the joint analysis of two tables, there are four components of interest: the 
average symmetric part, the average skew-symmetric part, the difference between 
the symmetric parts and the difference between the two skew-symmetric parts. 
This strategy functions optimally when the individual symmetric parts are strong, 
but not necessarily similar. The total inertia of the two tables is distributed over 
the four components and this can be useful in quantifying the amount of variance 
attributable to these four sources. The analysis may be executed by applying a 
regular correspondence analysis to the matrices set up in a block table where the 
table and its transpose are included four times in a pattern where no matrix is 
repeated twice in the same row or column. The map of each component involves 
only one set of points at a time, with the exception of the difference in symmetric 
parts where inverse dimensions are possible and where the row and column points 
are reflections of each other, thereby allowing reconstruction of negative 
differences on the diagonal of the symmetric matrix. 

An alternative and more common way to analyze the tables jointly is a 
simple stacking of the tables, leading to two points for each row and one point for 
each column. Our initial experience with these different approaches is that the 
four-component approach is useful when the symmetric parts of the tables are 
strong. In all the usual approaches the deviations from symmetry, which are the 
interesting flows in the tables, would be masked and difficult to see. On the other 
hand, the four-component model is more complicated to interpret and different 
rules of interpretation apply to the maps of different components. Applying this 
method to the real data in this paper, where the tables were quite sparse in data, 
was particularly difficult. The more regular approach of stacking the tables is 
useful when the overall differences between the tables is strong, but will not 
depict the flows accurately in a planar map when the tables have strong 
symmetric components.  
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WHAT IS DATA MINING? 

Eugeniusz Gatnar1

ABSTRACT 

The paper is devoted to discussion of the notion of Data Mining. The 
idea of finding patterns in large data sets has been given various names, but 
the one of Mining in Data became the most popular. Data Mining uses 
statistical algorithms to discover patterns and regularities (or “knowledge”) in 
data, therefore its relation to statistics is also presented and some methods are 
discussed. Then several interesting applications of Data Mining methods are 
presented and at last two still open problems are pointed out. 

Keywords: Data Mining, Statistics, Exploratory data analysis, Statistical 
learning. 

1. Introduction 

The fast growth of amount of data stored in easy-to-access databases and 
data warehouses has created a need for a new generation of tools for automated 
and intelligent database management (Gatnar, 1996). The notion of finding useful 
patterns in data has been given various names, including knowledge discovery in 
databases, Data Mining, knowledge extraction, information discovery, 
information harvesting, etc. 

The term “Data Mining” is mostly used by statisticians and data analysts and 
refers to the application of algorithms for extracting patterns from data or learning 
from data. The goal of this learning is to understand what the data says. 

To infer information from a database two techniques are used:  
• deduction – when the information is a logical consequence of the data in the 

database, 
• induction – when the information is generalised from the data in the database. 

The general statements about properties of observed objects are called 
“knowledge”. 
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The most important for the induction is the selection of the most plausible 
rules and regularities. The regularities are represented by a simplification of the 
system described by the data are called “a model”.  

The creation of such a model is inductive learning and the automation of 
inductive learning processes has been researched in Machine Learning, the 
subfield of Artificial Intelligence. Data Mining is a special case of Machine 
Learning where the system is observed through a large database. 

On the other hand, Data Mining is often seen as the next step beyond online 
analytical processing (OLAP) and the next step beyond exploratory data analysis 
(EDA).  

But what is, in fact, Data Mining? 
The simplest definition says that Data Mining uses statistical algorithms to 

discover patterns in data. But many other definitions can be found in the 
literature, e.g.  
• Fayyad: “Data Mining is the nontrivial process of identifying valid, novel, 

potentially useful, and ultimately understandable patterns in data”. 
• Zekulin: “Data Mining is the process of extracting previously unknown, 

comprehensible, and actionable information from large databases and using it 
to make crucial business decisions”. 

• Ferruzza: “Data Mining is a set of methods used in the knowledge discovery 
process to distinguish previously unknown relationships and patterns within 
data”. 

• John: “Data mining is the process of discovering advantageous patterns in 
data”. 

2. Data Mining methods 

Most Data Mining methods are based on concepts from Machine Learning, 
pattern recognition and statistics. Their goal is to make prediction or/and give 
description. Prediction involves using some variables to predict unknown values 
(e.g. future values) of other variables while description focuses on finding 
interpretable patterns describing the data. 

Data Mining uses methods that can sift through the data in search of 
frequently occurring patterns, can detect trends, produce generalisations about the 
data, etc. These tools can discover these types of information with very little 
guidance from the user.  

Data Mining has mostly at least three major components: classification, 
association rules and sequence analysis.   

In classification a database is analysed and a set of rules which can be used 
to classify future data is generated. It allows to find rules that partition the data 
into several predefined classes.  

An association rule is a rule that implies certain association relationships 
among a set of objects in a database. In this process association rules at multiple 
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levels of abstraction from the relevant set(s) of data in a database are discovered. 
Mining association rules may require searching large relational database that is 
quite costly in processing.  

In sequential analysis, patterns that occur in sequence are discovered. This 
deals with data that appear in separate transactions. For example: if a customer 
buys item X in the first week of the month, then he buys item Y in the second 
week etc. 

3. Data Mining products 

As Friedman (1997) pointed out, perhaps the largest profits are made by 
selling tools to the data miners, rather than in doing the actual mining. This is 
because very large databases must be stored and quickly accessed, and 
computationally intensive methodology is applied to these data. This requires 
massive amounts of disk space and fast computers with large RAM memories. 
Therefore Data Mining opens new markets for such hardware.  

Examples of some current Data Mining products are given in table 1.  

Table 1. Examples of Data Mining software packages 

Company Product 
IBM  Intelligent Miner 
Tandem  Relational Data Miner 
Angoss Software  KnowledgeSEEKER 
Thinking Machines Corporation  DarwinTM 
NeoVista Software  ASIC 
ISL Decision Systems, Inc.  Clementine 
DataMind Corporation  DataMind Data Cruncher 
Silicon Graphics  MineSet 
California Scientiřc Software  BrainMaker 
WizSoft Corporation  WizWhy 
Lockheed Corporation  Recon 
SAS Corporation  SAS Enterprise Miner 

4. Data Mining and statistics 

The idea of learning from data has been around for a long time. This is also 
the core idea in statistics (statistical learning). The learning problem can be 
considered as either supervised or unsupervised.  

In the supervised learning the goal is to predict the value of the variable “y” 
(outcome), based on a number of other variables (predictors). As a result, the 
prediction model or learner is built. It will predict the outcome for new, unseen 
objects. 
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In the unsupervised learning no outcome variable is available. Therefore its 
goal is to describe associations and patterns among the data. 

Although Data Mining has its origins outside statistics it uses many 
statistical procedures, for example: classification and regression trees (CART, 
CHAID), rule induction (AQ, CN2), nearest neighbors, clustering methods, 
association rules, feature extraction, data visualisation, etc. 

Some Data Mining software (table 1) include also procedures of neural 
networks, bayesian belief networks, genetic algorithms, self-organizing maps, and 
neuro-fuzzy systems. 

Unfortunately, many statistical methods as: hypothesis testing, ANOVA, 
MANOVA, linear regression, discriminant analysis, logistic regression, GLM, 
canonical correlation, principal component analysis and factor analysis are not 
offered by almost any of the Data Mining packages presented in table 1. 

The sampling methodology is not used in Data Mining applications either, 
although it could improve accuracy while mitigating computational requirements. 
Computationally intense procedure operating on a subset of the data may in fact 
improve accuracy better than a less sophisticated one using the entire database. 

5. Why use Data Mining ? 

Data Mining is quickly becoming a necessity, especially for those who must 
analyse data warehouses containing hundreds of gigabytes or terabytes of 
information.  

Banks use Data Mining to identify their most profitable credit-card 
customers or their highest-risk loan applicants. They also seek to prevent fraud by 
using a technique called "deviation detection", which finds events that are outside 
the norm.  

Some companies use Data Mining to study how to retain customers, separate 
profitable customers from unprofitable ones, uncover fraud, sell existing 
customers new products, and understand why some customers leave. To find a 
model to identify who are the most profitable customers and to see what the 
impact would be if they lost those customers (Groth, 1998). 

Data Mining techniques help companies, particularly those in banking and 
finance, to build an accurate customer profile based on consumer behaviour. For 
example, if a customer uses automated teller machines (ATM) more often than 
going to a bank and doing transactions with a teller, the bank may offer her/him 
more ATM services or offer the bank's online service (Berry and Linoff, 1997).  

Many successful Data Mining applications are well known. The 
following list presents some of them:  
• identifying buying behaviour patterns from customers, 
• finding associations among customer demographic characteristics, 
• predicting which customers will respond to mailing, 
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• identifying profitable and "loyal" customers, 
• detecting patterns of fraudulent credit card usage, 
• predicting customers that are likely to change their credit card affiliation, 
• determining credit card spending by customer groups, 
• identifying stocks trading rules from historical market data, 
• increasing Web site profitability, 
• increasing store traffic and optimising layouts for increased sales, 
• determining the distribution schedules among outlets, 
• analysing loading patterns, 
• determining which medical procedures are claimed together, 
• characterising patient behaviour to predict office visits, 
• identifying successful medical therapies for different illnesses, 
and many more ... 

6. Conclusions 

Data Mining enables to discover hidden patterns and relationships in large 
amounts of data. It solves a paradox: the more data you have, the more difficult 
and time-consuming it is to analyse and draw meaning from it.  

Data Mining uses powerful statistical techniques to quickly explore millions 
of data records, identifying the most valuable and usable information, etc. 

As pointed out above, most of the tools and techniques used for Data Mining 
came from pattern recognition, statistics and database management theory. But 
there are still two unsolved problems: 
• most of the traditional Data Mining techniques failed because of the size of 

the database. New techniques will have to be developed to process huge data 
sets. Some of the newly proposed parallel algorithms are now beginning to 
look into this.  

• Data Mining algorithms assume the data to be noise-free. As a result, the most 
time consuming part of the data analysis becomes data pre-processing. Noisy 
data and pre-processing this data may take up more time than the statistical 
algorithm execution time.  
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IMPACT OF LATENT CLASS CLUSTERING  
OF NSF DOCTORAL SURVEY DATA ON ADJUSTED 

RAND INDEX VALUES 

Michael D. Larsen1

ABSTRACT 

Latent class analysis is used to form clusters based on multivariate 
categorical data. The adjusted Rand Index is used to compare the degree to 
which the resulting clusters correspond to the separation of subjects into 
females and males. The data considered here are from the U.S. National 
Science Foundation's 1997 Survey of Doctoral Recipients. The subset of 
respondents studied received Ph.D.'s between 1990 and 1996 in either than 
physical or biological sciences or in engineering and work at higher 
educational institutions. Latent class analysis identifies interesting subgroups 
of women and men based simultaneously on several categorical variables 
related to limitations on searching for a career path job, work activities, and 
family and career status. Simulation is used to evaluate the sampling 
distribution of the adjusted Rand Index. The latent class cluster solutions, 
although interesting, generally do not increase the values of the adjusted Rand 
Index.  

Keywords: BIC; Classification; Comparing Partitions; Exploratory Data 
Analysis; External Criterion; Information Technology.  

1. Introduction 

The National Science Foundation's Scientists and Engineers Statistical Data 
System (SESTAT) database (NSF 99-337) is created from biennial surveys that 
are representative of U.S. scientists and engineers. The surveys are large and of 
high quality (see NSF 99-337 for coverage limitations). Several qualitative 
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questions focus on desired work activities, adequacy of doctoral training, job 
search resources, limitations on job search, and work activities.  

Latent class analysis is useful when the population under study is considered 
to be composed of distinct subpopulations, but the identification of members of 
these populations is difficult or not possible. If the classes have sufficiently 
different response patterns, then the classes can be identified by their members' 
patterns of responses. The classes then can be compared across groups in terms of 
known, demographic divisions such as sex. Latent class analysis will be applied 
using attitudinal and other variables reported by 1997 Survey of Doctoral 
Recipients (SDR) respondents who received PhDs in physical and biological 
sciences and engineering between 1990 and 1996 and work at educational 
institutions. 

Detailed information on educational choices (e.g., Etzkowitz et al 1994; 
Farmer et al 1999; AAUW 2000) and hiring decisions (e.g., Davison and Burke 
2000; Darity and Mason 1998; Top 1991) are not available in SESTAT. These 
issues are not examined here.  

The adjusted Rand Index (ARI; Hubert and Arabie 1985) is one measure of 
the correspondence between two partitions of a finite set of objects. This index is 
calculated for various sets of partitions of the data. The first partitions are created 
by responses to individual categorical variables and by sex of the respondents. 
The second partitions are created by latent class clusters and again by sex of the 
respondents. The observed value of the ARI is compared to a simulated sampling 
distribution in order to assess the extremeness of its value.  

Section 2 presents basic ideas of latent class analysis. Section 3 reviews that 
adjusted Rand Index for comparing partitions and defines the simulation 
procedure. Section 4 compares women and men on variables used in the latent 
class analysis. Section 5 describes latent class results and the impact of clustering 
on the adjusted Rand Index. Section 6 is a summary.  

