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ALTERNATIVE COMPONENTS: ISSUES ON DESIGN 

EFFICIENCY FOR COMPLEX SAMPLES 
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ABSTRACT 

Sample size determination for any sample survey can be based on the desired 
objectives of the survey as well as the level of confidence of the desired estimates 
for some survey variables, the desired precision of the survey results and the size 
of the population. In addition to these, the cost of enumeration can also be 
considered as an important criterion for sample size determination. Recently, 
some international organizations have been using univariate sample size 
determination approaches for their multivariate sample designs. These 
approaches also included some design efficiency and error statistics for the 
determination of the univariate sample sizes. These should be used for 
determining the survey quality measures after the data collection, not before. The 
additional components of the classical sample size measure will create selection 
and representation bias of survey estimates, which is discussed in this article.  

Key words: univariate sample size, representation bias, sample allocation, error 

statistics, design efficiency measures. 

1.  Introduction 

Sample size determination for univariate cases has been commonly used for 
many years. Surveys which are based on large population sizes require other 
sample size determination methodologies than the univariate cases, because 
they are based on criteria for multivariate observations. Therefore, univariate 
sample size determination methodologies cannot satisfy the multivariable criteria. 
Recently, some national and international survey organizations have been using 
some modified univariate sample size determination formulas which have low 
efficiency. As a result, this can lead to under- or overrepresentation of the 
population by the selected sample. These modified formulas contain unnecessary 
components, such as design effect and response or nonresponse rates, etc. This 
article highlights the components which create selection and representation bias 
of survey estimates. Therefore, the methodological problem is not the concern of 
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this article. The main aim is to emphasize the correct usage of the sample size 
determination formulas for the multivariable case. Some researchers may want to 
follow the methodology (or formula) used by the respectful organizations, which 
may not fully (or correctly) represent the target population. 

2.  Classical Univariate Sample Size Measures 

Sample size determination is an important aspect of the representativeness of 
the survey results. There are many approaches which can be taken. Generally, all 
surveys utilize too many variables. Some of these variables may be more 
important than others for decision-makers. The researcher generally wishes to 
satisfy the representation of several survey variables, which are important. 

There are many studies on determination of sample size in different 
disciplines. Some of them propose a new methodology and some others gather 
the existing ones and compare their performances. Dell et al. (2002) discussed 
simple methods of estimating the number of animals needed for various types of 
variables and experiments. They showed that it is crucial to choose the power, 
the significance level, and the size of the effect to be detected, and to estimate 
the population variability of the variable being studied, and using a complicated 
design and statistical analysis usually results in the highest power to detect any 
difference. Shore (2008) addressed sample size determination relating to 
hypothesis testing, parameter estimation, relational modelling and optimal 
sampling. Sathien et al. (2010) gave a few suggestions regarding the methods to 
determine an optimum sample size in descriptive and analytical studies. Marshall 
et al. (2013) described basic requirements for sample size determination and the 
sample size determination methods to estimate a normal distribution mean, 
standard deviation, quantile, binomial proportion and Poisson occurrence rate. In 
his book, Ryan (2013) discussed many sample size calculation techniques with 
applications using software. Siddiqui (2013) presented the guidelines described in 
the literature as to determine the appropriate sample size for the various 
statistical techniques. Safo et al. (2015) compared the performance of the existing 
sample size method and the sample size method developed by the authors for 
lasso logistic regression. Placzek and Friede (2017) proposed methods for 
planning and analysing a multiple nested subgroups design and described 
sample size determination prior to the trial and sample size recalculation via a 
blinded review in an internal pilot study.  

For the representation of survey results, a very important single survey 
variable (univariate case) can be chosen and the sample size only for this 
variable can be evaluated. Alternatively, two variables (bivariate case) may affect 
one another and the sample size determination may be based on the presence of 
these. Finally, several variables (multivariate case) may become very important to 
determine the minimum sample size, by utilizing multivariate information. One of 
the common and most practical solution to these problems is to select several 
independent variables (univariate case) and compute sample sizes for each of 
these separately and choose the largest computed sample size to satisfy all 
variables.  

