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Abstract 

Scanner data are a quite new data source for statistical agencies and the availability of electronic sales data for 

the calculation of the Consumer Price Index (CPI) has increased over the past 16 years. Scanner data can be 

obtained from a wide variety of retailers (supermarkets, home electronics, Internet shops, etc.) and provide 

information at the level of the barcode, i.e. the Global Trade Item Number (GTIN, formerly known as the EAN 

code). One of advantages of using scanner data is the fact that they contain complete transaction information, i.e. 

prices and quantities for every sold item. It means that we may use expenditure shares of items as weights for 

calculating price indices at the lowest (elementary) level of data aggregation. One of new challenges connected 

with scanner data is the choice of the index formula which should be able to reduce the chain drift bias and the 

substitution bias. In this paper, we compare several price index methods for CPI calculations based on scanner 

data. In particular, we consider bilateral index methods with chained versions of direct weighted and unweighted 

indices, and also selected multilateral index methods, i.e. the quality adjusted unit value method (QU method) 

and its special case (the Geary-Khamis method), the augmented Lehr method, the so called “real time index”, the 

GEKS method and the CCDI method. We also propose some price index modifications. We verify the impact of 

window updating methods and also different weighting schemes in quantity weights on the price index, i.e. we 

consider alternatively the QU-TS method and the QU-EW method. We compare all these methods using 

artificial data sets and  real scanner data sets obtained from one supermarket and allegro.pl.  

 

Keywords:  Scanner data, Consumer Price Index, superlative indices, elementary indices, chain indices, QU-GK 

index, Geary-Khamis method, real time index, GEKS, bilateral indices, multilateral indices. 
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1. Introduction  

Scanner data mean transaction data that specify turnover and numbers of items sold by 

GTIN (barcode, formerly known as the EAN code). Scanner data have numerous advantages 

compared to traditional survey data collection because such data sets are much bigger than 

traditional ones and they contain complete transaction information, i.e. information about 

prices and quantities. 

1  Department of Statistical Methods, University of Lodz, Lodz, Poland, jacek.bialek@uni.lodz.pl. 
   Central Statistical Office in Poland, Department of Trade and Services, Poland, J.Bialek@stat.gov.pl 
2  Central Statistical Office in Poland, Department of Trade and Services, Poland, A.Bobel@stat.gov.pl 



 2

In other words, scanner data contain expenditure information at the item level (i.e. at the 

barcode or the GTIN level), which makes it possible to use expenditure shares of items as 

weights for calculating price indices at the lowest (elementary) level of data aggregation.  

Scanner data from two supermarkets were introduced in the Dutch CPI in 2002 and, in 

January 2010, the number of supermarkets providing the scanner data was extended to six. 

The Dutch CPI was re-designed (de Haan (2006), van der Grient & de Haan (2010), de Haan 

and van der Grient (2011)). In 2017, scanner data of ten supermarkets chains were used and at 

present surveys are not carried out anymore for supermarkets, i.e. scanner data from other 

retailers (for instance, from do-it-yourself stores or from travel agencies) are used in the 

Dutch CPI (Chessa (2015)). Until  2015, four EU countries were using scanner data (the 

Netherlands, Norway, Sweden, and Switzerland). The number of countries that make use of 

scanner data in their CPI has been growing, i.e. in April 2016, the number of EU countries 

increased to seven (Belgium, Denmark and Iceland started to use such data sets) and at 

present, some of national statistical institutes (NSIs) consider starting to use scanner data. 

Some other countries consider using scanner data in their CPI calculation in the nearest future 

(or have just started using it), for instance: the French National Statistical Institute (INSEE) 

launched in 2010 a pilot project in order to get some insights into the suitability of these data 

for CPI purposes, the Statistics Portugal was awarded in 2011 a Eurostat grant to undertake 

the initial research on the exploitation of scanner data, in Luxembourg, collaboration was put 

in place with several retailers who agreed to transmit every month their data to the IT system 

(STATEC) and scanner data can be introduced in the regular production from January 2018. 

In January 2018, in Poland, the project titled “INSTATCENY” began and its main aim is to 

create the new methodology of CPI measurement based on data from different (traditional and 

untraditional) sources, including scanner data and web-scraped data. In 2017, the Eurostat 

provided Practical Guide for Processing Supermarket Scanner data, which is commonly 

available on website: https://ec.europa.eu/eurostat/web/hicp/overview). In the above-

mentioned guide, we can read: “This guide describes the situation in 2017. It will need to be 

updated as the use of scanner data develops and broadens”. In fact, the methodology for CPI 

(or HICP) construction using scanner data has strongly evolved over the last few years (see 

for instance: Ivancic et. al. (2011), Krsnich (2014), Griffioen & Bosch (2016), de Haan at. al. 

(2016), Chessa & Griffioen (2016), Chessa (2017), Diewert & Fox (2017)). One of new 

challenges connected with scanner data is the choice of the index formula which should be 

able to reduce the chain drift bias and the substitution bias.  
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In this paper, we compare several price index methods for CPI calculations based on 

scanner data. The paper is organised as follows: Section 2 describes a selected bilateral and 

multilateral index method which can be used in the case of scanner data and this Section also 

discusses updating and weighting problem connected with multilateral methods; Section 3 

proposes some price index modifications; Section 4 presents the results from our simulation 

study and examines the influence of price and quantity dispersions on the characteristic of 

bilateral and multilateral index methods; Section 5 presents the empirical study based on real 

scanner data sets obtained from one supermarket and the e-commerce platform allegro.pl; 

Section 6 lists the main conclusions. 

 
2. Index methods for CPI calculations using scanner data 

 

Most statistical agencies use bilateral index numbers in the CPI measurement, i.e. they use 

indices which compare prices and quantities of a group of commodities from the current 

period with the corresponding prices and quantities from a base (fixed) period. In multilateral 

methods, we collect information about prices and quantities of a group of commodities from 

T periods and next we calculate a sequence of price indices for these T periods. Although 

Ivancic, Diewert and Fox (2011) have suggested that the use of multilateral indices in the 

scanner data case can solve the chain drift problem, most statistical agencies using scanner 

data still make use of the monthly chained Jevons index (Chessa et. al. (2017)). Since the 

elementary Jevons price index belongs to bilateral (direct) index methods, we start our 

description of possible methods with these methods. Following Chessa et. al. (2017), let us 

denote the sets of homogeneous products belonging to the same product group in months 0  

and t  by 0G  and tG  respectively, and let tG ,0  denote the set of matched products in both 

moments 0 and t .  A product may refer to a single item (GTIN) or to a sub-group of items 

