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STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

Joint Issue: Small Area Estimation 2014 

Vol. 16, No. 4, pp. 483–484 

FROM  THE  EDITORS 

This issue is devoted entirely to selected papers presented at the international 

conference on Small Area Estimation − SAE 2014. The conference took place at 

the Economics University of Poznan, from the 3rd to the 5th of September 2014. 

A satellite event − a workshop devoted to small area estimation with R given by 

Professor Li-Chun Zhang from the University of Southampton and Statistics 

Norway − was organized on the eve of the conference (September 2, 2014). The 

main aim of the SAE 2014 Conference was to provide a forum for the current 

research on small area estimation and related fields. The conference focused on 

aspects of conceptual, methodological and practical achievements in small area 

estimation methods in recent years. The conference brought together specialists 

from universities working on small area estimation, practitioners working in 

National Statistical Offices and other research agencies, all over the world. The 

SEA 2014 Conference was organized as part of activities of the European 

Working Group on Small Area Estimation and was the next in the series of 

conferences which have so far been held in Jyväskylä, Pisa, Elche and Trier. 

 The Programme Committee of the Conference was chaired by Professor 

Domingo Morales, Universidad Miguel Hernández de Elche. The Organizing 

Committee of the SAE 2014 Conference was chaired by Professor Marcin 

Szymkowiak, Poznan University of Economics. More details about these 

committees are available at this link: http://www.sae2014.ue.poznan.pl/index.html. 

 Statistics in Transition has previously published seven issues that focused on 

SAE, starting with articles from the Warsaw International Conference held in 

1992 (Vol. 1, Number 6, 1994), and ending in 2005-6 with two issues (Vol. 7, 

No. 3, December 2005, and Vol. 7, No. 4, March 2006) with selected articles from 

The Conference held at the University of Jyväskylä, Finland, from 27-31 August 

2005. 

 This time, in view of the large number of papers (15), the SAE 2014 

proceedings are split into two parts: the first one appears in this thematic issue, 

while the second one will be published in the March 2016 thematic issue. These 

proceedings mark a turning as they were co-edited by Professor Włodzimierz 

Okrasa, Editor of Statistics in Transition, and Dr. Michael Hidiroglou, Editor of 

Survey Methodology. This joint editorship is a first between our journals, and it 

was a pleasure and memorable experience for both editors to collaborate.  

 These two issues represent a subset of the invited articles presented at the 

conference. They all went through a formal review process that was shared by 
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four Guest Editors: Professor Risto Lehtonen (University of Helsinki), Finland, 

Professor Ray Chambers (University of Wollongong), Australia,  Dr. Graham 

Kalton (Westat), U.S.A., and Professor Malay Ghosh (University of Florida), 

U.SA.  Both editors, Professor Okrasa and Dr. Hidiroglou, are very grateful for 

the excellent collaboration and efficient work of the Guest Editors. Our 

appreciation goes also to authors, especially those who had directly collaborated 

with us or with our editorial offices on adjusting their papers to our journals' 

technical requirements.  

It is with great satisfaction that we, as editors, provide the reader with such a 

unique collection of papers representing not only the state-of-the-art variety of 

small area estimation topics, but also a great deal of  thoughtful suggestion for 

exploration in further research. 

 

Michael Hidiroglou 

Wlodzimierz Okrasa 

Editors 
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Joint Issue: Small Area Estimation 2014 

Vol. 16, No. 4, pp. 485–488 

FROM  THE  GUEST  EDITORS  (PART 1) 

The first part of this Joint Issue of Statistics in Transition and Survey 

Methodology includes eight articles. These two issues have been split according 

to which guest editors have been looking after the articles. They are not 

necessarily sequenced according to the themes that appeared in the original 

conference programme. 

The first six contributions in this thematic issue of SIT and SMJ represent 

articles that are firmly methodological in their perspective. The first paper, by 

J.N.K. Rao provides a unifying perspective for the remaining five contributions. 