The use of several survey variables one at a time has some practical 
conveniences. On the other hand, the type of measurement scale of the survey 
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variable also leads to the use of different test statistics as input information for the 
sample size determination model. Here, the case of the proportion and another 
case of the sample mean for the determination of sample size will be illustrated. 

2.1. Determination of Sample Size for Proportion 

For the test of the following hypothesis; 
00 :  H  versus 11 :  H , the 

sample proportion (p) of success is distributed asymptotically as 

  nN  1,
 

with the requirement that   .1|Pr   dp  This 

leads to the sample size estimation as:   22

),1(1 dn   , where  is the 

level of significance and d is the level of tolerance of the estimate. For the 

unknown population proportion, we take  = 0.5 and the sample size estimate will 

be: 
22

),1(25.0 dn  . This naturally represents the worst case, which creates 

the maximum variance, to be on the safe side as the sample designer. If we have 
prior information about the population proportion, then consequently we can have 
relatively smaller sample size estimation. 

Hence, the sample size can be determined as: 
22

),1(25.0 dn  . The 

overall sampling fraction for this design will be, f = n/N = 1/F. Here, (N) is the total 
number of Housing Units (HUs) in the population, and (n) is the total number of 
Housing Units (HUs) in the selected sample. For self-weighting sample designs, 
the sampling fraction for any domain will be the same as any other domain in the 
design. Furthermore, this will also be equal to one another within any prefecture 
as well as the total population. 

2.2. Determination of Sample Size for Frequency Type Variable 

The frequentist case of sample size determination is concerned with the 
normal distribution with known variance. When the random variable X  is 

distributed as  2,N , the mean   may be estimated with absolute error (d) 

and probability 1 – α by the sample mean (m) if   

  .1|Pr   dm  

Since     1,0~ Nmn  , it follows that the above inequality is 

satisfied when the sample size (n) satisfies 
22

2

2 dZn  . Here, tolerance 

level refers to  nZd 
ˆ

2 . We can also easily create an application for this 

case just like the previous one. If we take the same element variance value and 
the same tolerance level for this case, then the estimated sample size will be the 
same as before. Hence, the sample size is determined by 

22

2

2 dZn   
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formula, which is affected by the level of confidence, level of tolerance (desired 
error variance) and the element variance. Due to changes in these parameters 
will consequently result in differing outcomes. 

3.  Sample Design for the Survey 

The sample design for the survey will be based on the latest available 
information on the population. The population will be stratified into domains 
(prefectures) and self–weighting samples will be selected for each domain. 

3.1. Sampling Frame and Stratification 

The latest population figures are based on the population projections for the 
survey time. The aggregated data from the urban–rural information for the 
available districts will be aggregated into several prefectures within a nested 
structure in defined geographic areas. Dividing the total urban and rural 

population  hM  for each domain (prefecture) by their Population Census 

average household size  hH  of each prefecture, we can compute the number of 

urban and rural Housing Units  hhh HMN   for the survey date. This 

calculation is based on the assumption that: the average household size does not 
change significantly over the years. This assumption is verified and used in many 
countries of the world. 

In summary, Desu and Raghavarao (1990) and Adcock (1997) proposed the 
following measures for frequentist methods. 

22

2

2

0 dZn    where d  is the absolute error;  
n

Zd




ˆ
2 . 

Alternatively, for studies aiming at the hypothesis testing 

  22

2

2* dZZn   . 

For the studies with binary response, i.e. binomial distribution, 

  22

),1(0 1 dn   . 

The ultimate sample size is adjusted for the known population size as: 

N

n

n
n

0

0

1

 . 

3.2. Measures of Design Efficiency 

The following measures of the design efficiency are commonly used for many 
surveys, after the data collection. There are several measures of design efficiency 
in survey research. Basically, it is the ratio of sampling variances, which is based 
on two different sample designs. The comparison of the two variances has to be 
based on the same sample sizes for both designs. 
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i. Design efficiency 

Design efficiency is the ratio of two sampling variances for given sample 
designs (Di; i=1,2). 