2. Latent Class Analysis 

An observation yi (possibly multivariate) from a finite mixture distribution 
with G classes has probability density 

        p(yi |π , ϑ )  =  ∑
=

G

g 1

π g pg(yi  | ϑ g),                        (1) 

where π g (∑
=

G

g 1

π g  =1), pg, and ϑ g are the proportion, the density of 

observations, and the distributional parameters, respectively, in class g, and  
π  = (π 1, ... , π G) and ϑ = (ϑ 1, ..., ϑ G). The likelihood function for π and ϑ  
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based on n independent observations y=( y1, ...,  yn) is a product of expression (1) 
with index i=1, ..., n.   

With discrete outcomes, the observed data can be presented as a table of 
counts of the number of cases in each cell.  Let the table have L cells based on K 
variables. Variable yi records the cell membership of case i. The density pg(* |*) 
from expression (1) for each case in cell l is π l |g, the probability of being in  cell l 
for a case arising from class g. The parameters ϑ g = (π 1|g, ..., π L|g) usually are 
related to one another through a log linear model of dimension less than L. The 
mixture density for n cases cross-classified into a table with L cells can be written 
from expression (1) as   

p(y | π ,  ϑ )   =     ∏ (    ∑
=

n

i 1 =

G

g 1

π g  [  ∏
=

L

l 1

π l |g  I { y
i
 = l }  ] )            (2) 

          =  ( ∏
=

L

l 1
∑
=

G

g 1

π g  π l |g  )n
l,                  (3) 

where  I{yi = l } =1  if case i is in cell l and 0 otherwise, and nl =   I{y∑
=

n

i 1
i = l }  

equals the number of cases in cell l (n=  n∑
=

L

l 1
l). 

Probabilities of class membership can be computed using Bayes' Theorem. 
Let zig equal 1 if case i is from mixture class g and 0 otherwise, then the 
probability of case i being in class g is 

p(zig =1|  yi, π ,  ϑ )  =   π g pg(yi  | ϑ g)/  (  ∑
=

G

h 1

π h   ph(yi | ϑ h) )         

(4) 

In the discrete case, (3) depends only on cell membership and is π g|l = π g 

π l|g /    ∑
=

G

h 1

π h  π l|h .    Clusters can be formed by assigning observations 

to the class for which it has the highest probability of membership.   
Let nlg be the number of cases in cell l and class g.  The mixture classes can 

be thought of as being associated with subtables of counts ng = { nlg, l=1,...,L }, 
g=1,...,G, which when combined yield the observed table, n = (n1, ..., nL) = 

( n∑
=

G

g 1
lg, l=1, ..., L).   If the latent indicators (and hence counts) were known, the 

joint density for y and z, where  z is a n x G matrix with entries zig, would be  
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p(y, z|  π ,  ϑ )    =  ∏   (
=

n

i 1
∏
=

G

g 1

π g   [∏    
=

L

l 1

π l |g  I { y
i
 = l }   ]  )z

ig
                    (5) 

               =  (∏
=

L

l 1
∏
=

G

g 1

π g  π l |g   )n
lg.         (6) 

One special example of mixture models for discrete data is the latent class 
(Haberman 1974 and 1979, Goodman 1974). In this model the chance of having a 
certain level for field k is assumed to be independent of the levels for other other 
fields of information. 

Maximum likelihood estimation for latent class models can be accomplished 
with the EM algorithm (Dempster, Laird, and Rubin 1977). See also McLachlan 
and Peel (2000) and McCutcheon (1987).   

Alternative models allow interactions between fields of information within a 
mixture class. For instance, the density in class g can be defined by a log linear 
model on the expected counts (or, equivalently, on the probabilities ϑ g = (π 1|g, 
..., π L|g) in the cells of its subtable ng. The (possibly different) log linear models 
across the classes can be specified by the sets of variables that interact within that 
class. Mixture models with log linear interactions within classes have been used 
by Becker and Yang (1998), Larsen and Rubin (2001), and references therein. See 
Hagenaars and McCutcheon (2002) for other recent developments. These models 
are not considered in this paper.   

The number of classes G is selected here by minimizing the Bayesian 
Information Criterion (BIC) measure of fit and complexity (see, e.g., McLachlan 
and Peel 2000, pages 209-210). In the case of mixture models, the value of  BIC 
is calculated as -2 log  + d log(n), where Λ Λ is the log likelihood (sum of log of 
(1) over i=1,...,n), d is the number of parameters in the model, and n is the number 
of observations. The value of -2 log Λ decreases, whereas the d increases, as G 
increases. The value of G that yields the smallest value of BIC is selected.  

3. Adjusted Rand Index 

The adjusted Rand Index (ARI; Hubert and Arabie 1985) measures the 
correspondence between two partitions of a finite set of objects. In the 
application, one partition will be sex (female, male) and the other will be clusters 
determined by estimated latent class models. The ARI is a modification of the 
Rand Index (1971). Rand (1971) addressed the issue of interpreting the results of 
clustering data by proposing a criterion based on pairs of points and how they are 
clustered under different groupings. If there are i=1,..., r clusters according to 
method one and j=1,..., c clusters according to method two, then let nij be the 
number of objects smultaneously in method one's cluster i and method two's 
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cluster j. If n is the total number of points, then  is the number of (unordered) 

pairs of observations. The Rand Index is the counts of the number of pairs that are 
the same clusters in both methods plus the number of pairs that are in different 
clusters in both methods divided by the total number of pairs. The statistic can be 
expressed as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

[  - ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

2
1

( n∑
=

r

i 1
i+

2 +  n∑
=

c

j 1
+j

2 ) +  n∑
=

r

i 1
∑
=

c

j 1
ij

2 ] /               (7) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

where a + subscript means summation over the relevant index.  

Hubert and Arabie (1985) proposed an adjustment of the Rand Index (7) to 
account for chance agreement (same cluster both methods or different clusters 
both methods). Specifically, Hubert and Arabie (1985) use a generalized hyper 
geometric distribution as a null model and compute the expected value of the 
Rand Index. They then define the adjusted Rand Index (ARI) as (Index - 
Expected Index)/(Maximum Index - Expected Index). See Hubert and Arabie 
(1985) for an expression of ARI in terms of the counts nij, i=1, ..., r, j=1, ..., c. 
Milligan and Cooper (1986), in a simulation study, found that the ARI performed 
best out of five external criteria in evaluating the recovery of cluster structure. 
The ARI is selected for use based on its properties and these simulation results.  

Values near 1 indicate that pairs of observations tend to be located in clusters 
together or separately in both clustering methods. For large sample sizes, 
however, the ARI can be quite small (near zero) or even negative. As log odds 
ratio can be near 0 but still be statistically significant, small ARI values can be 
statistically significant. In the application, latent class solutions with different 
numbers of classes also will be used.  

Simulation will be used to judge the significance of the degree of recovery of 
the classes as measured by the ARI. Under the assumption that the observations 
are assigned to clusters independently by the two methods, the distribution of the 
ARI is simulated by drawing samples from a hyper geometric distribution. One 
thousand samples are generated under the null model. The reported tail area is the 
fraction of samples that have ARI values greater than or equal to the value for the 
survey data. The method will be applied to clusters defined by individual 
categorical variables and then to clusters produced by latent class analysis.  

4. Description of the Sample  

The data analyzed are from the 1997 Survey of Doctoral Recipients (SDR). 
The SDR 1997 is nationally representative survey of scientists and engineers. See 
NSF 99-337 (1999) for details on coverage and survey weight information. 
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Respondents received PhDs in three areas: (1) biological and other life sciences, 
(2) mathematical and computer sciences, chemistry except for biological 
chemistry, physics and astronomy, and other physical and related sciences, and 
(3) electrical engineering, electronics, and communication, chemical, civil, 
mechanical, and other engineering. Attention is restricted to respondents who 
recently (1990-1996) received a Ph.D., work at educational institutions beyond 
the secondary level, and have career path jobs. Of the 1756 in biology and life 
sciences, 50 percent are female. Of the 824 in mathematical and physical sciences, 
33 percent are female. Twenty-four percent of the engineers are women. See 
Larsen (2002) for more information on this subset of the SDR.  

There are large differences between the percent female responding in 
particular ways to several questions for all three groups. There also are large 
differences between the three groups. Desired work before beginning the Ph.D., 
adequacy of doctoral preparation, job search resources, limits on job seeking, 
work activities, and some other variables are described in this section. When 
clusters defined by sex and by single categorical variables are compared, 
simulated ARI tail areas generally are similar to P-values from traditional tests of 
significance. See Larsen (2002) for more additional tables on these comparisons.  

4.1. Desired post-Ph.D. Work 

Respondents were asked whether they recalled desiring post-Ph.D. work 
involving teaching, research, management/administration, professional practice, 
or other activities at the start of their doctoral program. 

A desire to do research is relatively more popular with the males than with 
the females among the biologists (two-sample test of equal proportions, z= -2.45, 
P-value= .01; adjusted Rand Index= 0.0012, tail area = .01) and the physical 
scientists (z= -1.93, P-value=0.05; ARI = 0.0205, tail area = .04). A desire to 
manage/administer was relatively more popular with females than with males 
(z=2.95, P-value<.01; ARI = 0.0026, tail area = .001). For the three areas, the 
desire to teach was relatively stronger for males, but not statistically significantly 
so. Other differences were not significant or consistent across the three areas. 
Thus, there are some significant and non negligible differences between female 
and male desires in this select group.  

4.2. Adequacy of Doctoral Program Training 

Respondents were asked to rate the adequacy of their doctoral training in 
terms of general problem solving, oral communication, teaching, collaboration 
and team work, quantitative, writing, computer, and management or 
administrative skills, subject matter knowledge, and research integrity. Among the 
biologists, women were relatively more likely to say they had very adequate 
preparation in communication (z=2.73, P-value=.01; ARI=0.002, tail area= .015 ) 
and ethics (z=2.48, P-value=.01; ARI=0.039, tail area= .039), but relatively less 
likely to say this about computer skills (z= -2.58, P-value=.01; ARI =.002, tail 
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area = .021). Women in physical sciences were relatively less likely to say they 
had very adequate general problem solving skills (z= -3.38, P-value<.01; 
ARI=0.038, tail area = .001). Female and male engineers did not have significant 
differences in reporting very adequate versus not as adequate preparation in the 
eleven areas.   

4.3. Use of Job Search Resources 

Respondents who were holding, who had held, or who had sought a career 
path job after Ph.D. were asked whether or not they used any of ten job seeking 
resources. Most differences in the percent female between those who did and did 
not use specific resources were nonsignificant. Further, the pattern of usage was 
not consistent across the three discipline areas. Among the biologists and life 
scientists, however, women were significantly relatively less likely than were men 
to use faculty or advisors (z= -2.22, P-value=.03; ARI=0.004, tail area=.015) and 
to use electronic postings (z= -4.58, P-value<.01; ARI=0.006, tail area= .004). 
Women in the physical sciences were also significantly relatively less likely to 
use faculty or advisors (z= -2.30, P-value=.02; ARI = 0.030, tail area = .014), but 
significantly relatively more likely to use newspapers (z=3.24, P-value<.01; ARI 
= 0.043, tail area=.001) than were men.     

4.4. Limitations on Career Path Job Search 

Respondents were asked whether or not their career path job search was 
limited by five factors. Women are much more relatively likely to say they are 
limited by family responsibilities, a spouse's career or employment, and a desire 
to not relocate or move. They are somewhat less likely to say they are limited by 
the unavailability of a suitable job. Table 1 provides by field the percent female in 
three categories of responses, results of chi-square tests of homogeneity of 
proportions, and ARI results. 

 

 

 

Table 1. Percentage female in three categories of responses, results of chi-square 
tests of homogeneity of proportions for five questions for each of three 
disciplines, and adjusted Rand Index values and tail areas.* 

 A great deal Somewhat Not much or 
not at all 

Chi squared 
test 

ARI 
evaluation 

Reason/Discipline N %F N %F N %F X2 P-va- ARI Tail 

 



850                                               M.Laresen: Impact of Latent Class Clustering of NSF…   

lue value area 
Family Resp. 
Biology 235 57 462 46 690 43 13.4 .00 .0013 .10 
Phys. Sci. 83 43 195 35 389 29 7.3 .03 .0193 .02 
Engineering 46 35 107 21 185 20 4.9 .09 .0030 .37 
Spouse’s job 
Biology 288 67 403 45 557 34 80.3 .00 .0152 .00 
Phys. Sci. 129 51 160 38 307 22 36.6 .00 .0580 .00 
Engineering 48 48 77 21 171 15 23.5 .00 .0466 .02 
Debt burden 
Biology 75 53 204 42 1006 43 3.3 .20 -.0126 .84 
Phys. Sci. 21 43 60 28 521 29 1.9 .39 -.0171 .56 
Engineering 11 9 33 18 265 23 1.5 .47 -.0337 .95 
Desire not to move 
Biology 251 66 366 48 868 40 53.1 .00 .0176 .00 
Phys. Sci. 88 44 158 39 454 27 13.9 .00 .0360 .00 
Engineering 36 42 87 24 216 19 8.7 .01 .0327 .05 
No suitable job 
Biology 306 41 340 43 733 47 4.5 .10 .0050 .00 
Phys. Sci. 201 24 218 34 271 36 7.6 .02 .0072 .03 
Engineering 83 16 103 18 157 25 3.7 .16 .0085 .04 

* Individuals answering ``Not Applicable'' are excluded in each line separately. 