(GTINs) having the same characteristics, and thus being in the same homogeneity group. In 

the next part of the paper, we consider the second scenario, i.e. a homogeneous group of 

different GTINs but having identical characteristics. We also consider a month as a time 

period over which scanner data are aggregated. In fact, one month is the longest interval 

among time intervals recommended by Eurostat for the scanner data aggregation (see 

Practical Guide for Processing Supermarket Scanner data (2017), page 13) although, the 

same document on the same page states: “Most commonly, scanner data are collected weekly, 

i.e. all transactions taking place during a week are aggregated”.  
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2.1. Bilateral index methods 

 

2.1.1. Unweighted formulas. 

 

A recommendation of the European Commission concerning the choice of the elementary 

formula at the lowest level of data aggregation can be found on website: 

http://www.ilo.org/public/english/bureau/stat/download/cpi/corrections/annex1.pdf and it is 

as follows: “For the HICPs the ratio of geometric mean prices or the ratio of arithmetic mean 

prices are the two formulae which should be used within elementary aggregates. The 

arithmetic mean of price relatives may only be applied in exceptional cases and where it can 

be shown that it is comparable”. In other words, if expenditure information is not available, 

the European Commission recommends the Jevons (1865) price index (see also Diewert 

(2012) or Levell (2015)), which can written as follows 
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where 
ip  denotes the price of the i -th product at the time },0{ t  and tt GcardN ,0,0  . On 

the other hand, the same recommendation takes also into consideration (“in exceptional 

cases”) the Carli (1804) price index, which can be written as follows 
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In our research, we consider only the first formula (1) together with its monthly chained 

version which is denoted here by t
JCHP ,0

 . 

 

2.1.2. Weighted formulas 

 

Since scanner data contain information about the expenditure, it is possible in their case to 

calculate weighted bilateral indices. Superlative price indices, firstly proposed by Diewert 

(1976), are the most recommended index formulas for the scanner data case (as base 

formulas). Following Chessa et. al. (2017), we consider the Törnqvist (1936) price index, 

which is given by 
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where 0
is  and t

is  denote the expenditure shares of matched products in months 0 and t .  

Other commonly known superlative price indices are the Fisher price index (1922) and the 

Walsh price index (1901). Their formulas, denoted by t
FP ,0  and by t

WP ,0  respectively, can be 

written as follows: 
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where 0
iq  and t

iq  denote quantities of matched products in months 0 and t , t
LaP ,0  and t

PaP ,0  

denote the Laspeyres price index (1864) and the Paasche price index (1874)  respectively (see 

Section 2.2.1). In the next part of the paper only the Fisher and  the Törnqvist price indices 

are taken into consideration. 

 

2.2. Multilateral index methods 

 

Multilateral index methods have their genesis in comparisons of price levels across countries 

or regions. These methods satisfy the transitivity, which is a desirable property for spatial 

comparisons due to the fact that the results are independent of the choice of base country 

(region). Commonly known methods are the GEKS method (also known as the EKS method – 

see Gini (1931), Eltetö and Köves (1964), Szulc (1964), the Geary-Khamis (GK) method 

(Geary (1958), Khamis (1972)), the CCDI method (Caves, Christensen and Diewert (1982), 

Inklaar and Diewert (2016)) or the real time index method (Chessa (2015)). In this paper, we 

consider most of these methods but the problem of the best choice of the multilateral formula 

seems to be still open. 
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2.2.1. The quality adjusted unit value index and the Geary-Khamis (GK) method 

 

The term “Quality adjusted unit value method” (shortened to the “QU method”) was 

introduced by Chessa (see, for instance, Chessa (2015, 2016)). The QU method is a family of 

unit value based index methods with the above-mentioned Geary-Khamis (GK) method as a 

special case. According to the QU method, the price index t
QUP ,0  which compares the period t  

with the base period 0 is defined as follows 
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where the numerator in (6) is the measure  of the turnover (expenditure) change between the 

two considered months and the denominator in (6) is a weighted quantity index. Note that 

both the turnover index and the weighted quantity index are transitive, and thus the price 

index t
QUP ,0  is also transitive (Chessa at. al. (2017)). Note also that the quantity weights iv  are 

the only unknown factors in formula (6) and these factors convert sold quantities 0
iq  and t

iq  

into “common units” 0
iiqv  and t

iiqv .  Prices of products, 0
ip  and t

ip , are converted into 

“quality adjusted prices” ii vp /0  and i
t
i vp / . If the considered consumption segment is 

homogeneous, then product quantities can be summed (factors iv  are equal for all products) 

and the index t
QUP ,0  simplifies to the unit value index (the nominator of (6)). If the above-

mentioned consumption segment is not homogeneous, then the unit value index must be 

adjusted. Note also that the formula t
QUP ,0  defines a family of price indices. In fact, limiting 

considerations to products sold in both moments 0 and t , and setting iv  equal to the product 

prices in the current period t , the formula (6) leads to the Laspeyres index  
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Similarly, if we consider the group of products tG ,0  and if the quantity weights iv  are set 

equal to the prices in the base period (month) 0, then the formula t
QUP ,0  simplifies to the 

Paasche price index, i.e. 
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In other words, different choices of factors iv  lead to different prices index formulas. In the 

GK method, the weights iv  are defined as follows 
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and ],0[ T  is the entire time interval of the product observations (typically 12T , see 

Diewert & Fox (2017)). Please note that formulas (6), (9) and (10) lead to a set of equations 

which should be solved simultaneously. The above-mentioned solution can be found 

iteratively (Maddison and Rao (1996), Chessa (2016)) or as the solution to an eigenvalue 

problem (Diewert (1999)). An interesting alternative method for obtaining this solution can be 

also found in Diewert & Fox (2017). 