)var()var( 21 DD yyDesEff   

where D2 is not based on Simple Random Sample (SRS) design. 

ii. Design effect 

A design effect (deff) measures the relative increase or decrease in the 
variance of an estimator due to departures from simple random sampling. Kish 
(1965) presented deff as a convenient way of gauging the effect of clustering on 
an estimator of a mean (Henry and Valliant, 2015). Later work by Rao and Scott 
(1984) and others found that more complicated versions of deff’s were useful to 
adjust inferential statistics calculated from complex survey data (Sirken, 2002). 

A specialized version of deff was proposed in Kish (1965), who addressed 
only the effect of using weights that are not all equal. Kish derived the “design 
effect due to weighting” for a case in which weights vary for reasons other than 
statistical efficiency (Henry and Valliant, 2015). There are also sample designs 
and estimators where having varying weights can be quite efficient. 

Design effect is the ratio of two sampling variances for given sample designs. 

)(var)(var 1 SRSD yydeff   

where Design 2 is based on SRS only (Kish, 1965 & 1982). The original definition 
of the design effect is based on the sampling variance of a given complex design, 
which is compared with the SRS sampling variance of the same sample size. 
Theoretically, SRS has to be taken as an independent sample from the same 
population rather than adjusting the complex sample design boundaries as if it 
was selected as a SRS.  

The efficient sample size calculations assume simple random sampling. If the 
sample design deviates from SRS, the efficient sample size will also vary. deff is 
a measure for the relative efficiency of an estimator under a studied sampling 
design. It is the direct way of measuring the effect of design on sampling 
variability. The planned sample size computation for the univariate case naturally 
corresponds to the “gross sample size”. After the data collection “net sample size” 
will be achieved. The difference can be reflected through the computation of the 
nonresponse amount. On the other hand, the deff computation will be based on 
the sampling variance of the existing data, which is collected from the net sample 
size. Naturally, this will not include the planned inclusion probabilities and the 
clustering for the complex sample design in particular. 

iii. Design factor 

Design factor is the ratio of two standard errors for given sample designs 
(Kish, 1965). 

)()( 1 SRSD yseysedeft   

where Design 2 is based on SRS only. Here, deffdeft   and deffdeft 2
. 
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deft is a measure of efficiency of a given sample design compared to a direct 
simple random sampling of individuals, defined as the ratio between the standard 
error using the given sample design and the standard error that would result if a 
simple random sample was used. A deft value of 1.0 indicates that the sample 
design is as efficient as the simple random sample. 

3.3. Computed Error Statistics for the Analysis of Design Efficiency 

The sample design efficiency for a given design will be compared with some 
error statistics, in order to show the data quality measures. These measures are 
based on the error statistics which are based on the complex multivariate designs 
when compared with the base design, which is SRS with replacement. The basic 
error statistics which are obtained for this comparison will be: standard error, 
design factor, design effect, rate of homogeneity, cluster size, etc.  Some 
examples of these statistics are given in Table 1 below, which is based on the 
“2013 Turkey: Population and Health Survey” (HÜNEE, 2014). It is based on the 
complex sample survey design, which has 14,496 target sample households. The 
total sample household population was 41,476 persons. The household 
population consists of 78% urban and 22% rural domains. The aim of the 
presentation of these figures is merely to highlight the importance and usage of 
these error statistics. Here, the interpretation of the survey results is not intended 
to be the main purpose of this study. 

Table 1. Sampling Related Error Statistics for Selected Survey Variables     
Turkey 2013 

Survey Variables 
Ratio mean 

r = y/x 

Standard 
error 

se(r) 

Design 
factor 

deft 

Relative 
error 

se(r)/r 

Never married women 0.275 0.006 1.277 0.021 

Currently married women 0.683 0.006 1.276 0.009 

Number of live births 1.667 0.020 1.133 0.012 

Number of living children 2.919 0.050 1.252 0.017 

Wants no children 0.474 0.007 1.202 0.015 

Ideal number of children 2.721 0.019 1.507 0.007 

Total fertility rate (3 years) 2.258 0.069 1.360 0.031 

Infant mortality rate  
   (5 years) 

13.282 2.345 1.111 0.177 

  Source: HÜNEE (2014). 