4.5. Work Activities and Other Variables 

In all three disciplines, men are relatively more likely than women to spend 
at least ten percent of their time on applied research and design (significantly so 
for physical scientists and engineers) and basic research (significantly so for 
biologists and physical scientists). However, females are relatively more likely 
than males to spend time teaching (significantly so for biologists and physical 
scientists). This could be viewed as surprising since women were relatively less 
likely to say that they had desired to teach. Many of the other activities are 
performed less often in these fields by these respondents and do not show 
consistent patterns or significant differences.  

Other demographic, job related, and education variables show significant 
differences for these respondents between males and females. Women are 
significantly relatively less likely than men to have Post doctoral positions 
(``Postdocs''), to be married and have children living at home (for biologists and 
engineers), to have government support, and be doing supervisory work. Women 
are significantly relatively more likely to be licensed in their occupation (for 
biologists), to be of a minority race (for biologists and physical scientists), to have 
attended a work-related workshop, seminar or other training activity, and to have 
memberships in more than two professional organizations (significant for 
biologists). Other variables have inconsistent or insignificant results.  

5. Latent Class Results  
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Latent class models were fit to subsets of variables described in the previous 
section. Due to the differences in responses in the three discipline areas, latent 
class models will be fit separately within the areas. The number of classes in each 
case is chosen using BIC. The latent class results are described briefly; see Larsen 
(2002) for more complete descriptions. The association of the latent class results 
with groups defined by sex is compared using the ARI. Many of the classes are 
interesting in terms of their compositions of females and males.  

5.1. Desired post-Ph.D. Work 

Models with two and with three latent classes were fit to the four binary 
variables describing desired work before beginning the doctoral program. 
According to the BIC criterion, two classes are preferred for the physical 
scientists and engineers, but three classes are needed to fit the biologists. 
Throughout this work, the sample of biologists is the largest and often requires 
bigger models.  

The latent class models do not separate females from males any better than 
do individual variables as judged by the adjusted Rand Index and its simulated tail 
area and by Chi square test of homogeneity of proportions. The five individual 
variables only weakly separated females and males. Sex is not used directly when 
forming the latent classes. Despite this, the patterns found do seem to make sense 
for this highly select group of respondents.  

5.2. Adequacy of Doctoral Program Training 

When latent class models are fit to the eleven variables describing the 
adequacy of Ph.D. programs, three classes are chosen to fit the physical scientists 
and engineers and four classes are chosen to fit the biologists. All three groups 
have classes reporting high, medium, and low levels of adequacy. In no case do 
the clusters formed by the latent class models distinguish females from males any 
better than do the most significant variables in section 4. The ARI values for the 
latent class results are lower and less significant than the highest values for 
individual variables.   

5.3. Use of Job Search Resources 

The latent class models that were selected to fit the data in the three 
disciplines on job seeking resources contain four classes. Similar classes are 
found in all three disciplines. One class used many resources. Representation of 
females in this class was higher than average in the physical sciences, but lower 
than average among the biologists and engineers.   

A second class often used four or five of the resources, especially faculty or 
advisors, professional meetings, electronic postings, professional journals, and 
informal channels. Representation of women in this type of class was lower than 
average in all three disciplines.   
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A third class usually used two resources, faculty or advisors and informal 
channels, and occasionally others. A fourth class also used selected resources and 
varied somewhat more across disciplines. Representation of women in these two 
types of classes were slightly higher than average in all three disciplines.   

The association with sex is not any stronger for the biologists and physical 
scientists, but it is stronger, according the ARI tail area, for engineers. The largest 
ARI value occurs on the question of use of professional journals (ARI=0.021, tail 
area = 0.22). For the four classes, the ARI value is 0.014, but the corresponding 
tail area is 0.02. The reason that the ARI value for the latent class model can 
decrease but still be significant is because the cross classification has more cells, 
which has a large effect on tests of significance. 

5.4. Limitations on Career Path Job Search 

Latent class models were fit to the responses from individuals in the three 
disciplines to the questions about limits on career path job searches (great deal, 
somewhat, or not at all). As with previous questions on adequacy of doctoral 
preparation and job seeking resources, a similar pattern of classes was observed in 
the three discipline areas. A three class model was chosen for the biologists and 
for the physical scientists, whereas a two class model was selected for the 
engineers. One class in the three class models has high probabilities of having a 
great deal of difficulty with all five areas. A second class has some limitations 
based on three issues: family responsibilities, spousal employment, and a desire to 
not move out of the area. A third class tends not to have limitations related to 
these three issues. The two engineer classes were similar to the first class for the 
other groups and a combination of their other two classes. 

There is a strong association of sex with the latent classes. Simulated values 
of the ARI were never higher than for the survey data for biologists and physical 
sciences and higher only 26 times out of 1000 for the engineers. It is not 
surprising that the latent classes highlight differences between the sexes given the 
strong association of responses to individual variables with sex, as was presented 
in section 4. However, the multivariate analysis seems to provide a different 
picture than would be expected based on table 1. Women are over represented 
when asked about limits, except for not finding a suitable job. Women, on the 
contrary, are underrepresented in the class that reports multiple limits (class 1). 
This could be happening because one subset of women report several limits, but 
other women report very few limits. The set of women with limits report limits 
based on family, spouse, and a desire not to relocate. The set of women without 
limits reports few of these limits and reports that finding a suitable job is not a 
great problem.  

Table 2. Latent class parameter estimates – proportions in the four classes, 
conditional probabilities – for physical scientists based on limitation on 
seeking a career path job 
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Physical Scientists  
Class 1 Class 2 Class 3 

Class Proportion 0.62 0.16 0.22 
 GD* SW NM GD SW NM GD SW NM 
Family responsibilities .92 .08 .00 .15 .85 .00 .24 .29 .47 
Spouse’s career or employment .85 .11 .05 .24 .74 .02 .30 .10 .59 
Debt burden .90 .07 .03 .91 .05 .03 .87 .11 .02 
Desire not to relocate or move .83 .11 .06 .56 .44 .00 .39 .28 .33 
Suitable job not available .49 .24 .26 .35 .33 .32 .46 .34 .20 
Percent Female 28% 35% 48% 

* GD = A great deal.  SW = Somewhat.  NM  = Not much or not at all.  

5.5. Work Activities 

Latent class models were fit to the seven most frequently cited work 
activities variables. The data for the biologists requires four classes, whereas the 
physical sciences three and the engineers two. In all three disciplines, there is a 
strong, significant association of the latent classes with sex. Further, the 
distinctions between latent classes largely are determined by amounts of applied 
research, basic research, management, and teaching. Discussion can be found in 
Larsen (2002).  

5.6. Other Variables 

Latent class models were fit to eleven of the indicator variables (all except 
for minority status) from the other variables. A model with six classes was 
selected for the biologists. The association of the latent classes with sex is 
extremely significant (chi-square statistic = 75, degrees of freedom = 5, P-value < 
.01; ARI = 0.0085, tail area < .01). Based on these data, as described in Larsen 
(2002), there appear to be subgroups of males and of females among the 
biologists having very different life and work experiences.  

The physical scientists require five latent classes for these variables. One 
class that is 44% female tends to not be married and not to have kids, not to have 
a postdoc, and to have received workshop/job training. One class that is 24% 
female tends to have similar family situations, but to have postdocs. Again the 
classes separate based on family and having postdoctoral positions. Three classes 
fit the engineers. A similar split based on family and having a postdoctoral 
position is again important.  

For these two fields, however, the association of the latent classes with sex is 
not clear. For the physical scientists, a chi-squared Statistic has a value of 26, 
which on four degrees of freedom has a P-value less than 0.01. On the other hand, 
the ARI value is 0.0030 with a simulated tail area of 0.080. For the engineers, the 
Chi squared statistic is 11 with on 2 degrees of freedom is a P-value less than 
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0.01. The ARI value actually is negative, which produces a tail area around 0.70. 
Thus, the results seem to diverge. 

6. Summary 

Females and males with recent Ph.D.'s in three discipline areas (biology and 
life sciences, physical sciences, and engineering) working at educational 
institutions beyond the secondary level were compared on various training, job 
search, work activity, and other variables. The selection of an apparently 
homogeneous group to study should have eliminated many important background 
differences between the women and men.  

There are a few significant differences between women and men in desired 
work activities, job search resources, and adequacy of doctoral training. 
Differences varied across disciplines. The fact that women in biology felt on 
average less adequately trained in computing, whereas women in physical 
sciences felt less adequately trained in general problem solving could have 
important discipline-specific implications. A future study could try to explain why 
there were differences in job search resources.  

There are many large, significant differences in limitations when searching 
for a job, work activities, and family and career status. Latent class analysis 
identified a subgroup of women in each field who has many job search limitations 
and another subgroup that does not. Latent class analysis identified subgroups that 
perform different combinations of work activities. The combinations of work 
activities were more strongly associated with sex than were the individual 
activities. Latent class analysis found several subgroups in the discipline areas 
that differ from one another in terms of postdoc status, marriage and family status, 
and professional activities. It would be interesting to undertake a longitudinal 
study of factors predictive of long-term success in these disciplines.  

The latent classes generally were not as well associated with sex as were the 
best individual variables according to traditional significance tests and according 
to the adjusted Rand Index. The simulation of tail areas for the ARI generally 
agreed with P-values from significance tests. A couple of times, however, results 
were more or less significant when using the ARI. Further work is needed to 
understand the different performance of these procedures.  

Analysis will be performed on future waves of SESTAT data. Work also 
needs to be done comparing the experience of minority groups to other groups in 
the sciences and in the Information Technology workforce.  
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AN APPROACH TO THE PROBLEM OF SPATIAL 
DIFFERENTIATION OF MULTI–FEATURE OBJECTS 

USING METHODS OF GAME THEORY 

Andrzej Młodak1

ABSTRACT 

In this paper we try to apply some specific theoretical methods of game 
theory to research of spatial differentiation of multi–feature objects. The aim 
of presented research is to determine a participation of each object in general 
level of development of given domain in whole region or subregion to which 
this object belongs. In order to realize this intention we apply a model of 
cooperative game and its particular cases, i.e. games with a priori unions and 
so–called “airport” game. As a numerical example was assumed data on state 
of technical infrastructure in the Wielkopolskie Voivodship in 1999 presented 
by poviats. 

Key words: spatial differentiation, feature, co–operative game, Shapley 
value, airport game, infrastructure. 

1. Introduction 

Classical analysis of spatial differentiation of multi – feature objects is 
conducted for the purpose of construction of synthetic measure of their 
development in terms of researched area. As these objects are usually understood 
units of administrative or geographical division of considered territory. The above 
– mentioned synthetic measure is usually called a “meta – feature” and it 
describes an aggregated level of deviation of state of analyzed area within given 
object from assumed general development pattern. Moreover, one can formulate 
other important question connected with this issue, namely, which is the 
participation of given object in total state of studied domain in a whole-analyzed 
territory containing this object? 

One attempt at solution of this problem was presented in article by A. 
Młodak (2002) in consideration to the situation of labour market in the 
                                                           
1 Statistical Office in Poznań, Branch in Kalisz, pl. J. Kilińskiego 13, 62–800 Kalisz, POLAND;  

e–mail: amlodak@stat.gov.pl
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Wielkopolskie Voivodship. For this purpose a new type of statistical feature, i.e. 
so called complex feature was there constructed. Main difference which 
distinguishes this model from the “meta – feature” approach is the fact, that 
values of the complex feature can be practically interpreted as an aggregated 
measure of state of researched field. It can be easily converted into its non – 
negative counterpart (almost without loss of variation), what is necessary for 
further calculations (requirement for the model). On the basis of this construction 
and by application of special type of cooperative game1, i.e. so–called “airport” 
game (which belongs also to the class of allocation cost games), a complex 
feature was constructed. Next, the Shapley values (as a one type of solution of 
this game) of poviats (understood as players of the game) were calculated. By 
these methods we have determined quantities participation of particular poviats in 
total state of the labour market in Wielkopolska. 

The present paper is in theoretical sense a continuation and an extension of 
the above – mentioned article. Since introduction of new territorial division in 
Poland in 1999 poviats a partition of collection of Wielkopolska into five 
subregions is used for the statistical purposes. In present consideration we would 
like to determine a share of every poviat in total state of a given domain against 
the subregion, to which it belongs. To realize this purpose, we will apply a 
specific model of co–operative game, i.e. a game with a priori unions. That is, a 
player set (which members in our case are the poviats) is divided into disjoint, 
nonempty subsets called a priori unions or percolation. We assume that the 
percolations are here understood as subregions of Wielkopolska. On the basis of 
values of complex feature we will construct one of most interesting solutions of 
these games (in the “airport” version), i.e. Shapley value with appropriate 
modification for a priori unions. Numerical data, which will be used in this 
article, concern state of technical infrastructure (water and sewage systems, 
dwelling stocks, public roads, etc.) in the Wielkopolskie Voivodship. As a source 
of this information was assumed the publication by the Statistical Office in 
Poznań (2001). 

The paper is organized as follows. First, we present main consideration 
concerning the co–operative game theory and a mathematical model of game with 
a priori unions, its “airport” case and the Shapley value. In the second chapter a 
method of construction of a complex feature for multi – feature objects applying 
the Weber median is described. Last, we analyze the results of calculation of our 
numerical models adapted to the problem of spatial differentiation of technical 
infrastructure in Wielkopolska. 