In this review paper, Rao highlights important new developments in SAE since 

the publication of his encyclopedic 2003 book. As he notes in his abstract, much 

of this new methodological development has focused on addressing the practical 

issues that arise when model-based SAE methods are applied in practice. An 

important dichotomy in this regard follows from the nature of the available data 

for SAE. Historically, such data have been area level aggregates of one form or 

another, typically direct sample-based estimates. Issues addressed in Rao's paper 

then include the choice of appropriate weights for these aggregates as well as 

methods for dealing with the not uncommon situation where there is a negligible 

area level variance component in the basic area-level model (the so-called Fay-

Herriot model) used to smooth these aggregates across the areas, or where this 

smoothing model is necessarily non-linear, reflecting a GLM for the underlying 

survey variable. Issues associated with estimation of both unconditional as well as 

conditional MSEs of these model-based estimators are also discussed. In the 

second half of his paper, Rao switches his attention to SAE where unit level data 

from the small areas of interest are available. This is a fast-growing set of 

applications, reflecting new capabilities in data collection. Here, the focus is on 

sample weighting and benchmarking as important requirements for users 

interested in design consistency of SAE outputs, together with important new 

developments in dealing with outliers in the survey data, applications to poverty 

mapping and dealing with informative sampling methods. Model selection and 

checking is extremely important in the unit level case, and the paper briefly 

describes some new developments in this regard. 

The next three papers in this issue focus on a new methodology for area level 

SAE. The first, by Bonnery, Cheng, Ha and Lahiri, notes that users of SAE 

outputs typically require more than just estimates of area averages, and are often 
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interested in small area distributions as well as rankings across small areas. In this 

context, these authors develop a triple goal SAE methodology for US state level 

unemployment, with estimates structured so that they are simultaneously efficient 

for estimation of area level average unemployment as well as the empirical 

distribution of area level unemployment, while also staying as close as possible to 

the actual ranking of the real small area means. An interesting idea that is 

discussed in this paper is the fact that in practice it is not just one area average 

that is of interest, but an "ensemble" of such averages corresponding to the area-

level distribution of a characteristic of interest. This immediately leads to a 

corresponding ensemble of models, which these authors fit using a Bayesian 

MCMC approach. 

The general theme of the usefulness of incorporating time series information 

in SAE solution is repeated in the paper by van den Brakel and Buelens. Here, 

though the attention is directed towards appropriate model specification when the 

estimation must be carried out at regular intervals, using data from repeated 

surveys and practical considerations rule out survey-specific model optimisation. 

An approach to covariate selection for small area survey estimates obtained from 

a repeated survey under a Fay-Herriot specification is defined, with the model 

specification carried out simultaneously over a number of "editions" of the survey 

while being constrained to be the same for each edition. The final model is chosen 

by minimising the average conditional AIC over all the editions, with the small 

area estimates at each time period computed using a Hierarchical Bayes approach. 

The  next paper, by Karlberg, switches gears and considers SAE under a unit 

level model. In particular, in this paper Karlberg addresses two of the difficult 

issues that arise when the available unit level data are non-negative values drawn 

from an economic population, as would be the case for a business survey. These 

conditions often lead to a highly right-skewed distribution of the sample data 

values, with outliers a not uncommon feature, together with the presence of 

excess zeros. Both of these data characteristics are not conducive to SAE based on 

the industry standard linear mixed model for unit level data. Instead, Karlberg 

combines a log scale linear mixed model for the strictly positive data (to deal with 

their high skewness) and a logistic model for the presence of zero values (a hurdle 

model) in order to define a specification for the zero-inflated observed data. 

Simulation results for SAE based on this approach are promising, but application 

to a real business survey data set turns out to be disappointing, reflecting the very 

complex nature of such data. Clearly further research is needed for SAE in 

business surveys. 

The fifth paper, by Franco and Bell, shows how the Fay-Herriot approach can 

be extended to where the underlying averages are derived from binary survey 

variables, so that the basic area-level model can be specified as linear on a logit 
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scale. This model is then combined with time series of aggregates from the small 

areas, allowing for information to be "borrowed" across both time and space. An 

application to improving county-level poverty estimates in the SAIPE programme 

of the US Bureau of the Census is used to demonstrate the efficiency gains of the 

approach. 