The purpose of computing these statistics is to compare the efficiency of the 
latest design used. On the other hand, some survey institutions are mistakenly 
proposing to include these error statistics into their selection procedures. They 
are utilizing a univariate sample size formula, which is combined with some of 
these error statistics as well as response or nonresponse rate components, in 
order to pre-adjust the sample size. This article has shown that the use of 
additional unrelated components will create the selection and representation bias 
for the estimation of selected population parameters.  
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4.  Some Modified Sample Size Estimators 

For large scale surveys, an ideal way of obtaining the required sample size 
should be based on multivariate sample size determination. Some international 
organizations are insisting on using univariate sample size determination methods 
with some modifications to the formulae in place. For this case, their argument is 
based on using the univariate sample size methodology for several design 
variables separately. Then, they intend to compensate for the missing 
components by adding some error statistics (deff, nonresponse, etc.) in advance 
which are based on complex sample designs. They also argue that adding these 
statistics to their modified sample size formulae will solve their methodological 
bias. 

These error statistics are theoretically used for measuring the design 
efficiencies of their complex sample designs, when compared with the 
unrestricted design (i.e. SRS-WR). However, they are not proposed to be used 
prior to sample selection as an additional design component. Another important 
point is when these additional components are used within the desired sample 
selection formulae, they will naturally effect the overall sample selection 
probabilities in an undesired way, which will create sample selection bias. 
Consequently, it is not advised to use the modified univariate sample size 
determination formulas of this type. We would like to justify our argument by 
giving two different modified formulas in the following subsections. 

Survey sampling statisticians are responsible for designing sample surveys 
and determining the ideal and unbiased sample results for their surveys. When 
they are comparing their survey results with several internationally organized 
surveys, where their sample selection was biased due to the use of undesired 
sample size formulation, which created biased results. Consequently, these 
methodological problems naturally concern survey sampling statisticians overall. 
In addition, naturally these issues have to be brought to the attention of survey 
methodology community. 

4.1. Demographic and Health Surveys (DHS) 

The DHS (2012) has used the following formula for calculating the final 
sample size in terms of the number of households while taking design effect and 
non-response into account in advance, and is given by: 

 
 dRR

P
deftn hiDHS 2

2 11




 . 

The formula in terms of our notation is given by 

 
 eRR

d

p
deftn hiDHS 2

2 11 
  

where  

n is the sample size in households; 

deft* is the design effect (a default value of 1.5 is used for deft if not specified);  

p is the estimated proportion; 
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d is the desired relative standard error,   pnpp /1 ; 

Ri is the individual response rate; 

Rh is the household gross response rate; and 

e is the number of eligible individuals per household. 

(*): The symbol deft actually denotes the design factor, not the design effect. 
(Default value of deft=1.5 is recommended in DHS manual as a special case. 
Naturally, this corresponds to deff=2.25). In practice, this can be an acceptable 
threshold value for complex clustered sample designs. 

The household gross response rate is the number of households interviewed 
over the number selected. DHS reports the net household response rate, which is 
the number of households interviewed over the number valid households found in 
the field (i.e. excluding vacant and destroyed dwellings). The practical aspects of 
Rh and Ri rates are discussed in Ayhan (1981) for the Turkish Fertility survey 
data. Ayhan (1981) has used the WFS (1975) recommendations that the first visit 
to the household (or individual) plus the number of re-calls constitute total calls. 
For a household survey, 1 + 3 = 4 total calls, and for individual survey, 1 + 2 = 3 
total calls are proposed as threshold values. 

For a required precision with a relative standard error α, the net sample size 
(number of completed interviews) needed for a simple random sampling (SRS) is 
given by: 

 
.

11
2




p
nSRS

 

Since a simple random sampling is not feasible for DHS, the sample size for a 
complex survey with clustering such as DHS can be calculated by inflating the 
above calculated sample size by using a design effect (deff=deft2).  

A simple random sample would be a random selection of individuals or 
households directly from the target population. This is not feasible for DHS 
surveys because a list of all eligible individuals or households is not available. 

4.2. Multiple Indicator Cluster Surveys (MICS) 

Another survey which is based on the complex sample design is the MICS 
(2006). Methodological manuals of the United Nations Children’s Fund (UNICEF), 
Statistics and Monitoring Division, propose using the modified univariate sample 
selection formulae for their multivariable surveys. 

The sample size calculating formula for MICS is given by 

   

  h

MICS
npr

deffrr
n

.12.0

1.114
2


 . 

