Presentation to the $8^{\text {th }}$ Workshop on LFS Methodology, May $23^{\text {rd }}-24^{\text {th }} 2013$ Gdańsk, Poland Theme A: Statistics on labour market dynamics Ole Villund, Statistics Norway

Labour market flows from the LFS, what can we learn from registers?

In order to better understand labour market dynamics, we need flow statistics in addition to traditional stock statistics. The panel design of most LFS makes flow statistics possible, at least in theory. By linking data at the micro level, we can compare labour market information about the same person from several points in time. From these premises, users may wonder why Statistics Norway does not publish flow statistics based on the LFS on a regular basis. In addition to the resource situation, we would like to point out some quality problems.

Usually, stock figures are made from the complete sample at a point in time. At the next point in time, new stock figures are made from another complete sample. Change figures are usually the difference between these two stock figures. The two samples can be more or less overlapping, depending on several factors. You do not have the time to wait and see how well the data overlap, before you publish the first stock figure!
Linking data from two partially overlapping samples result in a panel data set, of smaller sample size. Rotation, attrition and demographic changes result in more or less comparability between the panel and the full sample. Nonresponse and measurement errors introduce additional problems. It is no wonder then, that inconsistencies can arise between stock- and flow estimates. We have not resolved these inconsistencies in a satisfactory manner.

In addition, we have found quality analysis of flow statistics to be more complex than the case for stock statistics. For instance, from survey-data at one point in time you can estimate nonresponse rate and proxy-response rate. Panel data from two points in time containing responses, proxy-responses and non-responses, result in nine different combinations for each person. A straightforward quality indicator for that situation is not obvious.

The idea

Statistics Norway uses register-based data extensively, in all steps in the LFS production process: sampling, interviewing, classification, estimation, quality analysis. So it is only natural that we again turn to registers for help. The reason we propose to start out with register-based data is to simplify the picture. As we have pointed out, flows statistics face more complex challenges than stock statistics. If we first look at simplified data we can perhaps better discern between the many challenges, and in time make better quality assessment.

The method assumes that the register is an error-free full-count. In practice, registers are not perfect. However, registers don't face typical survey problems such as design effect, sample error, nonresponse error, measurement error, mode effect etc.

Register data can be linked at the micro level by using universal codes for individual identification. The result from linking overlapping registers from two points in time can be expressed as 3 data sets, as was the case with survey panel. We use presumably complete and
correct data containing the LFS target population, namely 15-74 years old residents. Any differences between the overlapping and non-overlapping data should represent real population changes. These changes include additions: immigration, becoming 15 years old; and subtractions: emigration, deaths, becoming 75 years old.

So the idea is to assess quality by comparing the differences between stock and flow figures, between the survey and register data. Specifically, we first determine the differences that are caused by actual population changes. Resulting divergence must be caused by sampling, nonresponse, measurement errors, etc.

Some labour market flows are more interesting than others, for instance how many unemployed people get a job. However, we chose workforce status as the main variable of interest for this preliminary study. This was because we wanted a similar variable available from both register- and survey data, and because it illustrated an important point about population change.

Example 1: REGISTER

Table 1 shows register figures for workforce stocks and flows. From that we can calculate two figures for workforce change: "Stock change" is the difference in absolute figures from 2010 to quarter to 2011, while "Net flow" is the difference between inflow and outflow for the same period. This net flow is based on the panel only, i.e. people that are in the target population both in 2010 and 2011.

The stock data show an increase of 28.000 more people outside the workforce, the flow data show a decrease of 11.000 . For workforce figures, stock data show over three times the increase of panel data. Studying relatively long time series from registers (Diagram 1), we have found these inconsistencies to be relatively small and rather stable. We conclude that this is a structural phenomenon caused by the difference in workforce rate among people moving in and out of the target population. This means that the inconsistency is a result of actual population change, and not a sign of low quality of the input data.

Table 1: Workforce stocks and flows 4th Quarter 2010-2011. Register data. Residents 15-74 years old.