                                                           
1 A model of co–operative game was yet mainly applied to the analysis of decisions making 

processes in collective organs, for example in: Parliament of Catalonia, Spain (Carreras and 
Owen (1988)), Italian Chamber of Deputies (Gambarelli (1997)), Sejm of the Republic of Poland 
(Sosnowska (1993, 1995), Młodak (2000)) and Town Council in Kalisz (Młodak (1998)) as well 
as a tool used to determine an allocation of airport costs (Littlechild (1974), Malawski et al. 
(1997), Vázquez – Brage et al. (1996). 
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2. A model of co–operative game and its “airport” case  

First we will introduce necessary notions and facts connected with 
considered theory, i.e. a description of general model of co – operative game and 
its solutions.  

Let n be a natural number; An n – person co–operative game is uniquely 
defined by the pair (N, v), where N = {1, 2, … , n} is a set of players taken part in 
the game and v: 2N→R is a function called characteristic function of this game. 
This function assigns to each subset of the set N (called a coalition of players 
they belong to) some real number. It is assumed that a value of the characteristic 
function for empty coalition, i.e. the one to which nobody belongs, amounts to 0. 
Thus v(∅) = 0. Because of fact, that the characteristic function determines 
uniquely the game, in further part of this article we will use a short description  
“n –person game v”.  

As a solution of co–operative game is understood a function ϕ, which 
assigns to each n – person game v a vector from n–dimensional Rn space. In 
practice, the most important are these solutions, which constitute a division of 
value of the characteristic function for the full coalition (i.e. the one containing all 
players) between participants of the game. In other words, a vector (x1, x2, …, xn) 
being a solution of game v is a division (or preimputation) of this game, if  

∑
=

=
n

1i
i )N(vx  

The oldest and most frequently used solution of co–operative game is the 
Shapley value, introduced by  Shapley (1953) and given by the formula: 

[ ]∑
⊆
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−−

=
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i )K(v})i{K(v
!n

)!1kn(!k)v(Sh                    (1) 

where1 k = card(K) for any  K⊆N. 
This value is interpreted as an expected value of increase of value of 

characteristic function for a coalition after co–opting an i – th player, i = 1, 2, …, 
n. Note that the solution Sh(v) = (Sh1(v), Sh2(v), …, Shn(v)) is a preimputation for 
any n – person game v. 

Now we will present a generalized version of construction of solution with a 
priori unions proposed by G. Owen (1977) and applied to derivation of the 
Shapley value with a priori unions. But first we define the a priori unions’ 
structure.  

Let m be a natural number not greater than n. A system of m subsets of the 
set N, T = (T1, T2, …, Tm) is called an a priori unions structure in the game v, if it 
                                                           
1 The symbol card (K) denotes a number of elements of a set K. 
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is a partition of N, i.e. if ∅ ≠ Ti ⊆ N for any i ∈M = {1,2, …, m}, Ti ∩ Tj = ∅ 
whenever i ≠ j,  i, j ∈ M and  

U
m

1j
j NT

=

= . 

The sets Ti are regarded as a priori unions. 

A division game based on the cooperative game v is such a game v*, whose 
players are the a priori unions from structure T, and its characteristic function is 
given as 

v S v Tc
c S

*( ) ( )=
∈
U  

for any S⊆M. 
Construction. Let ϕ(v) be a solution of the defined n – person cooperative 

game v. Suppose that for this game a priori union’s structure T is defined. A 
solution ϕ(v,T) with a priori unions can be constructed in two steps: 

Step1. Let j ∈ M and K be a subset of Tj, K’=Tj \ K (i.e. a complement of the 
set K in Tj). Consider a game vT,K, whose players are the a priori unions of T and 

v S v T KT K c
c S

, ( ) ( \ ' )=
∈
U  

for any subset S of the set M. 
Let vj be a game on the set Tj such that vj(K)��j(vT,K) for any K �Tj.  
Step 2. We find a solution �(vj) of a game vj.  
The solution �(v,T) = (�1(v,T), �2(v,T), ... , �n(v,T)), where�i(v,T) = 

�i(vj) for any i � Tj and j � M is called a solution � with a priori unions. 
Note, that if �(v) is a preimputation of any n – person game v, then �(v,T) 

is also a preimputation of this game. Indeed, in this case, ϕ(vj) is a preimputation 
of vj, for all j∈M and hence 

∑ ∑
∈ ∈
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j
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A Shapley value with a priori unions constructed in the cited paper (i.e. in 
article by Owen (1977)) by above – mentioned method can be expressed as 
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for any i∈Tj and j∈M, where tj = card(Tj). 

Now we will present specific type of co–operative game, i.e. so called 
airport game. introduced by several scientists in the 1970’s. As one of the 
original presentations of this approach can be regarded articles by. Littlechild and 
Owen (1973) and by Littlechild (1974)). In this model it is assumed, that there 
exist r types of players (where r is a natural number not greater than n).  Let  R = 
{1, 2, …, r} be a set of these types, ri denotes a type of player i, i∈N, and Rt be a 
set of all players of type t, t = 1, 2, …, r. 

Let introduce some coherent, antisymmetric and transitive1 relation „p” 
which orders the set of types R. If t p u for t, u∈R, t≠u, then type t is said to be 
weaker than u (or, type u is said to be stronger than t) according to the relation 
„p”. For simplification, without loss of generality, we assume that 1 p 2 p  … p r. 

Let r(S) denotes the highest (according to the relation „p”) type represented 
in coalition S⊆N, i.e. such a type, that coalition S contains at least one player of 
this type, and doesn’t contain players of types greater than r(S). More formally2, t 
= r(S) ⇔ S∩Rt≠∅ and ri p t for every i∈S. To any type r∈R is assigned some real 
number cr. Thus, a characteristic function of the game is given as follows: 

)S(rc)S(v =  

for any S⊆N. 
In a research practice, this model is usually used to analysis of possibilities 

of optimal allocation of costs of building of runway at the airport to arriving 
airplanes. Such approach was presented by Littlechild (1974) upon the example of 
the Birmigham airport (Great Britain) and Vázquez–Brage et al. (1996) exploiting 
the data concerning number and costs of aircraft movement at the airport 
Labacolla in Santiago de Compostela (Spain). A utility of the model results from 
the fact, that the greater measurements has the airplane, the higher are costs of 
building of runway, on which can he touch down. Therefore it is assumed, that 
participants of this game are particular landings on analyzed runway (each 
airplane can touch down more than once) of r types of airplanes. By cr a cost of 
building of a runway which can be exploited by planes of i – th type. (i = l, 2, …, 
r) is denoted. Moreover, it is assumed that 

                                                           
1 That is, relation satisfying three following conditions: 1) if x ≠ y then either x p y or y p x 

(coherency), 2) if x p y then not y p x (antisymmetry) and 3) if x p y and y p z then x p z 
(transitivity). 

2 Symbol x p y denotes, that y is not weaker than x according to the relation  “p“, that is; either x = 
y or x p y. 
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0 = c0 < c1< c2 < … < cr                                        (3) 

what determines a relation ordering the types of players. As a value of 
characteristic function for lands coalition S is defined a cost of building a runway 
suitable for the greatest airplane belonging to S. In this way, v(S) is the (fixed) 
costs that would be incurred when the runway can be constructed that could 
accommodate all the movements in the set S. By application of solutions of co–
operative games the allocation of cost cr  (i.e. total costs of building of this 
runway) to all the movements on the airport is obtained. Then all the landings of 
airplanes of one type are burden identically. 

In our consideration we assume that there are n players and one player of 
each type, that is r = n and Ri = {i}, i = 1, 2, …, n. Introduce an ordering relation 
in the set of players N = {1, 2, …, n} by formula (3). 

A Shapley value defined by  (1) can be in this case written as (cf. for 
example  Littlechild and Owen (1973) or Malawski et al. (1997)) 
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In this model as members of a priori unions structure are regarded the air 
companies, which use the mentioned airplanes. Let T = (T1, T2, …, Tm) be this a 
priori unions structure. Denote by Mi a number of a priori unions, such that a 
maximal type of player of them is at least type i. That is, Mi = card ({j∈M: i p 
r(Tj)}), where i = 1, 2, …, r. Let Tij be a number of players of type not smaller 
than i∈R according to (3), which belong to the set Tj.  Then the Shapley value 
with a priori unions of any player i∈Tj (cf. (2)) in its “airport” version is given by 
the formula (cf. Vázquez – Brage et al. (1996)) 
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3. An application of games in taxonomic model. 

Assume that there are n researched objects (where n is a natural number), 
which can be characterized by system of statistical features. We would like to 
obtain synthetic measure concerning aggregated level of development of these 
objects with respect to the field of interest. 

Consider a collection of features characterizing of analyzed phenomenon and 
let make the introductory operations. First, we convert features – destimulants 
(i.e. these variables, which lower values imply higher level of intensity of 
analyzed phenomenon) into stimulants (with which an incline in value represents 
a higher development). Next, we conduct all necessary procedures of verification 
of this set, i.e. eliminate features with low variation (having minimal influence on 
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the intensity of the spatial differentiation)1 and high correlated with others (that 
is, the one being carrier of similar information to other) were eliminated. As a 
result of these processes we obtain a set of m diagnostic features X1, X2, …, Xm,. 
Each of them is represented by n – dimensional vector Xj = (x1j, x2j, …, xnj),  j = 
1,2,...,m. 

Now there a standardization of the diagnostic features will be made. We 
apply the approach based on the Weber median vector presented by  Wagner et al. 
(2000). It is defined to be such a vector from m – dimensional space Rm, that a 
sum of its Euclidean distances from m – dimensional vectors describing values of 
particular features for all objects is the smallest. Formally, a vector 

 is defined to be the Weber median if it satisfies 
following optimization equality: 

( m002010 ,,, θθθ=θ K )
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where ( )jXda~m  denotes absolute median deviation, i.e. ( ) ( )jj Y~medXda~m = , 

and ( )njj2j1j y~,,y~,y~Y~ K=  j0ijij xy~ θ−=  i = 1,2, …, n, j = 1,2,...,m.  

The name of this notion comes from the name of the famous German 
sociologist and economist, Weber, who proposed it (Weber (1909, reprint 1971)) 
in 1909 as a solution to a transportation cost minimization problem. 

The main purpose of standardization of the diagnostic features is a 
transformation of them into new forms, which ensure their comparability and 
normalization of their basic statistical measures. In our positional approach (given 
by formula (6)) it should be ( ) 0~ =jZmed  and ( ) 1Z~da~m j = , j = 1, 2, …, m. In 
practice, there exists some minute deviations from these quantities being a penalty 
for exploiting mutual connections between the features by transformation (8). 

In this type of analysis a taxonomic development standard, i.e. a m – 
dimensional vector representing optimal levels of values of particular features, 
consists of maximal values of them. In other words, it is a vector 

, such that ),,,( m21 ξξξ=ξ K
                                                           
1 Methods of conversion of destimulants into stimulants were described by  Malina and Zeliaś 

(1998) or Wagner et. al. (2000). 
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ijn,..,2,1ij z~max
=

=ξ  

j = 1, 2, …, m. (cf. Śmiłowska (1997), Wagner et. al. (2000)). 

In our approach we introduce some modification of the above – mentioned 
construction. Let define a complex feature C = (c1, c2, …, cn), as a linear 
combination of normalized features with weights assumed as importance 
coefficients of diagnostic features. That is  

∑
=

=
m

1j
ijji z~wc                                           (7) 

i = 1,2,...,n, where wj is an importance coefficient of j – th feature Xj, given by the 
formula 
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and Vj denotes a coefficient of variation of feature Xj,  i.e. 

j

j
j x

S
V =  

where jx  is an arithmetic mean of values of Xj and Sj denotes its standard 
deviation, j = 1,2,...,m. This combination reflects the worth of particular features 
in the model as well as connections between them.  

From the economical point of view, the quantities ci can be interpreted as 
aggregated measure of intensity of analyzed phenomenon taking into account 
levels of influence of particular diagnostic features on the situation in that field 
and involving also a classical postulate of comparability of the features. 

If in some cases the feature C possess negative values, then this feature can 
be corrected by adding to each of its value an absolute value of integral part1 of 
its minimum. That is, we assume: 

⎥⎦
⎤

⎢⎣
⎡+=

= knkii ccc
,,2,1

* min
K

                                         (8) 

for any  i = 1, 2, …, n. The complex feature describes a level of total development 
of researched domain. As a development standard we assume a maximal value of 
the feature C.  
                                                           
1 An integral part of real number is the greatest integral number not greater than this real number. 

Integral part of number x is usually denoted by [x]. 
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The aim of our work is to determine a participation of each object in general 
level of intensity of analyzed phenomenon of total collection to which it belongs. 
The above – mentioned  partition can be established on account of various 
between – object connections. For example, in the case of administrative units in 
Poland, as the objects can be regarded poviats of a given voivodship. As partition 
of their set is then assumed collection of subregions used since 1999 as an level of 
data aggregation for the statistical purposes. Moreover, we would like a 
development pattern of area consisting of subset of analyzed objects to be a 
maximal value of complex feature restricted to the objects of this area. This 
assumption is essential, because in context of conducted analysis we should take 
into account a development of subsets of analyzed collection of objects. Such 
subset can be e.g. a set of poviats within borders of the voivodship or the 
subregion created on account of neighborhood or other socio–economical 
premises.  