The formula in terms of our notation is given by 

     

  h

MICS
nkp

rdeffpp
n

.12.0

1
2

2

,1 



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where 
nMICS is the required sample size, expressed as number of households 

 
2

,1   is a factor to achieve the (1−) per cent level of confidence 

p is the predicted or anticipated prevalence (coverage rate) for the indicator 
being estimated 

r is the factor necessary to raise the sample size for nonresponse. 
(for example, for 10% nonresponse rate r should be 1.1.) 

deff is the design factor 

0.12p is the margin of error to be tolerated at the 95 per cent level of 
confidence, defined as 12 per cent of p (12 per cent thus represents the 
relative sampling error of p) 

k is the proportion of the total population upon which the indicator p is based, 
and 

nh is the average household size. 

 
For the Multiple Indicator Cluster Surveys (MICS), UNICEF proposes r = 1.1 

as an early compensation for the nonresponse amount. This will correspond to 
10% increase in the sample size before the data collection, which intends to 
compensate the same amount of loss in the collected sample following the data 
collection. This approach cannot be accepted due to several bias producing 
aspects. Firstly, nonresponse rate is a part of survey error, which should not be 
included as the sample selection component. Secondly, 10% nonresponse rate 
can be a lower bound threshold value for this error statistics. For many surveys, 
the nonresponse rates are higher than this in the literature. Recently, there has 
been even a tendency of increase in nonresponse rates for the sample surveys of 
some developed countries. 

For the MICS methodology, relative sampling error (value of 0.12p) has been 
used for margin of error in the previous formulae because it scales the margin of 
error to result in comparable accuracy regardless of whether a high coverage 
indicator or low coverage indicator is chosen as the key one for sample size 
determination.  

Recently, UNICEF, Statistics and Monitoring Section has decided not to clarify 
the sample selection formulae by removing the related methodology from their 
website. Instead, they provided a “sample size determination” template 
electronically. This template is naturally based on the previously discussed 
methodology for a univariate sample size determination algorithm, for a 
multivariate complex sample design. 

5. Design Efficiency of Alternative Sample Sizes 

This section clearly shows the partition of the components which are based on 
the modified sample size formulas of the two international institutions. The bias 
which will be created for the estimation by using the unrelated sample size 
formulae is given for the examined two large scale surveys. 
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The formula proposed by DHS is: 

eRR

d

p
deff

n
hi

DHS

2

11 






 

  

where 
DHSn  is the sample size in HH’s offered by DHS. 

The formula used in this study is 

  
eRR

deff

d

pp
n

hi

DHS
..

/1
2


 . 

The formula proposed by MICS is 

     

  h

MICS
nkp

rdeffpp
n

.12.0

1
2

2

,1 



 

where 
MICSn  is the sample size in HH’s offered by MICS. 

The formula used in this study is 

      

h

MICS
nk

rdeff

d

pp
n

.

1
2

2

,1 



. 

The relationship between the classical sample size formulization and DHS’s 
sample size formulization can be given as 

  eRR

deff

p
nn

hi

CDHS
..

1
22

,1 
  , 

where 
Cn  is the classical sample size formula for the binary response. 

The relationship between the classical sample size formulization and MICS’s 
sample size formulization can be given as 

 

h

CMICS
nk

rdeff
nn

.

.
 . 

6.  Issues on Selection Bias Representation 

A comparison of the outcomes for the classical sample size determination 
methods and modified sample size determination methods provides information 
on the population representation and related biases. If we compare the results, in 
terms of overall sampling fractions, the following comparison can be used. 

Overall sampling fraction of the classical estimate: 

    
N

d

pp

FN

n
f SRS

SRS 2

2
,1 11 




. 

Overall sampling fraction of the modified estimate of DHS: 
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   

.
..

1

..

1
22

,1
22

,1
eRR

deff

p
fN

eRR

deff

p
n

N

n
f

hi

SRS

hi

C
DHS

DHS

 
  

 
Overall sampling fraction of the modified estimate of MICS: 

   
.

.

.

.

.

h

SRS

h

C
MICS

MICS
nk

rdeff
fN

nk

rdeff
n

N

n
f   

Selection bias of the estimates for DHS: 

 
 














 1

..