 

2.2.2.  The augmented Lehr index 

 

The Lehr method is similar to the Geary-Khamis method (see Section 3.2.1, formula (6) with 

weights defined in (9)) but it does not use the complex iterative method. The quality adjusted 

factors iv  are defined here as follows 
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The immediate conclusion from (11) is that the Lehr index uses only data from months 0 and 

T , and in fact this is a bilateral index. Nevertheless, we can change the formula of the quality 

adjustment factors, and thus, similarly to multilateral methods, we take into considerations all 

available information from the interval , i.e.  (see Loon & Roels (2018)) 



 8

           








T

i

T

ii

i

q

qp
v

0

0









 .                                                                                                             (12) 

In the next part of the paper, the augmented Lehr index, i.e. the index constructed as in (6) 

with quantity weights defined in (12), will be denoted by t
ALP ,0  and the above-mentioned 

factors will be signified by AL
iv . In other words, the considered augmented Lehr index can be 

written as follows 
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2.2.3. The real time index 

 

Let us note that price imputations are not needed when prices from each month of the current 

year are included in weights iv . Taking typically value 12T , Chessa (2015) suggests 

defining these weights by including product prices and quantities from each month of the 

current year and the base month December of the previous year (there are 13 months 

together). However, as the same author admits, in practice, we can use prices and quantities of 

all 13 months only in the final month of the year, and thus some updating method is needed 

for iv  calculations each month. Although there are several methods for updating quantity 

weights (see for instance Krsinich (2014)), we focus on an interesting and quite easy for 

implementation method proposed by Chessa (2015). He suggests the following procedure of 

calculating the real time index: (1) For the current year, we use a time window with 

December of the previous year as the fixed base month and the window is enlarged each 

month with the current month; (2) The price index of the current month t  is calculated by 

using the updated quantity weights according to a special algorithm. In particular, this 

algorithm needs some initial values of price indices ,0
QUP : t 0  and it repeats updating 

weights 
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,0,  and next updating values of price indices ,0
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(according to (6)) until the difference between indices from the last two iterations is small 

enough. Chessa (2015) recommends a method for calculating initial indices. Moreover, he 
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sets the stop criterion at 0.001 and assumes the maximum absolute difference between the 

price index vectors as a distance measure. Nevertheless, in our study, we set the stop criterion 

at 0.0001 and we use the Euclidean distance for comparisons of two successive iterations. 

Steps (1) and (2) are repeated until December of the current year and after that the base month 

is shifted to December of the current year. In this way, the whole procedure may be repeated 

in the subsequent year. For more details, see also Chessa (2016). 

 

2.2.4.  The GEKS method 

 

Let us consider a time interval ],0[ T of observations of prices and quantities which will be 

used for the GEKS index construction. The GEKS price index between months 0 and t  is an 

unweighted geometric mean of 1T  ratios of bilateral price indices 
t

P
,

and  0,P  which are 

based on the same price index formula. The bilateral price index formula should satisfy the 

time reversal test, i.e. it should satisfy the condition 1,,  abba PP . Typically, the GEKS 

method uses the superlative Fisher price index and in such case the GEKS formula can be 

written as follows 
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2.2.5. The CCDI method 

 

The GEKS method for making international index number comparisons between countries 

comes from Gini (1931) but it should be mentioned that it was derived in a different manner 

by Eltetö and Köves (1964) and Szulc (1964). Feenstra, Ma and Rao (2009), and also De 

Haan and var der Grient (2011) suggested that the Törnqvist price index formula (see (3)) 

could be used instead of the Fisher price index in the Gini methodology. Caves, Christensen 

and Diewert (1982) used the GEKS idea with the Törnqvist index as a base in the context of 

making quantity comparisons across production units (the CCD method) and Inklaar & 

Diewert (2016) extended the CCD methodology to making price comparisons across 

production units. Thus, in the paper of Diewert and Fox (2017), the multilateral price 

comparison method that uses the GEKS method based on the Törnqvist price index is called 

the CCDI method. The corresponding CCDI price index can be expressed as follows 
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2.2.6. Other methods 
 

In the literature, we can find some other multilateral index methods which are not considered 

in this paper. The Country-Product Dummy (CPD) method proposed by Summers (1973) has 

been adapted for spatial price comparisons to the time domain and now it is known as the 

Time Product Dummy (TPD) method (de Haan & Krsinich (2014)). The multilateral hedonic 

method is closely related to the TPD method, i.e. its model parameters (known as “item fixed 

effects”) are not estimated for items (as in the TPD method) but they are estimated for the 

characteristics of items (attributes). Both the TPD method and the above-mentioned hedonic 

method do not simplify to a unit value index when all products are homogeneous and they are 

flawed with regard to their use of turnover in constructing weights (Chessa (2015)).  Some 

other methods can be encountered in the paper of Haan at al. (2016), for instance, the so-

called “Cycle Method” (see also Willenborg (2010, 2017), Willenborg and van der Loo 

(2016)). In Section 5, we propose some price index modifications instead of presenting these 

above-mentioned and omitted here methods. 

2.3. Alternative weighting schemes in the QU method 

 

In the classical form, the GK method uses quantity shares as weight in the construction of iv . 

In the literature, we can find at least two other weighting schemes in quantity weights for the 

GK price index. The first variant was proposed by Hill (2000) and it assumes that deflated 

prices, i.e. z
QU

z
i Pp ,0/ , are weighted by the ratio of the turnover share of the i -th product in the 

month z (denoted here by z
is ) and the sum of turnover shares of the same product over 

different months. In the paper of Chessa (2016), this variant is referred to as the “QU-TS” 

method but we use here the shortened notation “TS”, i.e. we denote the above-mentioned 

weights for deflated prices as z
TSi, . In other words, in the TS method, weights z

GKi ,  are 

replaced by weights calculated as follows 
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and the final quantity weights are computed as follows 
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The other weighting scheme assumes that deflated prices in months with sales receive equal 

weight, and thus it is denoted here by the EW method (in Chessa (2016), this method is 

referred to as the “QU-EW” method). In other words, in the considered weighting scheme, we 

use the following weights for deflated prices 

         





T

i

z
iz

EWi

0

,






 ,                                                                                                               (18) 

where 1z
i  if 0z

iq and 0z
i otherwise. Analogically to (17), in the EW method, the 

final quantity weights can be written as 
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In the next part of the paper, we will use different notations for quantity weights defined in 

(10), (17) and (19), i.e. these weights, connected with the GK, TS and EW methods, will be 

signified by GK
iv , TS

iv and EW
iv respectively. Similarly, the corresponding multilateral indices, 

which compare the time moment t  with the time moment 0, will be denoted by t
GKP ,0 , t

TSP ,0  and 

t
EWP ,0  respectively. 

 

2.4. Updating problem and window updating methods 

 
 

In the case of bilateral methods, a fixed base month (period) is used and the current period is 

shifted each month. In monthly chained index methods, the base and the current month are 

both moved one month. The problem with proceeding with the next month arises in the case 

of multilateral index methods. Adding information from a new month may influence the 

values of quality adjustment parameters and values of the corresponding multilateral indices. 

In this paper, we consider four commonly used rolling-window updating methods which shift 

the estimation window (often 13 months) forward each period (a month as a rule) and then 

splice the new indices onto the existing time series. The considered methods are as follows: 
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2.4.1. The movement splice method 

 

According to the movement splice method (de Haan & van der Grient (2011)), a price index 

for the new month is calculated by chaining the month-on-month index for the last month of 

the shifted window to the index of the previous month (the last month of the previous 

window). The movement splice method can be described by the following recursive formula 

        tt
tTt

t
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t
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where P is any multilateral price index formula, the subscript makes reference to the window 

period and the superscript indicates the period for which the index is calculated (see Loon & 

Roels (2018)).  