The sixth paper, by Luna, Zhang, Whitworth and Piller, represents a 

fundamental departure from the random area effect-based SAE models that 

underpin the previous papers. Here, the underlying data consist of historical 

counts, represented by an out-of-date census (or register)-based cross-tabulation 

of interest, where one of the dimensions of the tabulation is the area identifier, as 

well as up-to-date information on margins of the cross-tabulation derived from a 

current survey. Such data are naturally modelled using a log-linear specification, 

and the authors consider the use of a generalized SPREE approach to recover the 

current cross-tabulation. Alternative GSPREE models with increasingly complex 

interaction structure are investigated and applied to estimation of population 

counts within ethnic group in small areas in the United Kingdom. Interestingly, 

these authors report that for these data more complex model specifications do not 

necessarily lead to improvement in the resulting survey estimates, essentially 

because the sparse nature of the available data does not allow these more complex 

models to be adequately fitted. 

The last two contributions focus on small area education. Small area 

estimation is gaining increasing popularity among survey statisticians, 

economists, sociologists and many others. Unfortunately, small area courses are 

offered only in a handful of universities and that too just as an elective. However, 

there is a definite need for small area teaching, and the papers by Burgard and 

Münnich as well as Golata have addressed this very important issue. The paper by 

Burgard and Münnich has hit the mark very directly. What the paper emphasizes 

is that rather than giving a series of lectures on the different small area techniques 

and the associated theory behind them, it is more important to combine the theory 

with actual simulations. In this way, students can have hands on experience of the 

subject as well as are able to make a comparison of the different small area 

methods which they have learnt. Like Burgard and Münnich, Golata also 

appreciates very well the need for small area education. To this end, she 

conducted a survey with participants from both the academics and National 

Statistical Institutes. Her objective went beyond questions on small area teaching, 

and enquired several related pertinent questions such as risks encountered in 

applying SAE as well as important sources on SAE developments. The results of 

her survey are listed in a series of tables and graphs to provide the reader with a 

better understanding of the state of the art.  
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Several persons (in addition to the Editor and Guest Editors) have served as 

reviewers of papers published in this thematic issue of the journal: we would like 

to thank all the authors for taking the time to turn their SAE 2014 presentations 

into the interesting and thought provoking papers published here. We 

acknowledge the efforts of Giovanna Ranalli, Nicola Salvati, Hukum Chandra and 

Timo Schmid, who helped review the first six papers: their encouraging and 

productive comments directly contributed to their obvious quality. 

 

Raymond Chambers and Malay Ghosh 

Guest Editors 
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Joint Issue: Small Area Estimation 2014 

Vol. 16, No. 4, pp. 489−490 

SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition new series (SiT) is an international journal published 

jointly by the Polish Statistical Association (PTS) and the Central Statistical 

Office of Poland, on a quarterly basis (during 1993–2006 it was issued twice and 

since 2006 three times a year). Also, it has extended its scope of interest beyond 

its originally primary focus on statistical issues pertinent to transition from 

centrally planned to a market-oriented economy through embracing questions 

related to systemic transformations of and within the national statistical systems, 

world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved 

in data production, data dissemination and utilization, providing international 

community of statisticians and users – including researchers, teachers, policy 

makers and the general public – with a platform for exchange of ideas and for 

sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 

– as either a scientific domain (new research and data analysis methods) or as a 

domain of informational infrastructure of the economy, society and the state – are 

appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 

growth and social progress (both locally and globally), including better-informed 

decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 

internationally recognized experts, who are guided in their decisions about the 

publication by criteria of originality and overall quality, including its content and 

form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 

sit@stat.gov.pl.,  

GUS / Central Statistical Office  

Al. Niepodległości 208, R. 287, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published previously 

and that it is not under review elsewhere. It should include an abstract (of not 

more than 1600 characters, including spaces). Inquiries concerning the submitted 

manuscript, its current status etc., should be directed to the Editor by email, 

address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 

on its Web site: http://stat.gov.pl/en/sit-en/guidelines-for-authors/ 

mailto:@stat.gov.pl
mailto:w.okrasa@stat.gov.pl
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Survey Methodology is an internationally acclaimed scientific journal that is 

published twice a year. For over 40 years, it has been a source of key information 

on survey methods for statisticians. Survey Methodology draws on the expertise 

of statisticians and experts from Canada and around the world. It provides 

reliable, complete and authoritative information. 