1
22

,1
eRR

deff

p
ffffB

hi

SRSSRSDHSDHS


, 

where bias will be 0 if and only if 

 

1
..

1
22

,1


eRR

deff

p hi
. 

Selection bias of the estimates for MICS: 

   










 1

.

.

h

SRSSRSMICSMICS
nk

rdeff
ffffB , 

where bias will be 0 if and only if 
 

1
.

.


hnk

rdeff
. 

Selection bias formulas show that the sample size calculation used by the 
surveys affect the overall sample selection probabilities. Accordingly, it is not 
recommended to use the modified univariate sample size determination formulas 
of this type for the complex sample designs. 

Sample size determination for a two stage cluster sampling is proposed by 
Desu and Raghavarao (1990), and Aliaga and Ren (2006). Hansen et al. (1953) 
has evaluated the general cost function model for the complex sample designs. 
For the multivariable designs, there is no established standard computation 
formula for sample sizes. Depending on the type of design, the related 
parameters constitute variables for complex sample designs. 

7.  Weighting Adjustment Procedures 

After the determination of the univariate sample size, the actual SRS sample 
is selected from the population by using a randomization process. For the 
purpose of the allocation of complex sample survey designs, the selected sample 
is then reallocated to the proposed new sample design. The proposed design can 
be allocated to complex designs, which may be based on equal allocation, 
proportional allocation, probability proportional to size (PPS) allocation, weighted 
PPS allocation, optimum allocation, and clustering. A comparison of the sample 
allocation methods is summarized by Ayhan and Islam (2005). Under this 
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approach, the following adjustment methodologies can be used after the data 
have been collected from a complex sampling plan. 

7.1. Weighting Independent Stages 

Data weighting methods have been covered by Kish (1992), Kalton and 
Flores-Cervantes (2003), and Ayhan (2003), and Alkaya et al. (2017) in detail. 
Several alternative approaches, such as cell weighting, ranking, linear weighting, 
GREG weighting and several others can be proposed (Vaillant et al., 2013; Brick, 
2013). 

7.1.1. Adjustments for Design Weights 

For complex or stratified sample designs, design weights have to be used for 
the adjustment of the sample selection probabilities if the sample design is not 
self-weighting. For self-weighting sample designs selection probabilities of each 

domain will be the same as the overall, that is if
N

n

N

n
f i

i
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where
ip  is the selection probability of the domain and nwi  . 

 

7.1.2. Adjustments for Non-Response Weight 

 
Non-response weights should be used as an error correction component after 

the data collection, not before. Non-response adjustment weights are used to 
compensate for the losses of non-response amounts when the overall non-
response rate is greater than 10 per cent and the domain non-response rates are 
more than 5 per cent for any domain (WFS, 1977). Sample design outcomes 
other than the above restrictions do not require any weighting adjustments for the 
sample outcomes. Hence, the non-response weights are for each domain given 
by 

jj RRw  , ,2,1j , 

here 
 



jj

j

Rn

n
R , where jR  is the non-response rate for the domain (or 

strata), R  is the average non-response rate overall domains, and jn  is the 

domain size. These rates ( jR  and R ) are recommended by WFS (1977) and 

has been used in 42 WFS country surveys, including Turkish Fertility Survey 1980 
(Ayhan, 1981). 
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7.1.3. Adjustments for Post-Stratification Weights 

Computation of the post-stratification weights is required for each domain in 
order to avoid bias due to cross-tabulation of the data. Kalton and Flores-
Cervantes (2003) have proposed an alternative combined adjustment 
methodology for sample surveys. 

This procedure adjusts the sample weights so that the sample totals conform 
to the population totals on a cell-by-cell basis. The weights for each respondent 
(typically, the inverse of the probability of the case) in a weighting cell (or post-
stratum) is multiplied by an adjustment factor (Tourangeau et al., 2013). Then, the 
weight formula is given as 

,1

1

2 ijn

ij

j

ij w

w

N
w

j



  

in which ijw2  is the adjusted or post-stratified weight, ijw1  is the unadjusted 

weight, and the adjustment factor is the ratio between the population total for cell j 
(Nj) and the sum of the unadjusted weights for the respondents in that cell. 