 

2.4.2. The window splice method 

 

The window splice method proposed by Krsinich (2014) calculates the price index for the 

new month by chaining the indices of the shifted window to the index of T months ago (i.e. to 

the index of 12 months ago for windows of 13 months). It can be written by the following 

general formula 
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2.4.3. The half splice method 

 

De Hann (2015) suggested that the link period 0t should be chosen to be in the middle of the 

first time window and the Australian Bureau of Statistics (2016) called this the half splice 

method for linking the results of two time windows. In other words, according to this method, 

the half splice happens at 
2

1
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T
t  if T is an odd integer and at 

20

T
t   if T is an even 

integer. A recursive formula for the half splice method is as follows 
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2.4.4. The mean splice method 

 

The mean splice method (Diewert & Fox (2017)) uses the geometric mean of all possible 

choices of splicing, i.e. all months },...,2,1{ T which are included in the current window and 

the previous one. The general formula for the mean splice method can be written as 

     
TT

t
ttt
tTt

ttt
tTtt

GMS
t

GMS
P

P
PP

1

1
1,
1,1

,
,1,0,0

0

0

0

)(






  .                                                                                           (23) 

It should be mentioned here that the above-presented method of calculating the real time 

index (see Chessa (2016)) is also a rolling-window updating method and it is called the fixed 

base monthly expanding window method. The corresponding real time index is often denoted 

by t
FBEWP ,0 . In the literature, we can also encounter some other more or less popular window 

methods, such as the fixed base moving window method (Lamboray (2017)), but they are not 

considered in our work. 

 

3. Propositions of price index modifications   

 
As it was mentioned above, most statistical agencies using scanner data still make use of the 

monthly chained Jevons index (Chessa et. al. (2017)). Due to the fact that for some reasons 

(such as the well-known and broad list of axiomatic properties) some countries want to stay 

with the Jevons formula, let us consider its modification for the scanner data case (see Section 

3.1.). As a consequence, we will consider also a modification of the GEKS index where the 

base superlative price index formula is replaced by the proposed modified Jevons index (see 

Section 3.2.). Finally, we will also verify an alternative system of weights in the Geary-

Khamis method (Section 3.3).  

 

3.1. Modification of the Jevons formula 

 

Let us consider a homogeneous group of products, i.e. a group of different items (GTINs) but 

having identical characteristics. The standard matched-model Jevons formula t
JP ,0  (see (1)) 

treats each matched item singularly, i.e. it does not take into account the fact that scanner data 

provide also information about quantities of these matched items. However, let us note that if 

the total sales of the i -th matched item at the time moment   is described by the available 
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quantity information 
iq , then we could treat this item at the considered moment not as a 

singular product but rather as 
iq  identical products (or product’s units) sold at the same price  


ip . In other words, we could consider a homogeneous group of 

 



Gi
iq products (product’s 

units) instead of a homogeneous group of  cardGN  products. Our considerations lead to 

the following modification of the classical Jevons price index described in (1): 

           





 
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0
,0 )()( .                                                                (24) 

In the next part of the paper, we consider the index t
MJP ,0  together with its monthly chained 

version which is signified here by t
MJCHP ,0

 . 

 

3.2. Modifications of the GEKS index 

 

The standard GEKS index uses the superlative Fisher price index as a base price index 

formula in its body (see (14)). In fact, the minimum requirement for the above-mentioned 

base bilateral index is the time reversal test (Chessa et. al. (2017)). It is easy to verify that the 

modified Jevons price index (24) satisfies the time reversal test, and thus we decided to use it 

(in the place of the Fisher price index) in the case of the GEKS formula (14). We introduce 

the multilateral JGEKS index in the following form 

            
1

1

0
0,

,
,0 )(






TT

MJ

t
MJt

JGEKS P

P
P






.                                                                                            (25) 

Justifications for using the JGEKS index are as follows: (a) from the “definition”, we can sum 

up quantities at the lowest level of data aggregation; (b) weights which are used in the JGEKS 

index reflect a pure consumer reaction to price changes, i.e. weights do not depend directly on 

artificially fixed prices (such as special discounts or promotions). It may be important when 

the consumers’ reaction to price changes is delayed. (c) finally, the difference between the 

GEKS and JGEKS indices may serve as a measure of rationality of consumers, i.e. it seems 

that when prices and quantities are strongly correlated, then the difference between these two 

indices is very small.  
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3.3. Modification of the Geary-Khamis index 

 

In the classical form, the GK method uses quantity shares as weight in the construction of iv . 

In Section 2.3, we mentioned some other discussed weighting schemes which could be 

interesting alternatives in the GK index construction. Now we suggest considering a different 

system of weights based on observed and available expenditures, namely  

          





T

ii

z
i

z
iz

EXi

qp

qp

0

,




 ,                                                                                                          (26) 

which allows us to calculate the final quantity weights in the QU method as follows 

         



T

z
z

QU

z
iz

EXii P

p
v

0
,0, .                                                                                                         (27) 

We will denote these quantity weights by EX
iv  and the corresponding QU index, i.e. the index 

defined in (6) but using weights EX
iv instead of weights iv , by t

EXP ,0 . 

 
4. Simulation study 

 
Case 1 
 

In the first experiment, we are going to verify the chain drift effect in the case of bilateral and 

multilateral indices. Chain drift occurs when an index does not return to unity when prices in 

the current period return to their levels in the base period (ILO 2004, p. 445). For instance, 

Szulc (1983), (1987) demonstrated how big the chain problem could be with chained 

Laspeyres indices but also, as it is commonly known, chain drift can also be a problem with 

chained superlative indices. Some authors consider the chain drift problem more narrowly, i.e. 

they assume that only when both prices and quantities in the current period revert back to 

their levels in the base period, a corresponding price index should indicate that no price 

change occurred (Diewert and Fox (2017), von Auer (2019)). Potentially, multilateral 

methods should deal with the chain problem in this “narrow” sense. In particular, in the paper 

of Diewert and Fox (2017), we can read about GEKS indices: “they satisfy Walsh’s multi-

period identity test so (…) the above indices are free from chain drift”. Nevertheless, the 

problem with scanner data is that quantity vectors may strongly differ in compared months, 

i.e. we may observe seasonal goods, disappearing or new goods or products which are deleted 
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from the sales offer for some reasons. In particular, when prices return to their base level, we 

often observe quantities with totally different values compared to the base period. The set of 

matched items for months t-1 and t may differ from the set of matched items for months t and 

t+1. As a consequence, even multilateral indices may not return to unity when prices revert 

back to the levels in the base period but quantities do not. It will be now illustrated. Let us 

consider a group of 40N  matched items observed during two years, i.e. each month during 

the time interval [0, 24]. Let us assume that the price of k -th item can be described by the 

following  stochastic process:  

Ytxkp t
k  )sin(100 ,   

where  
24

2
x and the random variable Y is normally distributed, i.e. )1.0;1(~ NY .   Thus, 

we have: )sin(100)( txkpE t
k  ,  )sin()( txkpD t

k   and 24
24

120 ppp kk  . Sample 

realisations of price processes (for 1k and 10k ) are presented in Fig. 1. 