Survey Methodology publishes articles dealing with various aspects of 

statistical development relevant to a statistical agency, such as design issues in the 

context of practical constraints, use of different data sources and collection 

techniques, total survey error, survey evaluation, research in survey methodology, 

time series analysis, seasonal adjustment, demographic studies, data integration, 

estimation and data analysis methods, and general survey systems development. 

The emphasis is placed on the development and evaluation of specific 

methodologies as applied to data collection or the data themselves. All papers will 

be refereed. However, the authors retain full responsibility for the contents of 

their papers and opinions expressed are not necessarily those of the Editorial 

Board or of Statistics Canada. 

Survey Methodology is published twice a year in electronic format. Submitted 

articles are peer reviewed by experts in the particular area that the author(s) 

address.  

Authors are invited to submit their articles in English or French in electronic 

form, preferably in Word to the Editor: 

statcan.smj-rte.statcan@canada.ca, 

Statistics Canada, 150 Tunney’s Pasture Driveway,  

Ottawa, Ontario, Canada, K1A 0T6 

For formatting instructions, please see the guidelines provided in the journal 

and on the web site (www.statcan.gc.ca/SurveyMethodology). 

mailto:statcan.smj-rte.statcan@canada.ca
http://www.statcan.gc.ca/SurveyMethodology
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Vol. 16, No. 4, pp. 491–510 

INFERENTIAL ISSUES IN MODEL-BASED SMALL 

AREA ESTIMATION:  

SOME NEW DEVELOPMENTS 

J. N. K. Rao1 

ABSTRACT 

Small area estimation (SAE) has seen a rapid growth over the past 10 years or so. 

Earlier work is covered in the author's book (Rao 2003). The main purpose of this 

paper is to highlight some new developments in model-based SAE since the 

publication of the author's book. A large part of the new theory addressed 

practical issues associated with the model-based approach, and we present some 

of those methods for area level and unit level models. We also briefly mention 

some new work on synthetic estimation of area means or totals based on implicit 

models. 

Key words: area level models, complex parameters, informative sampling, model 

misspecification, robust estimation, unit level models. 

1. Introduction  

The author's 2003 Wiley book (Rao 2003) provided a comprehensive account 

of the theory and methods of model-based small area estimation (SAE), which 

borrows strength through explicit models linking related small areas. Model-

based SAE, both in theory and applications, has seen rapid growth over the past 

10 years due to growing demand for reliable small area statistics. In a review 

paper, Pfeffermann (2013) says “The diversity of new problems investigated is 

overwhelming, and the solutions proposed are not only elegant and innovative, 

but also very practical”.   
The main purpose of this paper is to highlight some new developments in 

model-based SAE since the publication of the author's 2003 book.  A large part of 

the new theory addressed practical issues associated with the model-based 

approach, and we present some of those methods for area level and unit level 

models. We also briefly mention some new work on synthetic estimation of area 

means or totals based on implicit models.  

                                                           
1Carleton University, Ottawa, Canada. E-mail:jrao34@rogers.com. 

mailto:jrao34@rogers.com
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2. Synthetic estimation based on weight sharing 

Let iY  be the total of a variable of interest y  for domain (or area) i . Let s  be 

a probability sample from a finite population with associated inclusion 

probabilities k and values ,ky k s  . Then, a basic area-specific direct estimator 

of iY  is given by the expansion estimator 

( )

ˆ
i k kk s i

Y w y


 ,                                   (2.1) 

where ( )s i is the subsample of units belonging to area i and 1/k kw  .  

Improved direct estimators (such as generalized regression estimators) can 

also be obtained using supplementary population information. Such direct area 

estimators are not useful or feasible for SAE if area-specific samples of 

inadequate sizes or no samples are available.   