Rather than using independent weighting and adjustment procedures for each 
stage of the weighting, alternative approaches can also be used. This is based on 
combined weighting methods, which take into account the conditional probability 
approach for the previous stages. As an alternative to the weighting independent 
stages, the combined weighting methods can be proposed to avoid bias for the 
sample estimates. 

7.2. Combined Weighting Methods 

Ayhan (2003) and Alkaya et al. (2017) have proposed the following combined 
weighting procedure for sample surveys. These weighting procedures are used in 
a sequential manner for each weighting component. The weights are proposed as 
products for each weighting stage in a combined way. Sample design may be 
self-weighting or non-self-weighting. Design weights have to be introduced for 
non-self-weighting designs in the following way. 

The probability of selection of the overall sample is obtained simply by the 

sampling fraction of the selected sample FXxf 1  for the total sample. 

On the other hand, after using some method of stratification, the sampling fraction 

of any strata is  .1 iiii FXxf   

7.2.1. Design Weights 

Design weights (Ayhan, 1991; Verma, 1991) for non-self-weighting sample 
designs can be computed for each domain i with the same probability of selection 

ip (Ayhan, 2003).  
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Here, 
0P has been computed to adjust the overall weighted and unweighted 

sample to be the same.  

 

7.2.2. Combined Weighting for Nonresponse 

In addition, a weighting procedure for nonresponse is also essential for self-
weighting and non-self-weighting sample design outcomes. The non-response 
rate is calculated as 

ii RRW 0

*   

where iii xxR * is the response rate in domain i. 

The overall response rate )( 0R for the design can be computed as  

   



I

i
iii

I

i
ii RxWxWR

11
0 ,/  

where 
0R is used to adjust the sample sizes to be the same,   xxWW

I

i
iii 

1

*
. 

7.2.3. Combined Weighting for Post-Stratification 

Finally, post-stratification of a complex sampling scheme requires additional 
weighting procedures for independent subclasses. The combined weight can be 
calculated by using the following weights: 

  XXWWW iiii
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ii RRW 0
*  , 

where iW  is the post-stratification weight, iW is the design weight, *
iW is the 

non-response weight,    


I

i
iii

I

i
ii RxWxWR

11
0 / and .*

iii xxR   

Consequently,   xxWWW
I

i

iiii 
1

*
 is the overall sample adjustment 

procedure for the combined weighted estimator. This is naturally provides the 
adjustment to the base variable x (Ayhan, 2003; Alkaya et al., 2017). 

Alternative weighting adjustment procedures in multistage complex sample 
surveys are proposed by Ayhan et al. (2000) for adjusting the original selection 
probabilities by PPS procedures. 

The next step in the analysis of the collected data is to compute the following 
error statistics for the proposed sampling design. This will provide information on 
how efficient the designed sample was when compared with the basic standard, 
which is SRS. 

8. Discussion and Conclusions 

In a multivariable survey design, the determination of the sample size is an 
important concept that has to be answered. Although there is no settled 
methodology, some prestigious organizations modify the formula for univariate 
sample size determination to be able to use it in the multivariable case. For this 
purpose, they included some factors such as deff or non-response rate in their 
sample size formulas. These factors have to be calculated after the sample has 
been collected as a data quality measure, not before. Hence, the modified 
univariate sample size methodologies of several survey institutions do not 
represent the corresponding population. The amount of bias involved in the 
formulas is clearly identified during the previous formulations. This paper 
highlights the importance of sample selection in a representative manner, to avoid 
the selection bias. 

The ideal approach should be not to determine the sample size of the 
complex survey design as if it was based on the univariate case and use SRS 
assumptions. Consequently, representation bias enables the survey results not 
representing the corresponding population parameters. 

For the complex designs, the suggested alternative strategy is to use 
weighting after SRS. For the purpose of allocation, the selected sample is 
reallocated to the proposed new sample design. As an alternative to the weighting 
independent stages, the combined weighting methods can be proposed to avoid 
bias for the sample estimates. 

International survey organizations should be responsible for following recent 
developments in survey sampling theory and methods, in order to maintain 
themselves as reliable institutions. 
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