All the values of complex feature (maybe after correction (8) if it is 
necessary) satisfy assumptions of the “airport model” (introduced in Section 1) in 
terms of “cost indicators”, ci. Therefore we can use a game of “airport” type, 
whose players are particular objects, set of types coincides with the set of players, 
so that each type is represented by exactly one player and ci is a value of complex 
feature i = 1, 2, …, n. Moreover1 0 = c0 < cl < c2 < … < cn. As a priori unions can 
here be regarded all the elements of the partition of the collection of researched 
objects. Thus on the basis of Shapley values (4) one can determine composition of 
participation of particular objects in aggregated development of the collection of 
interest. By (4) and (5) we conclude moreover, that application of these formulas 
reduces almost all loss of variation constituting a result of correction (8), if, of 
course, this correction is necessary.  

For the purpose of obtaining percentages we divide traditionally the value of 
computed solution by sum of all the values of this solution for all players  

n
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c
vSh
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                                    (9) 

for any i = 1,2…,n; or by sum of all players within given a priori union (in the 
case of game with a priori unions) 
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for any i∈Tj, and any j = 1, 2, …, m and obtained result multiply by 100. 

                                                           
1 By simple ordering of objects by values ci (if they are different within pairs) i = 1,2,...,n and 

respective renumbering of them we can always easily obtain this requirement. 
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4. Technical infrastructure in Wielkopolska  

A start point of calculations was a set of diagnostic features describing 
spatial differentiation of technical infrastructure of the Wielkopolskie Voivodship 
in 1999 defined as follows:  
1. Length of hard surface public roads in poviats and gminas (communities) in 

km per 100 km2 (analytical symbol – X1), 
2. Length of water – line systems in km per 10 thous. population (X2), 
3. Length of sewerage systems in km per 10 thous. population (X3),  
4. Inhabited dwellings per 1000 population (X4), 
5. Average usable floor space of dwellings per one living person in m2 (X5), 
6. Average number of persons per one room in dwelling (X6),  
7. Dwellings completed per 1000 population (X7) 

Data presented in table 1. occur from publication by the Statistical Office in 
Poznań (2001). The feature X6 is destimulant, others are stimulants. The highest 
variation possess X7 and X1 (76,3% and 69,3%, respectively). Values of 
coefficient of variation for other features amount to between 4,7% (X5) and 44,4% 
(X2). 

We will apply to the collection of features all operations described in the 
previous section. First, we convert the destimulant (X6) into the stimulant (taking 
its opposite values) and make the standardization of all the variables according to 
the formula (6) and construct the complex feature by (7). Its values are presented 
in the third column of the table 2. 

 

 

 

Table 1. Values of diagnostic features 

Specification X1 X2 X3 X4 X5 X6 X7

WIELKOPOLSKA 64,3 73,4 11,5 285 19,3 0,93 19 
poviats   
Chodzieski 62,2 97,7 15,1 281 19,4 0,94 13 
Czarnkowsko – trzcianecki 25,3 55,9 10,0 272 19,0 0,94 8 
Gnieźnieński 84,7 81,1 14,3 283 17,6 0,99 11 
Gostyński 96,5 82,1 10,8 258 19,8 0,97 2 
Grodziski 59,0 79,6 18,7 253 19,8 0,98 10 
Jarociński 83,0 87,3 17,7 263 19,4 0,95 8 
Kaliski 73,3 166,5 4,4 236 18,5 1,11 6 
Kępiński 65,4 94,2 14,4 256 20,4 0,95 14 
Kolski 80,4 148,0 9,3 292 18,5 0,95 21 
Koniński 74,9 167,6 10,2 247 17,6 1,06 3 
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Specification X1 X2 X3 X4 X5 X6 X7

Kościański 57,9 73,5 11,6 264 18,9 0,99 11 
Krotoszyński 98,8 93,3 12,2 265 20,6 0,95 7 
Leszczyński 60,6 88,0 5,3 236 19,7 1,02 6 
Międzychodzki 26,2 71,4 13,3 284 19,6 0,93 17 
Nowotomyski 36,8 61,6 9,1 272 20,0 0,93 4 
Obornicki 42,1 69,9 5,4 275 18,5 0,99 15 
Ostrowski 79,7 74,7 10,2 267 19,3 0,98 11 
Ostrzeszowski 70,6 140,4 11,8 252 20,3 0,96 9 
Pilski 54,3 46,9 13,1 282 18,0 0,95 30 
Pleszewski 86,9 114,3 5,8 252 19,5 0,98 7 
Poznański 60,0 73,2 9,1 269 20,1 0,94 41 
Rawicki 81,7 71,3 9,6 280 20,5 0,93 10 
Słupecki 72,2 121,5 11,2 274 19,4 0,94 5 
Szamotulski 53,8 102,7 16,4 278 19,4 0,94 6 
Średzki 68,5 105,6 11,7 276 19,2 0,96 7 
Śremski 70,8 75,6 16,1 275 18,2 0,96 11 
Turecki 57,3 117,4 11,9 269 17,6 1,00 12 
Wągrowiecki 57,8 127,8 13,1 272 18,6 0,98 11 
Wolsztyński 40,7 55,3 14,5 240 18,8 1,00 12 
Wrzesiński 70,2 92,7 8,4 275 19,2 0,94 6 
Złotowski 34,1 75,2 14,7 270 18,4 0,95 9 
Cities with the powiat 
status   

Kalisz 271,4 18,9 11,0 340 18,7 0,91 41 
Konin 122,4 19,4 14,3 310 17,4 0,90 22 
Leszno 247,6 20,9 19,4 310 19,7 0,85 32 
Poznań 241,5 13,1 10,8 343 20,9 0,81 39 
Importance coefficient in % 29,0 18,6 12,7 3,6 2,0 2,2 31,9 

Next, the model of “airport game” is adapted to our problem. We assume 
that players of this game are the poviats, the coefficients ci coincide with values of 
the complex feature ordered increasingly and as the a priori unions are regarded 
the five subregions of the Wielkopolskie Voivodship: Kaliski, Koniński, Pilski, 
Poznański and the Poznań City. 

In the fourth and sixth column of the table (2) are presented the “normal” 
Shapley values and the Shapley values with a priori unions calculated using the 
formulas (4) and (5), respectively. 

The fifth and seventh columns of the table contain percentages of 
participation of particular poviats in development of infrastructure of the 
voivodship and subregion computed on the basis of the Shapley values (“normal” 
and with a priori unions) as (9) and (10). 

The poviats are ordered increasingly by values of complex feature within 
each subregion.  
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The first conclusion which can be formulated from the above – mentioned 
calculations shows that although poviats of the Koniński Subregion have small 
share in total state of the voivodships infrastructure, then their differentiation 
within this subregion is rather not great. In this case a large city with the poviat 
status (i.e. Konin city) has smaller Shapley value (and it’s percentage 
recalculation) than the Kolski poviat.  

Similarly, one can consider, that in the Pilski Subregion beside the Pilski 
powiat, the great importance have also the Chodzieski and Wągrowiecki poviats. 
A different situation is in the case of the Kaliski and Poznański subregions. In 
each of them, there is a city which concentrates a subregional development 
(Kalisz and Leszno, respectively) and the worth of other poviats which 
importance is rather small. This is also probably a reason of fact, that for some 
poviats, particularly of two above – mentioned subregions the Shapley values 
(without a priori unions) are greater than the Shapley values with a priori unions. 

As one can consider from the construction 1., the sum of the Shapley values 
of all poviats belonging to given subregion is equal to the Shapley value of this 
subregion. Therefore this sum expresses an importance of infrastructure of this 
subregion in the voivodship. 

At the end, it is worth to note, that the computing model concerning the 
results presented in table 2. in percentages (columns 5 and 7) could be among 
others regarded as suggestion of allocation of subject EU regional subventions to 
the candidate countries to particular regions according to level of development of 
the field of interest observed across them. 

 
 
 
 
 
 

Table 2.  Results of calculations of complex feature and Shapley values without 
a priori unions and with a priori unions 

Powiats 

Subregions 

Values of 
complex 
feature 

Shapley 
values 

(without a 
priori 

unions) 

Participation 
in regional 

development 
calculated on 
the basis of 

Shapley 
values 

(without a 
priori 

unions)  
in % 

Shapley 
values 
with a 
priori 
unions 

Participation 
in 

subregional 
development 
calculated on 
the basis of 

Shapley 
values with a 
priori un-ions 

in % 

1 2 3 4 5 6 7 
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Powiats 

Subregions 

Values of 
complex 
feature 

Participation 

Shapley 
values 

(without a 
priori 

unions) 

in regional 
development 
calculated on 

Participation 
in 

subregional Shapley development the basis of values calculated on Shapley with a the basis of values priori Shapley (without a unions values with a priori priori un-ions unions)  in % in % 
Gostyński 106,529 3,564 0,648 2,131 1,11 
Rawicki 115,792 3,965 0,721 2,336 1,21 
Ostrowski 117,149 4,032 1,230 2,370 1,23 
Pleszewski 118,355 4,096 0,745 2,405 1,25 
Kaliski 119,068 4,135 0,752 2,429 1,26 
Kępiński 139,861 5,576 1,014 3,260 1,69 
Jarociński 145,697 6,107 1,111 3,552 1,84 
Ostrzeszowski 146,555 6,200 1,128 3,609 1,87 
Krotoszyński 151,828 6,859 1,248 4,137 2,15 
Kalisz1

K
aliski 

549,757 163,014 29,652 166,552 86,39 
Słupecki 115,976 3,974 0,723 4,639 9,76 
Turecki 121,528 4,280 0,779 4,917 10,35 
Koniński 130,888 4,885 0,889 5,541 11,66 
Konin1 220,664 18,093 3,291 15,989 33,65 
Kolski 

K
oniński 

222,405 18,441 3,354 16,424 34,57 
Czarnkowsko -
trzcianecki 

0,780 0,022 0,004 0,031 0,10 

Złotowski 50,666 1,536 0,279 2,525 7,80 
Wągrowiecki 132,354 4,990 0,908 7,971 24,63 
Chodzieski 138,455 5,459 0,993 8,581 26,51 
Pilski 

Pilski 

161,849 8,290 1,508 13,260 40,96 
Nowotomyski 2,333 0,068 0,012 0,033 0,02 
Leszczyński 46,552 1,408 0,256 0,714 0,51 
Obornicki 54,717 1,667 0,303 0,850 0,61 
Wolsztyński 54,840 1,671 0,304 0,852 0,61 
Międzychodzki 75,106 2,370 0,431 1,257 0,90 
Kościański 85,229 2,732 0,497 1,482 1,06 
Wrzesiński 85,242 2,732 0,497 1,483 1,06 
Szamotulski 98,252 3,232 0,588 1,854 1,33 
Średzki 109,875 3,703 0,674 2,242 1,60 
Grodziski 113,493 3,860 0,702 2,386 1,71 
Śremski 

Poznański 

126,079 4,564 0,830 3,016 2,16 
                                                           
1 City with the poviat status. 
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Powiats 

Subregions 

Values of 
complex 
feature 

Participation 

Shapley 
values 

(without a 
priori 

unions) 

in regional 
development 
calculated on 

Participation 
in 

subregional Shapley development the basis of values calculated on Shapley with a the basis of values priori Shapley (without a unions values with a priori priori un-ions unions)  in % in % 
Gnieźnieński 145,928 6,130 1,115 4,339 3,11 
Poznański 230,803 20,541 3,736 14,900 10,66 
Leszno1 496,714 109,970 20,003 104,330 74,66 
Poznań1 Poznań 

city 
491,955 107,591 19,571 137,359 100,00 

Source: Own calculations conducted by application of results of calculations of the 
Weber median made by  Wysocki and  Lira (Agricultural University in Poznań) for the 
purpose of a publication by the Statistical Office in Poznań (2001). 
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AN ALTERNATIVE TO AN IMPROVED RANDOMIZED 
RESPONSE STRATEGY 

1Housila P. Singh and Nidhi Mathur

ABSTRACT 

Mπ̂In this paper, we have suggested a class of estimators , say, for 
estimating π, the proportion of a population having a sensitive attribute. It is 
shown that the suggested class of estimators of Mπ̂  of  π is more efficient 

than by Mangat’s (1994) estimator mπ̂ Mπ̂. Since  involves an unknown 
population parameter M, it has , therefore little practical utility. Replacing M 
in  by its different estimated values, various estimators  i = 1,2, h; 

have been suggested for use in practice. Exact efficiency of i = 1,2,h;  
have been worked out theoretically and numerically. Approximate variance 
expression for the proposed estimator is also given. 

Mπ̂ ;ˆ )(
M
iπ

;ˆ )(
M
iπ

Key words: Randomized response technique, Sensitive attribute, Class of 
estimators, Equal probabilities with replacement, Variance expression. 

1. Introduction  

This rising concern about “invasion of privacy” demonstrates an important 
challenge to the applied statistician to formulated new theory and procedures for 
the collection of sensitive data. Warner (1965) introduced an skilful interviewing 
procedure known as randomized response technique (RRT) for estimation of 
proportion π of population belonging to sensitive characteristic A. Subsequently, 
many others have reported different RRT, for instance, see Hedayat and Sinha 
(1991). Mangat and Singh (1990) suggested a two stage RRT which requires the 
use of two randomized devices, this makes the interview procedure a little 
cumbersome. Owing to this Mangat (1994) suggested a relatively simple RRT 
described as below: 

                                                           
1 School of Studies in Statistics, Vikram University, Ujjain 456010, (M.P.), India. 
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Each of n respondents assumed to be selected by simple random sampling 
with replacement (SRSWR) scheme, is instructed to say ‘yes’ if he or she has the 
attribute A. If he or she does not have attribute A, the respondent is required to 
use the Warner randomization device consisting of two statements: 

i. ‘I belong to attribute A’ and 
ii. ‘I do not have attribute A’ 

represented with probability p and (1-p) respectively. Then he or she is to report 
‘yes’ or ‘no’ according to the outcome of this randomization device and the actual 
status that he or she with respect to attribute A.  