 

Fig. 1. Sample realisations of price processes for ]24,0[t  

a) 1k                                                            b)     10k  

 

 

 

 

 

 

 

 

To take into considerations a wide spectrum of quantity cases, we consider the following 

deterministic quantity processes:  

 

Case 1.1.  (periodic quantities negatively correlated with prices) 

)sin(1000 txkq t
k   

Case 1.2.  (periodic quantities positively correlated with prices) 

)sin(1000 txkq t
k   

Case 1.3.  (strongly decreasing quantities uncorrelated with prices) 
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)
50

exp(10 t
k

q t
k   

Case 1.4.  (strongly increasing quantities uncorrelated with prices) 

)
50

exp(10 t
k

q t
k  . 

Sample realisations of quantity processes for 5k  and for all Cases 1.1 – 1.4 are presented in 

Fig. 2. 

 

Fig. 2. Sample realisations of quantity processes for ]24,0[t  and for 5k . 

                   Case 1.1                                                                          Case 1.2 

 

 

 

 

 

                     

 

 

                  Case 1.3                                                                         Case 1.4. 

 

 

 

 

 
 
 
 

 

 

Now we measure the price dynamics comparing the given month t  to the base month 0 .        

In Cases 1.1 and 1.2, when quantity processes are not strongly fluctuated and are correlated 

with price movements, all indices (unweighted, weighted, including multilateral ones) equal 1 

for }24,12{t . In these cases, quantities revert to the starting level after one and two years. 

The differences between indices are negligible (see sample Fig. 3, Fig. 4 and Fig. 5). 
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Fig. 3. Values of selected indices (Case 1.1) 

(in the case of multilateral indices, a 13-month window is considered, 12T , ]12,0[t ) 

 

 

 

 

 

 

 

Fig. 4. Values of selected multilateral indices (Case 1.1) 

(the whole time window is available, 24T , ]24,0[t ) 

 

 

 

 

 

 

 

 

Fig. 5. Values of the GEKS index (Case 1.1) 

(a 13-month window is considered, 12T , ]24,0[t ) 

 

 

 

 

 

 

 

 

The situation in Cases 1.3 and 1.4 is different. When quantities strongly decrease (Case 1.3), 

chained superlative indices and multilateral indices seem to slightly overestimate the real 

price change for time intervals [0,12] and [0,24] (see Fig. 6, Fig. 7, Fig. 8 and Tab.1). The 
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Lehr index is now the most sensitive in the case of the choice of the window updating method 

(see Fig. 9). 

 

Fig. 6. Values of superlative indices and their chained versions (Case 1.3, ]12,0[t ) 

 

 
 
 
 
 
 

 

 

 

Fig. 7. Values of selected multilateral indices (Case 1.3) 

(a 13-month window is considered, 12T , ]12,0[t ) 
 
 
 
 
 

 
 
 
 

 

 

 

Fig. 8. Values of selected multilateral indices (Case 1.3) 

(the whole time window is available, 24T , ]24,0[t ) 
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Fig. 9. Values of selected multilateral indices for different window updating methods 

(Case 1.3, a 13-month window is considered, 12T , ]24,0[t ) 

a) Lehr index                                                      b) GEKS index 

 
 
 
 
 
 
 
 
 
                          c) JGEKS index                                                     d) CCDI index 
 
 
 
 
 
 
 
 
 
Tab. 1. Values of considered indices  
(Case 1.3, a 13-month window is considered, 12T , }24,12{t ) 
 

Index formula Time interval 
[0,12] [0,24]* 

Classical indices 
Jevons 1.00000 1.00000 

Chained Jevons 1.00000 1.00000 
Fisher 1.00000 1.00000 

Chained Fisher 1.01096 1.00351 
Törnqvist 1.00000 1.00000 

Chained Törnqvist 1.01096 1.00350 
Multilateral indices 

GK 1.00965 1.00894 
TS 1.01017 1.00359 
EW 1.01003 0.99933 
EX 1.00977 1.00939 

Real Time 1.00965 1.00894 
GEKS 1.00500 1.00153 
JGEKS 1.00498 1.00143 
CCDI 1.00498 1.00140 
Lehr 1.00891 1.00680 

 (*) the mean splice method is used 
 

When quantities strongly decrease (Case 1.4), as a rule chained superlative indices and 

multilateral indices seem to be slightly below the real price change for time intervals [0,12] 
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and [0,24] (see Fig. 10, Fig. 11, Fig. 12 and Tab.2). The Lehr index is now the most sensitive 

in the case of the choice of the window updating method (see Fig. 13). 

 

Fig. 10. Values of superlative indices and their chained versions (Case 1.4, ]12,0[t ) 

 

 

 
 
 
 
 
 

 

 

 

 

Fig. 11. Values of selected multilateral indices (Case 1.4) 

(a 13-month window is considered, 12T , ]12,0[t ) 
 
 
 
 
 
 
 

 

 

 

 

Fig. 12. Values of selected multilateral indices (Case 1.4) 

(the whole time window is available, 24T , ]24,0[t ) 
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Fig. 13. Values of selected multilateral indices for different window updating methods 

(Case 1.4, a 13-month window is considered, 12T , ]24,0[t ) 

a) Lehr index                                                      b) GEKS index 

 
 
 
 
 
 
 
 
 
                          c) JGEKS index                                                     d) CCDI index 
 
 
 
 
 
 
 
 
 
 
Tab. 2. Values of considered indices  
(Case 1.4, a 13-month window is considered, 12T , }24,12{t ) 
 

Index formula Time interval 
[0,12] [0,24]* 

Classical indices 
Jevons 1.00000 1.00000 

Chained Jevons 1.00000 1.00000 
Fisher 1.00000 1.00000 

Chained Fisher 0.98885 0.99609 
Törnqvist 1.00000 1 

Chained Törnqvist 0.98885 0.99608 
Multilateral indices 

GK 0.99012 1.00882 
TS 0.98967 0.99648 
EW 0.98975 1.00021 
EX 0.99000 1.00840 

Real Time 0.99012 1.00882 
GEKS 0.99486 0.99815 
JGEKS 0.99485 0.99806 
CCDI 0.99482 0.99803 
Lehr 0.99112 1.00257 