Stocks	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$
Total	3643182	3705934
Workforce	2575659	2610127
Inactive	1067523	1095807

Stock change	Net flow
62752	0
34468	10598
28284	-10598

Flows		2010-2011	
		Total	Panel
Total	Total	3770261	3578855
	Workforce	2610127	2567939
	Inactive	1095807	1010916
	Not panel	64327	
Workforce	Total	2575659	2557341
	Workforce	2375765	2375765
	Inactive	181576	181576
	Not panel	18318	
Inactive	Total	1067523	1021514
	Workforce	192174	192174
	Inactive	829340	829340
	Not panel	46009	
Not panel	Total	127079	
	Workforce	42188	
	Inactive	84891	

Diagram 1: Workforce change. $4^{\text {th }}$ Quarter $-4^{\text {th }}$ Quarter. Register data 2000-2012.

Example 2: SURVEY

Diagram 2 present time series of workforce change figures based on LFS survey panel data. "Stock change" is the difference in absolute figures from one quarter to 4 quarters later, while "Net flow" is the difference between inflow and outflow for the same period. Over a period of 4 quarters, the rotation plan result in a panel size maximum 50% of the full sample size. Diagram 3 shows the result of using regular weights for stock change and mean weights for flow change. In both diagrams we have adjusted the scales instead of reweighting at the micro level.

The survey sample figures show a more irregular and diverging picture, than comparable time series from register data. The results seem to indicate different trends at times. Possible reasons for this include, in addition to population changes, sampling- and nonsampling errors, rotation and attrition. The weighted series show more promising consistency, but are not very accurate. For instance unemployment-to-employment flow would require a better estimation method.

The point of using longitudinal data from registers as well is that we can begin to entangle the different factors behind the irregular and diverging trends. For instance, we have the opportunity to link register-based workforce status to the full sample, including the nonrespondents. From that kind of linked data we can discern between rotation effect and nonresponse effect.

Diagram 2: Workforce change. 4 ${ }^{\text {th }}$ Quarter $-4^{\text {th }}$ Quarter. LFS 1996-2012. Sample figures.

Diagram 3: Workforce change. $4^{\text {th }}$ Quarter $-4^{\text {th }}$ Quarter. LFS 1996-2012. Estimates.

Conclusion

Can this help us, and other countries, to present better output?
By using registers, we have identified that actual population changes causes some slight divergence between stock and flow figures for workforce trends. Different workforce rate between people moving in and out of the population causes different change figures between stock- and flow-data. This can be documented by making some tables that include "nonpanel" flows. If you have register-based longitudinal data with at least some kind of labour market information, this could be used to complement the LFS output.

In cases with more rapid demographic changes, this is even more relevant. For instance, due to the increasing influx of immigrant workers from new EU-countries, the population changes pose more challenges to survey-based statistics in Norway than before.

We have observed that LFS panel data show larger irregularities when comparing stock and flow figures for workforce trends. We plan to link register data containing labour market information to the sample data, in order to assess the impact of measurement errors and nonresponse errors to flow estimates. At this stage, we are very interested in experiences from countries that uses register data for similar purposes.
The regular stock statistics from the Norwegian Labour Force Survey are based on an estimation procedure involving post-stratification weights. Through analysis of relatively long time series, we have established that although the weighting adjusts the workforce rate level, it doesn't affect the change figures noticeably. With this in mind, and for the sake of simplification, we have disregarded the regular estimation procedure in this preliminary research. The next step is to develop a workable production system for estimation and dissemination of flow statistics.

As we have pointed out, official statistics for labour market changes could reveal seemingly inconsistent stock- and flow- figures. We should provide an explanation alongside the statistics if this inconsistency becomes apparent to the users. Other ideas include "hiding" the inconsistency, for instance by publishing only relative flow figures or adjusting the figures by some kind of weighting or calibration.
However, we believe that the impact of measurement errors and nonresponse errors are a much more pressing problem regarding flow estimates. We also believe that register data will prove useful in the further development, both for quality analysis and estimation method.