The whole procedure is completed by the respondent unobserved by the 
interviewer. 

The probability of a ‘yes’ answer for this method is given by  

( )( )p−π−+π=α 11               (1.1) 

For estimating π, Mangat (1994) suggested an unbiased and maximum likelihood 
estimator of π as 

( )
p

p1ˆˆ m
+−α

=π                              (1.2) 

n
nˆ 1=αwhere , is the proportion of ‘yes’ answers in the sample. n is the number 

of respondents selected by SRSWR and n1 is the number of ‘yes’ answers out of n 
responses. 

The variance of is given by mπ̂

( ) ( )( ) ( )
2np

1
np

11
n

1 α−α
=

−π−
+

π−π p
V( ) =mπ̂           (1.3) 

In this paper, we have suggested a class of estimators of π and their properties are 
studied. 

2. The Class of Estimators 

Motivated by Searls (1964), we suggest the following class of estimators of 
π as  

mM ˆMˆ π=π                             (2.1) 

where M is constant to be chosen suitably. 
Mπ̂The mean square error (MSE) of  is given by 

( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −α−+

α−α 222
2 p1M

n
1M

p
1

MSE( )=Mπ̂        (2.2) 
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( )p1p −=where . 

The  at (2.2) is minimized for  )ˆ( MMSE π
( )

( ) ( ) opt
2

2

M

n
1p

p
=

α−α
+−α

−α
(say)   (2.3) M=

which essentially lies between 0 and 1. 

Thus the minimum MSE of  is given by  Mπ̂

( )( )
( ) ([ ])α−α+−α

−αα−α
1pnp

p1
22

2

Mπ̂        (2.4) min. MSE( )=

From (1.3) and (2.4) we have 

( ) ( ) ( ) ( )
2

22
opt

2

2
opt

2 p
p1M

np
1M

np
1 −−

−
−

−
− ααααα

V( )-min.MSE( )=Mπ̂mπ̂  

 =
( )( ) ( ) ( ){ }

( ) ( ){ }⎥⎦
⎤

⎢
⎣

⎡

−+−
−++−−

2

2

2
opt

pn1
pn1

pn
M11

ααα
ααααα

        (2.5) 

Clearly the right hand side of the expression (2.5) is now positive because 
0< <1. Hence we conclude that the minimum MSE of Mπ̂optM  in (2.4) is less 

than that of Mangat’s estimator mπ̂ . For other relevant references in this 
context reader is referred to Mangat et. al. (1991) and Sampath et.al.(1995). 

Mπ̂3. Proporties of the Estimator when 0<M≤1 

The MSE of  is given by  Mπ̂
( ) ( ) ( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
−α+−α−

⎭
⎬
⎫

⎩
⎨
⎧ −α+

α−α 2222
2 ppM2p

n
1M

p
1

MSE( )=Mπ̂  

mπ̂which is less than the variance of  if  

   

( ) ( )

( ) ( ) 1M

n
1p

n
1p

2

2

≤<

⎭
⎬
⎫

⎩
⎨
⎧ α−α

+−α

⎭
⎬
⎫

⎩
⎨
⎧ α−α

−−α
. 
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The regions of M have been computed for different values of n, p and π for which 
the suggested estimator is more efficient than Mangat (1994) estimator 

presented in Table 3.1. 
Mπ̂

mπ̂

Table 3.1. The range of M for different values of n, p, π. 

π=0.05 
5 10 20 50 p↓ n→ 

0.6 0~1 0~1 0~1 0~1 
0.7 0~1 0~1 0~1 0~1 
0.8 0~1 0~1 0~1 0~1 
0.9 0~1 0~1 0~1 0~1 

π=0.1 
0.6 0~1 0~1 0~1 0~1 
0.7 0~1 0~1 0~1 0.02~1 
0.8 0~1 0~1 0~1 0.23~1 
0.9 0~1 0~1 0.03~1 0.45~1 

π=0.2 
0.6 0~1 0~1 0.07~1 0.49~1 
0.7 0~1 0~1 0.23~1 0.60~1 
0.8 0~1 0.05~1 0.38~1 0.69~1 
0.9 0~1 0.23~1 0.53~1 0.78~1 

Mπ̂To have the tangible idea about the performance of , we have computed 

the percent relative efficiency (PRE) of Mπ̂ mπ̂ w.r.t. to for different values of n, 
p,π and M using  the formula : 

( )
( ) ( ) 1001M
1

pnM
1

2
2

2 ×⎥
⎦

⎤
⎢
⎣

⎡
−

α−α
−α

+
−

PRE( , ) = Mπ̂ mπ̂  

The results have been presented in Table 3.2. 
 
 

Mπ̂ mπ̂Table 3.2. Percent Relative Efficiency of w.r.t. for different values of 
n,p,π and M.  

π=0.05 
 p↓  M 5 10 20 50 n→ 

0.6 1373.11 1202.58 963.30 603.23 
0.7 1282.62 1070.31 804.11 460.50 

 
0.25 

0.8 1147.17 894.12 620.41 323.40 
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π=0.05 
 p↓  M 5 10 20 50 n→ 

0.9 922.18 647.76 406.08 191.61 
0.6 392.79 385.83 372.63 337.95 
0.7 289.30 379.15 360.37 313.74 

 

0.8 383.19 367.74 340.30 278.05 
0.50 

0.9 369.80 343.84 301.50 220.18 
0.6 177.42 177.06 176.34 174.22 
0.7 177.24 176.70 175.63 172.51 

 

0.8 176.92 176.06 174.38 169.52 
0.75 

0.9 176.18 174.61 171.55 162.99 
π=0.1 

0.6 968.42 694.34 443.37 212.72 
0.7 822.22 553.27 334.46 152.97 

 

0.8 658.82 414.81 238.30 104.67 
0.25 

0.9 475.00 278.90 152.76 064.82 
0.6 372.97 349.37 310.11 231.93 
0.7 361.96 330.52 281.61 195.02 

 

0.8 345.21 303.61 244.66 154.60 
0.50 

0.9 316.67 262.07 194.87 110.14 
0.6 176.36 174.96 172.23 164.53 
0.7 175.73 173.72 169.84 159.19 

 

0.8 174.70 171.72 166.06 151.12 
0.75 

0.9 172.73 167.96 159.16 137.56 
π=0.2 

0.6 444.92 258.39 140.54 059.34 
0.7 349.38 196.10 104.45 043.48 

 

0.8 266.67 145.45 076.19 031.37 
0.25 

0.9 194.36 103.46 053.46 021.82 
0.6 310.45 253.66 185.71 102.97 
0.7 286.18 222.78 154.39 080.37 

 

0.8 257.14 189.47 124.14 061.02 
0.50 

0.9 221.78 153.42 094.92 044.27 
0.6 172.26 167.07 157.58 134.63 
0.7 170.25 163.34 151.07 123.29 

 

0.8 167.44 158.24 142.57 109.92 
0.75 

0.9 163.21 150.84 130.99 093.92 

Mπ̂Table 3.1, shows that the proposed estimator  is more efficient than 
Mangat’s estimator for full range of M (i.e. 0<M<1) and all values of n when 
the value of π(=0.05) is small i.e. the proportion of persons possessing attribute is 

mπ̂
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small, which happened in many practical situations. The range of M for to be 
more efficient than decreases as the value of π and n increase. 

Mπ̂

mπ̂

Mπ̂From Table 3.2, it is observed that the saving in MSE due to compared 
to is large for smaller values of n, π and M. It may be noted that when n=5, 
π=0.05 and M=0.25, the MSEs of 

mπ̂

Mπ̂ are very small if p=0.6. Therefore in these 
cases the percentage of efficiencies are quit large. 

Finally, with these numerical illustrations we conclude that the proposed 
estimator is to be recommended for its use in practice for small values of π, n, M 
and p. In practice, small sample sizes are desirable when the survey procedure, 
like RRT is lavish. 

4. Estimators Based on Estimated Optimum Constant 

The optimum value of M in (2.3) can be rewritten as  

  M ( )m
2

2

ˆV ππ
π
+

                           (4.1) opt=

A consistent estimate of Mopt is given by 

( )
⎭
⎬
⎫

⎩
⎨
⎧ α−α

+π

π
=

2
2
m

2
m)1(

opt

np
ˆ1ˆˆ

ˆ
M̂                       (4.2)   

Substitution of in place of M in (2.1) yields an estimator of π as  )1(
optM̂

( )
⎭
⎬
⎫

⎩
⎨
⎧ α−α

+π

π
=π

2
2
m

3
m)1(

M

np
ˆ1ˆˆ

ˆ
ˆ                          (4.3)   

( ) ( )
( ) 2m p1n

ˆ1ˆˆV̂
−

α−α
=πReplacing π by  and V( ) by its unbiased estimator mπ̂ mπ̂ in 

(4.1) we get another consistent of Mopt as  

( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧

−
α−α

+π

π
=

2
2
m

2
m)2(

opt

p1n
ˆ1ˆˆ

ˆ
M̂                        (4.4)   

and thus the resulting estimator of π is given by  
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( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧

−
α−α

+π

π
=π

2
2
m

3
m)2(

M

p1n
ˆ1ˆˆ

ˆ
ˆ                         (4.5)   

A more flexible estimator of π is given by  

( )
⎭
⎬
⎫

⎩
⎨
⎧ −

+
=

2
2
m

3
m(h)

M

np
ˆ1ˆhˆ

ˆ
ˆ

ααπ

π
π ,                        (4.6) 

where h(>0) is constant to be chosen suitably. For h=1,  reduces to  in 

(4.3), while for h=

(h)
Mπ̂

)1(
Mπ̂

( ) 1

n
1n −

⎟
⎠
⎞

⎜
⎝
⎛ −

it boils down to in (4.5). )2(
Mπ̂

To obtain the approximate mean square error of  , we write (h)
Mπ̂

( e+= 1ˆ  )αα ( ) αα n1− such that E(e) =0 and  E( )=2e  

Expressing  at (4.6) in term of e’s, we have  (h)
Mπ̂

( ) ( ) ( )

1

22
(h)
M p

1
1

11
np

1h1
p

1ˆ
−

⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧
+

⎭
⎬
⎫

⎩
⎨
⎧

−
−+

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

π
α

α
α

π
αα

π
αππ eeee

  

( ) ( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
+

−
−≅− 1

1
p21

p
1

np
1h

p
ˆ

2
(h)
M α

πα
π

α
π
αααππ ee

or    

Squaring both sides of above expression and then taking  expectations, we get the 
MSE of   to terms of order n(h)

Mπ̂
-2  as  

 

 ( ) ( ) ( ){ } ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
−+= 1

1
p212h

ˆVhˆVˆMSE 2

2
m

m
(h)
M αα

πα
π
π

ππ  

which is less than the variance of mπ̂ if either 
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( )
( )

( )
( ) 0h1
1

p212

1
1

p212h0

<<
⎭
⎬
⎫

⎩
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⎧

−
−

−

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
<<

αα
πα

αα
πα

or    

Further, the exact MSE of an estimator d= , , of π is given by )1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂

  MSE(d)=                (4.7) ( ) ( ) 11

1

1

nnn
n

n
n

0n

2 1d −

=

α−απ−∑ C

( )!nn!n
n!

11
n

n
1 −
=Cas n  follows the Binomial distribution B(n,α), where . 1

Thus the percent relative efficiency of an estimator d with respect to is 
computed from: 

mπ̂

( )
100

MSE(d)
ˆV m ×
π

PRE(d, ) = mπ̂  

=
( ) ( ) ( ) 1001d
np
1

1
n

0n

nnn
n

n2
2

1

11

1
×⎥

⎦

⎤
⎢
⎣

⎡
α−απ−

α−α
−

=

−∑ C                  (4.8) 

To have tangible idea about the performance of the various estimators of π. We 
have computed the PRE’s of d for different values of n, p,π and α in the Table 
4.1(a),4.1(b) and 4.1(c). 