 (*) the mean splice method is used  
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Case 2 
 

A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a 

continuous-time stochastic process in which the logarithm of the randomly varying quantity 

follows a Brownian motion (also called a Wiener process) with drift (see Oksendal, 2002; 

Privault, 2012). The main arguments for using the GBM price model are as follows: (a) the 

expected returns (relative price changes) are independent of the value of the process (price), 

which is consistent with what we would expect in reality; (b) the GBM process only assumes 

positive values, just like real commodity prices; (c) the GBM process shows the same kind of 

'roughness' in its paths as we see in real prices; (d) estimations of its parameters are relatively 

easy. In our simulation study, we use the GBM model for generating price processes and, 

having known the expected value of obtained price shares, we compare values of calculated 

multilateral indices with these theoretical ones. We assume that the given i th price process 

satisfies the following stochastic differential equation 

 

t
i

t
i

t
i

t
i dWpdtpdp   , (28) 

where the percentage drift   and  the percentage volatility   are constant, and 

},...,2,1,0:{ NitW t
i  are independent Wiener processes. The solution for the stochastic 

differential (7) is as follows (Oksendal, 2002, Jakubowski et al., 2003): 

))
2

exp((
2

0 t
ii

t
i Wtpp   , (29) 

and we assume that all initial prices 0
ip are deterministic. As a consequence, we obtain                                

)exp()()( tPEPE t
i

t  , (30) 

and 

]1))[exp(2exp()()( 2  ttPVarPVar t
i

t  , (31) 

where t
iP  is the i th price relative and 

0p

p
P

t
t   denotes the (unknown) population price 

index that we want to estimate. Since we assume that all price processes have the same 

probability distribution at each time moment (the drift and the volatility parameter are 

identical for all price processes), we could expect that any measure of price dynamics in the 

time interval [0,t] will provide the value )exp( t . In our study, we generate 1000N price 
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processes to exclude accidental results. Sample realisation of price process (for 1.0 and 

02.0 ) is presented in Fig. 14.  

 

Fig.14. Sample realisation of price process (for 1.0 and 02.0 ) 

 

 

 

 

 

 

 

 

 

 

 

 

We consider the following cases of quantity processes: 

 

Case 2.1 (periodic quantities) 

)sin(1000 txkq t
k   

Case 2.2.  (strongly decreasing quantities) 

)
50

exp(10 t
k

q t
k   

Case 2.3.  (strongly increasing quantities) 

)
50

exp(10 t
k

q t
k  . 

 

We consider the following values of parameters: 1.0 and }1.0,05.0,02.0{ . As a 

consequence, the expected price changes for time intervals [0,12] and [0,24] (normalised into 

[0,1] and [0,2]) are 1.10517 and 1.2214 respectively.  Values of selected multilateral indices 

calculated for these two time intervals are presented in Tab.3 – 6 and in Fig. 15 (a 13-month 

window and the mean splice method are used). 
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Tab.3. Values of selected multilateral indices for considered time intervals – Case 2.1 
 

Index 
value 

Time interval [0,12]  
(theoretical index value = 1.10517) 

Time interval [0,24] 
(theoretical index value = 1.2214) 

02.0  05.0  1.0  02.0  05.0  1.0  
GK 1.10492 1.10064 1.13713 1.22484 1.21391 1.26426 
TS 1.10492 1.10064 1.13713 1.22484 1.21391 1.26426 
EW 1.10492 1.10064 1.13713 1.22484 1.21391 1.26426 
EX 1.10492 1.10064 1.13713 1.22484 1.21391 1.26426 

Real Time 1.10492 1.10064 1.13713 1.22484 1.21391 1.26426 
GEKS 1.10495 1.10072 1.13721 1.22497 1.21390 1.26400 
JGEKS 1.10471 1.09907 1.13096 1.22426 1.20550 1.23890 
CCDI 1.10495 1.10073 1.13726 1.22497 1.21392 1.26387 
Lehr 1.10492 1.10064 1.13713 1.22487 1.21389 1.26405 

 
Tab.4. Values of selected multilateral indices for considered time intervals – Case 2.2 
 

Index 
value 

Time interval [0,12]  
(theoretical index value = 1.10517) 

Time interval [0,24] 
(theoretical index value = 1.2214) 

02.0  05.0  1.0  02.0  05.0  1.0  
GK 1.09738 1.09406 1.09444 1.21575 1.27987 1.32131 
TS 1.09738 1.09447 1.09450 1.21527 1.27571 1.30300 
EW 1.09782 1.09469 1.09556 1.21516 1.27580 1.31908 
EX 1.09803 1.09387 1.09345 1.21566 1.27758 1.30853 

Real Time 1.09837 1.09406 1.09444 1.21575 1.27987 1.32131 
GEKS 1.09786 1.09475 1.09825 1.21402 1.27322 1.30844 
JGEKS 1.09766 1.09358 1.09539 1.21404 1.26845 1.28782 
CCDI 1.09786 1.09467 1.09810 1.21403 1.2739 1.30823 
Lehr 1.08685 1.08296 1.08447 1.20766 1.25881 1.30362 

 
 
Tab.5. Values of selected multilateral indices for considered time intervals – Case 2.3 
 

Index 
value 

Time interval [0,12]  
(theoretical index value = 1.10517) 

Time interval [0,24] 
(theoretical index value = 1.2214) 

02.0  05.0  1.0  02.0  05.0  1.0  
GK 1.10087 1.10428 1.09444 1.22130 1.23098 1.32131 
TS 1.10173 1.10570 1.09450 1.22237 1.25137 1.30300 
EW 1.10194 1.10632 1.09556 1.22226 1.25209 1.31908 
EX 1.10091 1.10428 1.09345 1.22148 1.23256 1.30853 

Real Time 1.10087 1.10428 1.09444 1.22130 1.23098 1.32131 
GEKS 1.10232 1.10570 1.09825 1.22118 1.24958 1.30844 
JGEKS 1.10205 1.10432 1.09539 1.22059 1.24529 1.28782 
CCDI 1.10229 1.10561 1.09810 1.22107 1.24885 1.30823 
Lehr 1.09109 1.09422 1.08447 1.22743 1.23190 1.30362 
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Fig. 15. Comparison of values of the Geary-Khamis and GEKS indices with the theoretical 
price dynamics ( ]12,0[t ) 
 