ANNEX I: TABLES

Table A: Workforce stocks. Register-based data $4^{\text {th }}$ Quarter 2000-2012 ${ }^{1}$

	Total	Workforce	Inactive
'2000	3199439	2307083	892356
'2001	3211032	2326929	884103
'2002	3234083	2334681	899402
'2003	3256107	2323697	932410
'2004	3282342	2334885	947457
'2005	3371778	2360932	1010846
'2006	3413695	2423224	990471
'2007	3469345	2517275	952070
'2008	3528773	2562265	966508
'2009	3582114	2550765	1031349
'2010	3643182	2575659	1067523
'2011	3705934	2610127	1095807
'2012	3768005	2636483	1131522

Table B: \quad Workforce flows. Register-based data $4^{\text {th }}$ Quarter 2000-2012

	Total				Workforce			
	Total	Workforce	Inactive	Not panel	Total	Workforce	Inactive	Not panel
$\mathbf{2 0 0 0 - 2 0 0 1}$	3275511	2333659	877373	64479	2316241	2141312	159804	15125
$\mathbf{2 0 0 1 - 2 0 0 2}$	3295077	2339900	894183	60994	2333659	2150944	168109	14606
$\mathbf{2 0 0 2 - 2 0 0 3}$	3317219	2337232	918875	61112	2339900	2142536	182565	14799
$\mathbf{2 0 0 3 - 2 0 0 4}$	3341976	2346478	935864	59634	2337232	2147883	175264	14085
$\mathbf{2 0 0 4 - 2 0 0 5}$	3426876	2368594	1003184	55098	2346478	2165346	167680	13452
$\mathbf{2 0 0 5 - 2 0 0 6}$	3471702	2430267	983428	58007	2368594	2199951	155231	13412
$\mathbf{2 0 0 6 - 2 0 0 7}$	3528645	2526416	942929	59300	2430267	2256433	159456	14378
$\mathbf{2 0 0 7 - 2 0 0 8}$	3584826	2571237	957536	56053	2526416	2337428	173718	15270
$\mathbf{2 0 0 8 - 2 0 0 9}$	3643155	2564759	1017355	61041	2571237	2365627	188841	16769
$\mathbf{2 0 0 9 - 2 0 1 0}$	3706022	2575659	1067523	62840	2564759	2354888	192256	17615
$\mathbf{2 0 1 0 - 2 0 1 1}$	3770261	2610127	1095807	64327	2575659	2375765	181576	18318
$\mathbf{2 0 1 1 - 2 0 1 2}$	3833606	2636483	1131522	65601	2610127	2403873	187799	18455

	Inactive					Not panel	
	Total	Workforce	Inactive	Not panel	Total	Workforce	Inactive
$\mathbf{2 0 0 0 - 2 0 0 1}$	883198	169482	664362	49354	76072	22865	53207
$\mathbf{2 0 0 1 - 2 0 0 2}$	877373	163428	667557	46388	84045	25528	58517
$\mathbf{2 0 0 2 - 2 0 0 3}$	894183	170520	677350	46313	83136	24176	58960
$\mathbf{2 0 0 3 - 2 0 0 4}$	918875	174000	699326	45549	85869	24595	61274
$\mathbf{2 0 0 4 - 2 0 0 5}$	935864	175821	718397	41646	144534	27427	117107
$\mathbf{2 0 0 5 - 2 0 0 6}$	1003184	205881	752708	44595	99924	24435	75489
$\mathbf{2 0 0 6 - 2 0 0 7}$	983428	230686	707820	44922	114950	39297	75653
$\mathbf{2 0 0 7 - 2 0 0 8}$	942929	193915	708231	40783	115481	39894	75587
$\mathbf{2 0 0 8 - 2 0 0 9}$	957536	164955	748309	44272	114382	34177	80205
$\mathbf{2 0 0 9 - 2 0 1 0}$	1017355	181733	790397	45225	123908	39038	84870
$\mathbf{2 0 1 0 - 2 0 1 1}$	1067523	192174	829340	46009	127079	42188	84891
$\mathbf{2 0 1 1 - 2 0 1 2}$	1095807	193439	855222	47146	127672	39171	88501

[^0]
[^0]: ${ }^{1}$ Break in time series: 2005-2006 target population changed from 16-74 to 15-74 years old residents.