We first present synthetic estimation of small area totals based on weight 

sharing. The basic idea behind weight sharing is to produce weights 
ijw  for each 

area i and each unit j s   that satisfy the calibration property 

,    1,...,ij j i

j s

w x X i m


           (2.2) 

and the weight-sharing property 

1

,       
m

ij j

i

w w j s


               (2.3) 

where iX  is the known area total of an auxiliary vector variable x . The weight-

sharing (WS) synthetic estimator of the area total iY  is given by  

ˆ
iWS ij j

j s

Y w y


 .                          (2.4) 

The weight-sharing property ensures that the associated estimators ˆ
iWSY

 
add 

up to the direct estimator ˆ
j j

j s

Y w y


  of the population total 
1

m

ii
Y Y


 , and 

the calibration property improves the efficiency of the estimator. The use of the 

same weight, ijw , for all variables of interest used as y  to produce small area 

estimates is of practical interest, particularly in micro-simulation modelling that 

can involve a large number of variables of interest. The estimator ˆ
iWSY  borrows 

strength from other areas because it makes use of all the sample values ,jy j s . 

Schirm and Zaslavsky (1997) proposed an iterative method of finding the 

weights ijw that satisfy (2.2) and (2.3), but it uses a model on the weights ijw  of 

the form exp( )T

ij j i jw x    , where  and i j   are unknown coefficients.  
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Randrianasolo and Tille (2013) avoid modelling the weights 
ijw  by minimizing 

an information distance measure between the weights  and ij jw w  subject to the 

constraints (2.2) and (2.3), separately for each i . They used a two-step iteration 

by letting 
ij j ijw w q  such that the fractions 

ijq  satisfy 
1

1
m

iji
q


  for each

j s .  

3. Basic area-level model 

3.1. The model 

Let 
iY  be the mean of area i  and 

ˆ
iY  be a direct estimator of 

iY . Poverty rate 

iP   is a special case of 
iY  by letting 1y   if the welfare variable for a household 

is below a specified poverty line and 0y   otherwise. Estimation of poverty rates 

for small areas, such as municipalities, has received considerable attention 

worldwide in recent years. Data consists of direct estimators 
ˆ
iY  and associated 

vectors of area-level covariates iz  for the m  areas. Basic area-level model (also 

called Fay-Herriot (FH) model) consists of a linking model 

2

iid( )  , ~ N(0, )T

i i i i i vg Y z v v    
’
                 (3.1.) 

and a “matching” sampling model  

ind
ˆ ,  ~ (0, )i i i i ie e N   

’
                (3.2) 

where ie  is the sampling error with known variance i  and independent of iv

(Fay and Herriot 1979). If all the areas in the population are not sampled, we 

assume that the model holds for the sampled areas 1,...,i m . We do not 

consider informative sampling of areas which causes sample selection bias and 

the model, assumed for all the population areas, may not hold for the sample.  

Limitations of the FH model include the assumptions of known sampling 

variances i and zero mean sampling errors ie .The latter assumption may not 

hold for non-linear functions (.)g  even approximately if the area sample size is 

small. An unmatched sampling model of the form 
ˆ
i i iY Y h  with zero mean 

sampling errors ih  avoids the latter difficulty with the sampling model (3.2).  

Main advantages of the FH model are that it takes account of the sampling 

design through the model (3.2) on direct estimators and that it requires only area 

level covariates which are more easily available than unit level covariates. Current 
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applications of the FH model include the estimation of the number of school age 

children in poverty in the US counties and school districts (Luery 2011) and the 

estimation of household poverty rates for the Chilean Communas (Casas-Cordero, 

Encina and Lahiri 2014). In the first application, log( )i iY  and the direct 

county estimates ˆ
iY  of area totals iY  are obtained from the American Community 

Survey. In the second application, 
1sini iP   and the direct estimates 

iP  are 

obtained from a cross-sectional multi-purpose household survey. Excellent area-

level covariates, based on administrative sources, are available in both 

applications. 