Case 2.1. 02.0 05.0 1.0  

 
 
 
 
 
 
  
 
 
 

Case 2.2. 02.0 05.0 1.0  
 
 
 
 
 
                                                                      
 
 
 

Case 2.3. 02.0 05.0 1.0  
 
 
 
 
 
 
 
 
 
 

The level of the “average error” of the given multilateral price index tP ,0 in the time interval 

]24,0[],0[ T is measured by the root mean square deviation: 







T

t

t t
P

T
RMSD

1

2,0 ))
12

exp((
1 

,                                                                                   () 

which describes the level of matching of obtained index values to theoretical values in points 

T,...,2,1 (under the GBM price model). The values of RMSDs calculated for all considered 

indices in Cases 2.1 – 2.3 and for two sample values of  are presented in Tab. 6. 
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Tab. 6. Values of RMSDs calculated for considered multilateral indices in Cases 2.1 – 2.3 and 
for }1.0;02.0{  

Index 
formula 

Case 2.1 Case 2.2 Case 2.3 
02.0  1.0  02.0  1.0  02.0  1.0  

GEKS MS 0.00334 0.02024 0.00821 0.05531 0.00675 0.04122 
GEKS WS 0.00334 0.02023 0.00808 0.05468 0.00664 0.04045 
GEKS HS 0.00334 0.02025 0.00816 0.05575 0.00671 0.04093 

GEKS GMS 0.00334 0.02025 0.00815 0.05534 0.00673 0.04086 
JGEKS MS 0.00343 0.02213 0.00825 0.04564 0.00669 0.04321 
JGEKS WS 0.00343 0.02212 0.00812 0.04512 0.00658 0.04240 
JGEKS HS 0.00343 0.02215 0.00820 0.04599 0.00665 0.04291 

JGEKS GMS 0.00343 0.02215 0.00819 0.04564 0.00667 0.04283 
CCDI MS 0.00334 0.02020 0.00822 0.05581 0.00675 0.04132 
CCDI WS 0.00334 0.02019 0.00809 0.05527 0.00664 0.04057 
CCDI HS 0.00334 0.02021 0.00817 0.05633 0.00671 0.04102 

CCDI GMS 0.00334 0.02021 0.00816 0.05591 0.00673 0.04095 
Lehr MS 0.00335 0.02024 0.01132 0.05747 0.00799 0.04685 
Lehr WS 0.00335 0.02021 0.01123 0.05635 0.00795 0.04013 
Lehr HS 0.00335 0.02025 0.01125 0.05725 0.00799 0.04397 

Lehr GMS 0.00335 0.02024 0.01123 0.05709 0.00796 0.04356 
GK MS 0.00334 0.02021 0.00832 0.05583 0.00665 0.04142 
GK WS 0.00334 0.02017 0.00808 0.05426 0.00624 0.04057 
GK HS 0.00334 0.02022 0.00827 0.05630 0.00661 0.04133 

GK GMS 0.00334 0.02021 0.00826 0.05631 0.00663 0.04125 
Real Time 0.00334 0.02023 0.00897 0.05712 0.00643 0.03807 

 

 
5. Empirical study 

 

Poland is at the beginning of the way to the regular and official use of scanner data in the CPI 

measurement. Statistics Poland has started to cooperate with three supermarkets but they do 

not provide scanner data in a regular way. Moreover, there is no IT system for combining and 

analysing different data sources from different retailers (supermarkets) written in different file 

formats. Nevertheless, some experiments on real scanner data sets are being done by using the 

R package and Mathematica software. In the following empirical study, we consider two 

scanner data sources: (a) the first is “classical”, i.e. data sets come from one supermarket and 

they concern the following group of products: plain flour (COICOP group: 011121), milk 

3.2% (COICOP group: 011411) and rice (COICOP group: 011111). In this case, we have only 

a 13-month time series (Dec. 2014 – Dec. 2015), so our analysis is limited here; (b) the other 

scanner data source is allegro.pl, which is one of the biggest online e-commerce platform in 

Poland. We use transaction data on mountain bikes, touring bicycles and children’s bicycles 

from the group “bicycles” (COICOP group: 071301). This time, the length of the considered 
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time interval is 25 months (Dec. 2016 – Dec. 2018), and thus window updating methods (for a 

13-month window) can be used here. In both cases (a) and (b), we use data aggregated to one 

month and products are defined by using EAN codes and retailers’ internal product codes 

(only in the “a” case). EANs that share the same characteristics are combined into the same 

homogeneous group of products. Matching products to the proper group is supported by using 

some text mining methods and also some manual verification is made to avoid the “re-launch 

problem”. To be included in the calculations, a product has to have a turnover above a 

minimum threshold. Products that show extreme pricing changes from one month to another 

are also excluded from the sample (outlier filter), i.e. we exclude 5% of the most extreme 

price changes. Our results are as follows: 

Case A (data from a supermarket) 

Fig. 16 presents a comparison of two selected multilateral indices calculated over the whole 

period of 13 months (i.e. the CCDI and GK indices when a full window is available) with the 

corresponding indices calculated over the “currently” available window (i.e. for the current 

time moment t, the available time window is [0,t] – see the CCDI_RT and the real time 

indices). Fig. 17 presents a comparison of the GEKS index with the CCDI and JGEKS 

indices calculated over the whole period of 13 months. Fig. 18 presents all considered 

multilateral indices together with the chained Jevons index calculated for the fully available 

time window. 

Fig. 16. Comparison of selected multilateral indices (CCDI, GK) for fully and “currently” 

available time windows (calculated for plain flour, milk and rice). 

a) plain flour 

 

 

 

 

 

 

b) milk 
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c) rice 

 

 

  

 

 

 

Fig. 17. Comparison of the GEKS index with the CCDI and JGEKS indices calculated over 

the whole period of 13 months for plain flour, milk and rice. 
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c) rice 
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Fig. 18.  All considered multilateral indices together with the chained Jevons index calculated 

over the whole period of 13 months for plain flour, milk and rice. 