Table 4.1 (a). Percent Relative Efficiency  and   w.r.t.  )2(
M

)1(
M ˆ,ˆ ππ (h)

Mπ̂ mπ̂

π = 0.05 
p↓ n→  5 10 20 50 

Estimator↓ 
159.92 182.12 189.77 182.55 )1(h

M
)1(

M ˆˆ == ππ   

)2(
Mπ̂  169.70 189.68 193.87 183.96 

 
0.6 

)6(h
Mˆ =π  252.58 472.74 534.66 422.95  

 
285.36 877.15 970.19 564.55 )16(h

Mˆ =π  
153.81 178.79 184.85 172.63 )1(h

M
)1(

M ˆˆ == ππ   

)2(
Mπ̂  161.10 185.84 188.66 173.82 

 
0.7 

221.60 411.23 468.42 342.07 )6(h
Mˆ =π  
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π = 0.05 
p↓ n→  

Estimator↓ 
5 10 20 50 

247.78 603.53 731.45 402.78 )16(h
Mˆ =π  

143.77 171.92 176.62 157.96 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  150.20 177.90 179.62 158.85 

 
0.8 

200.80 305.12 375.25 255.62 )6(h
Mˆ =π  

220.49 351.04 485.26 266.61 )16(h
Mˆ =π  

148.98 150.56 158.97 134.50 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  156.57 154.10 161.25 134.97 

 
0.9 

)6(h
Mˆ =π  214.77 209.53 240.56 164.12  

 
231.76 217.26 243.80 150.92 )16(h

Mˆ =π  

mπ̂Table 4.1(b). Percent Relative Efficiency , and  w. r. t. )1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂ . 

 n→ π=0.1 
p↓ Estimator↓ 5 10 20 50 

155.49 170.23 165.71 138.78 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  164.43 176.35 168.40 139.31 

0.6 

238.60 363.31 313.74 182.44 )6(h
Mˆ =π  

263.29 524.10 376.67 174.89 )16(h
Mˆ =π  

149.16 163.52 154.89 124.29 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  155.97 168.87 157.03 124.60 

0.7 

210.28 307.84 252.45 139.43 )6(h
Mˆ =π  

229.85 380.98 273.06 124.92 )16(h
Mˆ =π  

137.55 152.98 140.68 109.15 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  142.90 157.18 142.17 109.25 

0.8 

183.53 233.61 191.16 103.28 )6(h
Mˆ =π  

196.26 246.50 187.24 086.41 )16(h
Mˆ =π  

132.30 132.36 121.74 094.94 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  137.65 134.49 122.46 094.86 

0.9 

175.03 159.79 130.29 073.30 )6(h
Mˆ =π  
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 n→ π=0.1 
p↓ Estimator↓ 5 10 20 50 

181.44 153.77 114.74 056.08 )16(h
Mˆ =π  

mπ̂Table 4.1(c). Percent Relative Efficiency , and  w. r. t. )1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂ . 

  π=0.2 
p↓ n→ Estimator↓ 5 10 20 50 

140.27 137.70 118.12 090.49 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  146.07 104.43 118.68 090.38 

0.6 

252.58 472.74 534.66 422.95 )6(h
Mˆ =π  

188.47 199.87 115.88 053.93 )16(h
Mˆ =π  

132.32 127.26 107.03 084.81 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  136.65 129.17 107.23 084.62 

0.7 

221.60 411.23 468.42 342.07 )6(h
Mˆ =π  

164.59 151.94 087.17 042.10 )16(h
Mˆ =π  

120.85 115.83 097.25 082.49 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  123.43 116.89 097.14 082.25 

0.8 

200.80 305.12 375.25 255.62 )6(h
Mˆ =π  

136.43 111.27 065.23 033.46 )16(h
Mˆ =π  

109.35 103.35 090.13 084.60 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  111.40 103.45 089.76 084.32 

0.9 

214.77 209.53 240.56 164.12 )6(h
Mˆ =π  

113.88 079.04 048.12 027.24 )16(h
Mˆ =π  

From Table 4.1(a), 4.1(b) and 4.1(c) show that the suggested estimators 
,  and  are preferable over mπ̂

)1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂  for small values of n, p and π. The 

estimator  appears to be more efficient than . In practice, small sample 
sizes are desirable when the survey procedure like RRT, is costly. 

)2(
Mπ̂

)1(
Mπ̂

In Warner’s(1965) strategy, the probability of ‘yes’ answers is defined by  

( )( )p11p −π−+π=δ     (4.9)   

For estimating π, Warner (1965) suggested an unbiased estimator 
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  ;
1p2
pˆ

ˆ W −
−

=
δπ     (4.10) 

n
nˆ 1=δwhere is the proportion of ‘yes’ answers in the sample. 

The variance of  is given by Wπ̂

( ) ( )
( ) 2

1pfor
1p2n

1ˆV 2W ≠
−
−

=
δδπ .  (4.11)   

Thus the percent relative efficiency of an estimator d with respect to Warner’s 
(1965) estimator Wπ̂  is given by 

( )
( )

( ) ( ) 1001d
1p2n

1
1

n

0n

nnn
n

n2
2

1

11

1
×⎥

⎦

⎤
⎢
⎣

⎡
α−απ−

−
δ−δ

−

=

−∑ CPRE(d,  )= Wπ̂ .    (4.12) 

To have tangible idea about the performance the estimator d= , ,  with 
respect to Warner’s (1965) estimator 

)1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂

Wπ̂ . We have computed the PRE’s of d for 
different values of n, p, π and h in the table 4.2(a), 4.2(b) and 4.2(c). 

Table 4.2(a). Percent Relative Efficiency , and  w. r. t. )1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂ Wπ̂ . 

  π=0.05 
p↓  n→  5 10 20 50 

Estimator↓ 
1420.50 1617.65 1685.59 1621.47 )1(h

M
)1(

M ˆˆ == ππ   

)2(
Mπ̂  1570.40 1684.79 1722.12 1634.05 

0.6 

2243.58 4199.13 4749.11 3756.81 )6(h
Mˆ =π  

2534.74 7791.31 8617.74 5014.58 )16(h
Mˆ =π  

460.09 534.83 552.95 516.41 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  481.91 555.93 564.34 519.98 

0.7 

662.88 1230.14 1401.20 1023.26 )6(h
Mˆ =π  

741.20 1805.39 2188.02 1204.86 )16(h
Mˆ =π  

248.16 296.76 304.38 272.65 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  259.26 307.07 310.04 274.20 

0.8 

346.60 526.68 647.72 441.24 )6(h
Mˆ =π  

380.59 605.94 837.62 460.21 )16(h
Mˆ =π  
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  π=0.05 
p↓  n→  

Estimator↓ 
5 10 20 50 

183.12 185.06 195.40 165.32 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  192.45 189.41 198.20 165.91 

0.9 

263.98 257.54 295.68 201.73 )6(h
Mˆ =π  

284.86 266.98 299.67 185.50 )16(h
Mˆ =π  

Table 4.2(b).Percent Relative Efficiency , and  w. r. t. )1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂ Wπ̂ . 

  π=0.1 
p↓               n→  5 10 20 50 

Estimator↓ 
1372.37 1502.49 1462.55 1224.89 )1(h

M
)1(

M ˆˆ == ππ   

)2(
Mπ̂  1451.26 1556.48 1486.27 1229.60 

0.6 

2105.94 3206.57 2769.13 1610.22 )6(h
Mˆ =π  

2323.80 4625.74 3324.49 1543.61 )16(h
Mˆ =π  

439.75 482.10 456.64 366.43 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  459.84 497.91 462.97 367.34 

0.7 

619.96 907.59 744.28 411.06 )6(h
Mˆ =π  

677.64 1123.21 805.03 368.29 )16(h
Mˆ =π  

233.37 259.55 238.68 185.19 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  242.46 266.68 241.21 185.36 

0.8 

311.39 396.35 324.34 175.24 )6(h
Mˆ =π  

332.99 418.22 317.68 146.61 )16(h
Mˆ =π  

160.59 160.65 147.77 115.24 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  167.08 163.25 148.64 115.14 

0.9 

212.45 193.95 158.14 088.98 )6(h
Mˆ =π  

220.23 186.65 139.27 068.07 )16(h
Mˆ =π  
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Table 4.2(c). Percent Relative Efficiency , and  w. r. t. )1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂ Wπ̂ . 

  π=0.2 
p↓               n→  5 10 20 50 

Estimator↓ 
1246.25 1223.41 1049.45 803.99 )1(h

M
)1(

M ˆˆ == ππ   

)2(
Mπ̂  1297.84 1247.65 1054.43 802.95 

0.6 

1649.89 1692.59 1137.34 619.75 )6(h
Mˆ =π  

1674.48 1775.79 1029.51 479.13 )16(h
Mˆ =π  

387.48 372.65 313.41 248.33 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  400.15 378.23 314.00 247.78 

0.7 

479.03 457.23 299.10 170.26 )6(h
Mˆ =π  

481.97 444.93 255.26 123.29 )16(h
Mˆ =π  

202.90 194.49 163.28 138.50 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  207.24 196.27 163.10 138.09 

0.8 

232.32 206.94 136.47 084.27 )6(h
Mˆ =π  

229.07 186.82 109.52 056.19 )16(h
Mˆ =π  

132.07 124.83 108.87 102.18 )1(h
M

)1(
M ˆˆ == ππ   

)2(
Mπ̂  134.56 124.95 108.43 101.85 

0.9 

144.69 112.89 078.27 055.40 )6(h
Mˆ =π  

137.55 095.47 058.12 032.40 )16(h
Mˆ =π  

It is observed from Tables 4.2(a), 4.2(b) and 4.2(c) that : 
i. When π=0.05, the performance of the suggested estimators 

, and  {h=1,6,16} is better than Warner’s estimator . The 

efficiency of the estimator  increases as h increases. Thus, the scalar ‘h’ 
plays a good role in improving the precision of the estimator . 

)1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂ Wπ̂

(h)
Mπ̂

(h)
Mπ̂

ii. When π=0.1, the suggested estimators , and {h=1,6,16} 
perform better than Warner’s estimator 

)1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂

Wπ̂  except for higher values of n. It 
is noted that for smaller values of p and n, the efficiency of the estimator 

 increases as h increases, without loss of generality. (h)
Mπ̂

iii. When π=0.2, the suggested estimators , and {h=6,16} are more 
efficient than Warner’s estimator 

)1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂

Wπ̂ for smaller values of n. 
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iv. The gain in efficiency decreases as the values of π and p increase. 

Finally, we conclude that the constructed estimators , and  are 
more precise than Warner’s estimator 

)1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂

Wπ̂  for smaller values of π. The 

estimator  is more efficient than  . It is further noted that substantial gain 
in efficiency due to suggested estimators , and {h=6,16}over 
Warner’s estimator  is observed when sample size  n is small. In practice, 
such sample sizes are desirable when the survey procedure, like Randomized 
Response Technique (RRT) is expensive. Comparing the results of the tables 
4.1(a), 4.1(b),4.1(c),4.2(a),4.2(b) and 4.2(c), it is clear that the gain in efficiency 
by using proposed estimators over Warner’s estimator 

)2(
Mπ̂

)1(
Mπ̂

)1(
Mπ̂

)2(
Mπ̂

(h)
Mπ̂

Wπ̂

Wπ̂  is more in comparison 

to Mangat’s estimator . mπ̂
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REPORTS 

INTERNATIONAL FEDERATION OF CLASSIFICATION 
SOCIETIES CONFERENCE – IFCS-2002 

Cracov, July 16-19, 2002 

 “Data Analysis, Classification and Related Methods” 

International Federation of Classification Societies is the scientific 
organization with the aim of development of the theoretical and practical issues 
related to the classification and data analysis methods. IFCS was founded in 
Cambridge in 1985. Currently there are 12 member societies, including Section of 
Classification and Data Analysis of Polish Statistical Association (SKAD). 

It is worth to present the list of former and present IFCS Presidents. 

The IFCS Presidents 

Years President 
1986 – 1987 Hans-Hermann Bock (Germany) 
1988 – 1989 Robert Sokal (United States) 
1990 – 1991 John Gower (United Kingdom) 
1992 – 1993 William Day (Canada) 
1994 – 1995 Allan Gordon (United Kingdom) 
1996 – 1997 Douglas Carroll (United States) 
1998 – 1999 Chikio Hayashi (Japan) 
2000 – 2001 Jean-Paul Rasson (Belgium) 
2002 – 2003 Carlo Lauro (Italy) 

At present Krzysztof Jajuga (Wrocław University of Economics) is the 
member of the Executive Committee of IFCS. Andrzej Sokołowski (Cracow 
University of Economics) and Marek Walesiak (Wrocław University of 
Economics) are the members of IFCS Council. 

International Federation of Classification Societies holds its biannual 
conferences. The eighth conference took place in Cracow, at the campus of 
Cracow University of Economics, on July 16-19, 2002. It was organized by the 
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team chaired by Andrzej Sokołowski (official chairman of Local Organizing 
Committee). Krzysztof Jajuga was the official chairman of Scientific Program 
Committee, consisting of about 35 professors from many countries, including 
Poland. The other members of Scientific Programme Committee from Poland 
were: Zdzisław Hellwig, Kazimierz Zając, Aleksander Zeliaś, Andrzej 
Sokołowski, Józef Pociecha, Tadeusz Grabiński, Andrzej Barczak, Czesław 
Domański, Marek Walesiak, Józef Dziechciarz, Eugeniusz Gatnar. 

It is worth to present the sites of the previous and future IFCS Conferences. 

The IFCS Conferences 

Year City – host of the conference 
1987 Aachen (Germany) 
1989 Charlottesville (United States) 
1991 Edinburgh (United Kingdom) 
1993 Paris (France) 
1996 Kobe (Japan) 
1998 Rome (Italy) 
2000 Namur (Belgium) 
2002 Cracow (Poland) 
2004 Chicago (United States) 

More than 200 persons coming from more than 30 countries participated in 
the conference in Cracow. During the conference almost 150 papers were 
presented. They can be classified to 4 groups. 

1. Keynote Lectures 

They were presented by: 
• Hans-Hermann Bock – “Clustering Methods: from Classical Models to New 

Applications” 
• Frank Hampel – “Some Thoughts about Classification” 
• Wojtek J. Krzanowski – “Orthogonal Components for Grouped Data – Review 

and Applications”. 

2. Invited Lectures 
They were presented by: 

• Henk A.L. Kiers – “Should We Use Standard Errors or Cross-Validation in 
Component Analysis Techniques?” 