 

a) plain flour 

 

 

 

 

 

 

 

b) milk 

 

 

 

 

 

 

 

 

c) rice 

 

 

  

  

 

 

 

Case B (data from allegro.pl) 

Fig. 19 presents a comparison of two selected multilateral indices calculated over the whole 

period of 13 months for the year: 2018 (i.e. the CCDI and GK indices when a full window is 

available) with the corresponding indices calculated over the “currently” available window 

(i.e. for the current time moment t, the available time window is [0,t] – see the CCDI_RT and 
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the real time indices). Fig. 20 presents a comparison of the GEKS index with the CCDI and 

JGEKS indices calculated over the whole period of 13 months for the year 2018 (a full time 

window is available). Fig. 21 shows differences in the window updating methods used in the 

case of the CCDI, GEKS, JGEKS and Lehr indices (T=12 and thus the splicing indices are 

calculated for the year 2018). Fig. 22 presents differences between the GEKS index and the 

corresponding splice indices, i.e. differences between the GEKS index calculated over the 

whole time window of 25 months (“GEKS Full”: Dec. 2016 – Dec. 2018) and the GEKS 

index updated after the Dec. 2017 (a 13-month time window) by using the movement splice, 

the window splice, the half splice, and the mean splice methods (the chain drift effect is 

tested). Fig. 23 presents a comparison of weighting schemes in the QU method in two 

variants: (A) the comparison among the GK, TS, EW and EX indices; (B) differences 

between the GK index and the TS, EW, EX indices (a 13-month time window is considered, 

year: 2018). Fig. 24 presents a comparison of all discussed multilateral indices with the 

chained Jevons index based on data collected in a traditional way by Statistics Poland (it is 

denoted by JEV (SP)) and calculated for all groups of bicycles sold in 2018. 

 

Fig. 19. Comparison of selected multilateral indices (CCDI, GK) for fully and “currently” 

available time windows (for mountain bikes, touring bicycles and children’s bicycles sold in 

2018). 

a) mountain bikes 

 

 

 

 

 

 

 

b) touring bicycles 
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c) children’s bicycles 

 

 

 

 

 

 

 

Fig. 20. Comparison of the GEKS index with the CCDI and JGEKS indices (a full window of 

13 months is available) for mountain bikes, touring bicycles and children’s bicycles sold in 

2018. 
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Fig. 21. Window updating methods in the case of the CCDI, GEKS, JGEKS and Lehr indices 

(a 13-month time window is considered) 
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c) children’s bicycles 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. Differences between the GEKS index and the corresponding splice indices (year: 

2018) 

a) mountain bikes 

 

 

 

 

 

 

 

 

b) touring bicycles 

 

 

 

 

 

 



 35

c) children’s bicycles 

 

 

 

 

 

 

 

 

 

Fig. 23. Comparison of weighting schemes in the QU method 

 (year: 2018, a 13-month time window is used) 
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b) touring bicycles 

 

  

 

 

 

 

c) children’s bicycles 
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Fig. 24. Comparison of all discussed multilateral indices with the chained Jevons based on 

data collected in a traditional way by Statistics Poland (a full window of 13 months, 2018 

year). 

a) mountain bikes                                                 b) touring bicycles 

 

 

  

 

 

 

 

c) children’s bicycles                                            d) all groups of bicycles 
 

 

 

 

 

 

 

 
6. Conclusions 

 

The general conclusions from the Simulation Study are: (a) Even multilateral indices may 

differ from unity if only prices revert back to their levels in the base period. In this sense, they 

may suffer from chain drift. In our study, chained superlative indices and multilateral indices 

seem to slightly overestimate the real price change when quantities strongly decrease. When 

quantities strongly decrease, as a rule chained superlative indices and multilateral indices 

seem to be slightly below the real price change. In our experiments (which are not presented 

here), we observe that the monotonicity of quantities (in particular those connected with new 

and disappearing goods) has a much more bigger impact on differences among multilateral 

indices than the level of price volatilities. However, when both prices and quantities in the 

current period revert back to their levels in the base period, multilateral indices indicate that 

no price change occurred; (b) When prices change periodically and quantities are correlated 

with price movements (positively or negatively) and there are no temporary unavailable 
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products, then differences between multilateral indices are negligible. In the same case, when 

quantities start to strongly decrease or increase, there may appear some differences among 

multilateral indices. These differences will rise if temporary unavailable products are included 

in the sample (see also Empirical Study); (c) When prices can be described by a geometric 

Brownian motion (they follow a trend instead of displaying periodical changes), differences 

between the theoretical (known) value of the price change and any multilateral price index 

(for a given time moment) are the biggest in the case of strongly decreasing quantities. In 

general, these differences will rise if the volatility of prices increases. In particular, for any 

considered cases of quantity changes, the measured root mean square error seems to be 

comparable for considered multilateral indices (GEKS, JGEKS, CCDI, Lehr, Real time) but it 

seems to be the smallest in the case of window splice method.  

Our Empirical Study provides the following conclusions: (a) When we have no historical 

data from supermarkets and we start using scanner data sets, then the application of 

multilateral indices for the “currently” available time window (from the beginning of 

cooperation with supermarkets till the current month) is justified since differences between 

selected indices (CCDI, GK) for the fully and “currently” available time window are not too 

big, i.e. these differences are decreasing functions of time and, as a rule, after 6 – 8 months 

they are negligible. Nevertheless, in the case of very dynamic scanner data sets (such as those 

connected with bicycles, where there are many new and disappearing bike models during a 

year – see Case B in the Simulation Study), these differences may equal several percentage 

points (b) In practice, there are no substantial differences between the GEKS and CCDI 

indices and it is not surprising since superlative indices (Fisher, Törnqvist) approximate each 

other (Diewert (1976)). Nevertheless, the differences between the GEKS and JGEKS indices 

are crucial and, in our opinion, it confirms that the movements of quantities may not be 

(rationally) correlated with price movements; (c) Differences between multilateral indices and 

the chained Jevons index may be very big (see Fig. 18 for plain flour or rice), and as a rule 

they are. Thus, switching the chained Jevons index to one of multilateral indices does matter 

in the CPI measurement; (d) The chain drift bias may be substantial when using splice indices 

(in our case, it has the biggest value for mountain bikes and touring bicycles, where it exceeds 

3 percentage points). In our study, the best result (i.e. the smallest chain drift effect) as a rule 

is obtained by using the movement splice method and the worst result (the biggest chain drift 

bias) is obtained by using the window splice method. The mean splice method provides index 

values being somewhere in the middle, i.e. in our study, such obtained values are between the 
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values obtained with the use of the movement splice method and the window splice method; 

(e) The differences between the GEKS index and splice indices as a rule are negative; (f) The 

choice of the weighting schemes in the QU method does matter – differences in results may 

be crucial (in our study time moments for which the differences between the TS, EW and EX 

indices exceeded 3 percentage points were observed). The EW index differs the most in 

relation to the Geary-Khamis index; (g) The results of price dynamics obtained by using 

alternative data sources (e.g.: allegro.pl) may be completely different in comparison to those 

obtained by using traditionally collected data sets (see Fig. 23); (h) The Lehr price index 

seems to be the most sensitive in the case of the choice of window updating method (see also 

our Simulation Study). 
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