• Edwin Diday – “From Data to Knowledge: Symbolic Data Analysis, Mixture 
Decomposition and Spatial Pyramidal Clustering” 
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• Jean-Paul Rasson – “Divisive Classification and Segmentation Trees with the 
Poisson Processes Hypothesis” 

• Maurizio Vichi – “Clustering and Reduction of Three-way Data” 
• Hamparsun Bozdogan – “A New Generation Multivariate Mixture-model 

Cluster Analysis of Normal and Nonnormal Data Using Information Measure 
of Complexity” 

• Klaus Obermayer – “New Methods for the Clustering, Visualization, and 
Classification of Proximity Data” 

• Yoshiharu Sato – “The Performance of an Autonomous Clustering Technique” 

3. Invited Sessions 

Here some professors were asked to organize the session of the specialized 
area. Here are the titles and the organizers of the sessions: 
• “Optimization Heuristics in Data Analysis”: Javier Trejos 
• “Dissimilarities in Clustering and Data Analysis”: Jean-Pierre Barthélemy 
• “Probability Models for Clustering”: Hans-Hermann Bock 
• “Classification and Regression Trees”: Eugeniusz Gatnar 
• “Application of Classification and Data Analysis in Marketing”: Reinhold 

Decker, Daniel Baier 
• “Optimization Methods and Algorithms in Classification and Clustering”: 

Patrick Groenen, Hamparsun Bozdogan 
• “Bioinformatics and Classification”: Berthold Lausen 
• “The WEB Mining Challenge”: Wolfgang Gaul 

4. Contributed Papers 

All other papers (more than 100) are contributions of participants. They were 
divided into 27 contributed sessions, namely: 
• Multivariate Data Analysis (2 sessions) 
• Classification and Clustering Methods (4 sessions) 
• Applications of Classification and Data Analysis in Economics  
• Applications of Classification and Data Analysis in Medicine 
• Classification and Regression Trees  
• Categorical Data Analysis  
• Dissimilarities and Similarities  
• Neural Networks and Related Topics 
• Mixture Models  
• Symbolic Data Analysis  
• Classification and Data Analysis– General and Special Problems  
• Correspondence Analysis   
• Phylogenetic Methods  
• Clustering – Evaluation and Validation   
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• Multiway Data Analysis (2 sessions) 
• Applications of Classification and Data Analysis in Social and Behavioral 

Sciences (2 sessions) 
• Multivariate Statistics (2 sessions) 
• Graphs   
• Applications of Classification and Data Analysis in Environmental and 

Biological Sciences   

53 papers were published in the proceedings of the conference: 
Jajuga K., Sokołowski A., Bock H.-H. (editors), 
Classification, Clustering, and Data Analysis. Recent Advances and Applications, 
Springer, 2002, p.492, ISBN 3-540-43691-X. 

In addition, the book of abstracts was published: 
Sokołowski A., Jajuga K. (editors), IFCS 2002, Data Analysis, Classification and 
Related Methods, Program and Abstracts. 
Cracow University of Economics Publishers, Kraków 2002, p.208. ISBN 83-
7252-134-4. 

The conference was one of the most important events in the area of statistics, 
not only in Poland. It is worth to mention that this conference was accompanied 
by the one-day conference, held in Tomaszowice near Cracow, celebrating the 
90th anniversary of Polish Statistical Association. 
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REPORTS 

THE NINETIETH ANNIVERSARY  
OF THE FOUNDATION OF THE POLISH STATISTICAL 

ASSOCIATION – THE SCIENTIFIC CONFERENCE, 
Cracow, Poland, 14-15 July 2002 

The Polish Statistical Association was founded in Cracow in 1912. As of the 
moment of its founding, the Polish Statistical Association (PSA) oriented its 
activities towards the development and promotion of statistics – its theory, 
methodology, and research practices. 

During the initial phase of its existence, the Association played an 
outstanding role in establishing the fundamental principles of Polish statistics, 
publishing "Statystyka Polski" (Statistics of Poland) in 1915 which may be treated 
as the first statistical yearbook of the Polish nation under partition1. The 
Association not only contributed greatly to the development of statistical 
methodology and promoting statistical data, but also to the awakening and 
enriching awareness of those issues in the general public. The Association played 
a crucial role in developing statistics after Poland had gained independence in 
November 1918, as the Polish Central Statistical Office was founded in July 1918 
already. members of the Association of that period constituted the core 
organizational and methodological staff of the Central Statistical Office. 

During the subsequent years, the Association operated together with other 
(mainly economic) scientific societies, or suspended its activities for certain 
periods of time. The Association became very active in the two years preceding 
World War Two, operating as an independent Polish Statistical Association, as 
well as during the immediate post-war period. The Association's own statistical 
journal had been published at the time ("Przeglad Statystyczny" – The Statistical 
Review); statistical lectures were also held, during which crucial problems 
concerning further development of the Polish statistics were discussed. 

After World War Two, the Association was reactivated in 1947. The 
publishing of the Statistical Review journal was also renewed; the first issue of 

                                                           
1 A. Krzyzanowski and K. Kumaniecki, STATYSTYKA POLSKI (Statistics of Poland). Published by 

the Polish Statistical Association, Cracow, 1915. 
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which was published in 1950. The Association also undertook the ambitious task 
of promoting statistics; its members delivered various types of lectures on 
statistics. Nevertheless, it ought to be remembered that the Polish Statistical 
Association had then in its activities depended upon pre-war statisticians, a 
distinct proportion of whom held well-established democratic points of view 
towards both statistics and social issues. This contributed greatly to the problems 
experienced by the Association in the coming years1. 

In March 1953, a decision was taken to liquidate the Association for political 
reasons. The Polish Statistical Association was officially dissolved in April 1955. 
The attitude displayed by the economist community, reducing the role of statistics 
to that of a minor economic instrument, was one of the deciding factors, which 
caused the limitation of activities, and subsequently the liquidation of the PSA. 
This decision set a barrier to the Association, banning it from official activity for 
a period of nearly 25 years. Some of the Association members were still active in 
Statistical Sections of the Polish Economic Association. 

In April 1981, on the wave of a general social boom, the Polish Statistical 
Association was reactivated, and began to deal primarily with the creation of 
professional consciousness, and the integration of the statistical community. A 
programme of re-establishing the importance of statistics within the economic 
environment and social consciousness had been then launched, and still is under 
implementation. Despite all the difficulties, and the dismembering of the 
professional community, the Association flourished mainly among professional 
statisticians, providing also a forum for linking practical activities in the field of 
statistics with the activities of the scientific circles. Ever since the founding 
assembly, i.e. since April 1981, until mid-December 1985, the organizational 
outlines of the Association were being defined. The work was carried out under 
extremely difficult political conditions, without any support in terms of equipment 
or financial resources. 

The Association began to develop more widespread activities in 1986. At the 
Association's general assembly in mid-December 1985, a programme of activities 
was adopted and is consequently carried out and developed until today. Taking 
into account the scope and scale of the activities, only the major ones are 
mentioned here2 . 

Initially, after the Association had been reactivated in 1981, there were less 
than 300 members, while towards the end of 2002, the Association had 
approximately 800 members grouped in 10 field branches.  

                                                           
1 Polish Statistical Association (1992), Polskie Towarzystwo Statystyczne 1912-1992 (Polish 

Statistical Association 1912-1992), Warsaw. 
2 J. Kordos, Activities of the Polish Statistical Association, Statistics in Transition, vol. 1,  

Number 1, 1993. 
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The PSA Publications 
Of the widespread programme of activities accomplished by the Polish 

Statistical Association (the Main Board, its Presidium, and relevant agencies, as 
well as the field branches), the most important ones are presented here. 

Biuletyn Informacyjny and Kwartalnik Statystyczny 
(The Information Bulletin and Quarterly Statistics) 

During its plenary session in October 1986, the PSA Main Board took a 
decision to publish the Biuletyn Informacyjny (The Information Bulletin) in 
order to inform the PSA members and supporters on a regular basis about the 
activities of the Association, as well as to provide information on various issues 
related to the national and foreign statistics. It has been assumed that the Biuletyn 
ought to integrate the PSA members, and to unite statisticians representing 
various academic centres, scientific-and-research institutes, state statistical 
organs, enterprises and establishments, as well as different organisational entities.  
From 1986 to 1998 44 issues were published. The Information Bulletin was 
closed in 1998, and replaced by a new journal Kwartalnik Statystyczny 
(Quarterly Statistics) in 1999. 

Wiadomosci Statystyczne (Statistical News)1

The PSA is a co-editor of the Wiadomosci Statystyczne monthly journal. 
Since August 1989, the Polish Statistical Association, in co-operation with the 
Central Statistical Office, has been the co-editor, of the Wiadomosci Statystyczne 
(the Statistical News) monthly journal; two representatives of the Association are 
members of the editorial board of the periodical. The journal publishes a section 
on the "Activities of the Polish Statistical Association" which provides 
information on major events taking place in the Association. 

Sylwetki statystyków polskich (The Biographies of Polish statisticians) 2

In 1987, the Sylwetki statystyków polskich (The Biographies of Polish 
Statisticians) monograph was published; the English version of the publication 
was issued in 1989. In 1993, a more complete and revised version - both in Polish 
and English – was prepared. The monograph presents biographies of outstanding 
Polish statisticians, from the medieval to modern times. Professional and 
scientific achievements are presented alongside with the life history of the 
statisticians - special attention paid to promoting activities and publications of the 
statisticians. 
                                                           
1 T. Walczak, „Wiadomosci Statystyczne” (Statistical News) - the major journal of Official 

Statistics in Poland,Statistics in Transition, vol. 3, Number 4, 1998. 
2 Polish Statistical Association (1989), Biographies of Polish Statisticians. Published by the 

Central Statistical Office, Warsaw. 
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Publication of a Statistical Journal in English – Statistics in Transition 

Following lengthy discussions, a decision was made to publish in English a 
journal entitled the STATISTICS IN TRANSITION which is edited also by foreign 
statisticians, mainly from countries undergoing transformation into market 
economy systems. The first issue of the journal was published in 1993. Till the 
end of 2002 thirty issues of the journal in 5 volumes were published. 

The PSA Conferences and Scientific Seminars 

In accordance with a resolution taken by the PSA Main Board in 1987, the 
Association has initiated the organisation of annual scientific conferences on 
selected statistical topics.  

International Statistical Conferences 

Apart from the local statistical events, the Association has - since 1991 -
initiated and co-organized the following international conferences: 
1) in 1991, a conference on the Poverty Measurement for Economies in 

Transition in Eastern European Countries, which took place in Warsaw, 
October 7th-9th, 1991; 

2) in 1992, a conference on Small Area Statistics and Survey Designs, which took 
place in Warsaw, September 30th until October 3rd  1992. 

3) in 1994, an International Conference in Memory of the Hundredth 
Anniversary of the Birth of Jerzy Neyman ,Warsaw, 25-26 November 1994; 

4) in 1995 an International Scientific Conference on Methodological Issues of 
Time Use Surveys: Design and Analysis. Warsaw, May 31- June 2 1995 

The papers submitted for those conferences were published in English as 
proceeding of the conferences and were distributed among the participants and 
interested statisticians from various countries. 

The Jubilee Conference in 2002 

On the 14 and 15th of July 2002 the jubilee conference on the occasion of 
Ninetieth Anniversary of the Foundation of the Polish Statistical Association took 
place in Cracov, Poland. The conference gathered  more than 50 statisticians from 
different part of Poland. It was organised by the Department of Statistics of the 
Cracow University of Economics. Professor Czesław Domański, President of the 
Polish Statistical Association, was the chairman of the Conference while 
Professor Aleksander Zeliaś, Deputy Chairman of the Polish Statistical 
Association, was the chairman of the Organising Committee. Tadeusz Toczyński, 
the President of the Central Statistical Office, and  Peter Mach, the President of 
the Statistical Office of the Slovak Republic, were the honourable guests of the 
Conference. Moreover Prof. W. Welfe, corresponding member of the Polish 
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Academy of Sciences, and Prof. R. Rudzkis, President of the Lithuanian 
Statistical Association, were sending us sincere congratulations and best wishes 
on the occasion of the 90th Anniversary of the Foundation of the Polish Statistical 
Association.  

The conference was opened by Prof. Cz. Domański. He outlined in his 
introductory speech the main facts about scientific activities of the Polish 
Statistical Association in the years 1912−2002. 

The meeting was conducted in form of two plenary sessions (the 
chairpersons of the sessions were: Prof. A. Zeliaś, Prof. T. Walczak). During the 
two conference days 5 lectures were presented and there was a panel discussion as 
well on: Past for the Future led by Professor Andrzej Barczak. Prof. A. Barczak 
gave the introduction to the discussion. 

During the two plenary sessions the following lectures were presented: 
1.  A Challenge of Statistics at the Beginning of 21st Century (by Czesław 

Domański). 
2. The Ninetieth Anniversary of the Foundation of the Polish Statistical 

Association, History, Achievements and Outlooks (by Kazimierz Zając). 
3.  Ethical Problems in Statistical Investigations (by Józef Oleński). 
4.  Statistics in Development Process of Information Society (by Tadeusz 

Toczyński). 
5.  Some Quality Aspects in Small Area Statistics (by Jan Kordos). 

All lectures presented at the conference met with great interest. The 
knowledge gained can now be used in practical daily work to improve statistical 
investigations. At the end of the conference Prof. Cz. Domański, President of the 
Polish Statistical Association, summarised the main conclusions of the conference 
and emphasised the role of the scientists in the development of statistics in 
Poland. 

 

 

Aleksander Zeliaś 
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