3.2. “Optimal” estimation 

For known parameters 
2 and v  , the “best” predictor (BP) of i  under 

normality of the model errors iv  and the sampling errors ie  is given by  

ˆ ˆ( | ) (1 )B T

i i i i i i iE z          ,                      (3.3) 

where 
2 2/ ( )i v v i     . The estimator 

B

i  is model unbiased for i  in the 

sense that ( ) 0B

i iE    . It follows from (3.3.) that more weight is given to the 

direct estimator ˆ
i if the model variance 

2

v  is large relative to the sampling 

variance i , and more weight given to the synthetic estimator 
T

iz   if the 

sampling variance i is large. The mean squared error (MSE) of 
B

i  under the 

FH model is given by   

2 2

1( ) ( ) ( )B B

i i i i v i iMSE E g        ,                 (3.4) 

which shows that 
B

i  is significantly more efficient than the direct estimator ˆ
i  if 

i  is small. The estimator
1( )B

ig 
, obtained by back transformation, is 

commonly used to estimate the area mean iY . It is not optimal and also leads to 

model bias. In the Chilean application (Casas Cordero et al. 2014), the estimator 

of poverty rate iP  is given by 
2sin B

i .  

In practice, we replace 
2( , )v   in (3.3) by maximum likelihood (ML) or 

restricted ML (REML) estimators to get the empirical best (EB) predictor ˆEB

i of 

i . An empirical best linear unbiased predictor (EBLUP) without normality 

assumption, denoted by ˆH

i , has the same form as ˆEB

i , where the estimators of 

model parameters are obtained by a method of moments, see Rao (2003, 
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Chapter 7) for details. We denote the estimators of model parameters by
2ˆ ˆ( , )v  . 

The above methods of estimating 
2

v  can lead to 
2ˆ 0v  . A drawback of using 

zero estimate of 
2

v  is that the resulting EB estimate ˆEB

i  will attach zero weight 

to all the direct estimates ˆ
i  regardless of the area sample sizes. Giving a zero 

weight to the direct estimates for areas with large enough sample sizes is not 

appealing to the user, and substantial disagreement between EB and direct 

estimates can occur due to over shrinkage induced by the zero estimate of 
2

v . 

This problem attracted considerable attention in the recent literature, leading to 

alternative methods of estimating model parameters that avoid a zero value for
2ˆ
v

. Methods studied include data-based truncation (Wang and Fuller 2003) and 

maximizing an adjusted likelihood function (Li and Lahiri 2010 and Yoshimori 

and Lahiri 2014). 

Simulation results suggest that the EB estimator ˆYL

i , based on the Yoshimori 

and Lahiri (YL) estimator of 
2

v , performs better in terms of MSE than the EB 

estimator ˆLL

i  based on the Li and Lahiri (LL) estimator of 
2

v .  

3.3. MSE estimation 

3.3.1. Unconditional MSE 

A difficulty with the EB estimator ˆEB

i  is that no closed-form expression for 

its MSE is available except for a few special cases. This difficulty has attracted a 

lot of attention in the SAE literature, leading to second-order approximations to 

MSE( ˆEB

i ) which in turn are used to derive second-order unbiased estimators of 

MSE. In particular, in the case of REML estimators of model parameters, a 

second order unbiased MSE estimator is given by  

2 2 2

1 2 3
ˆ ˆ ˆ ˆmse( ) ( ) ( ) 2 ( )EB

i i v i v i vg g g      ,           (3.5) 

where the leading term 
2

1
ˆ( )i vg    is given by (3.3) with 

2 2ˆ replaced by v v   

and the remaining two terms in (3.5) are of lower order and account for the 

estimation of 
2 and v  respectively (see Rao 2003, section 7.1.5 for details). 

The MSE estimator of ˆ
YL

i  is obtained from (3.5) by substituting the YL estimator 

of 
2

v  for 
2ˆ
v .The two MSE estimators are second –order unbiased in the sense 

that the bias is of lower order than 1/ m  for m large.  
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If 
2

v  is suspected to be small relative to sampling variances i , then it could 

result in either a zero value or a very small value of 
2ˆ
v . In such cases, the second 

order unbiased MSE estimator (3.5) may lead to severe overestimation. An 

alternative is to conduct a preliminary test of the null hypothesis 
2 0v   at a 

reasonable test level, say 0.2, and then use the following MIX estimator of  

MSE( ˆEB

i ): 2 (0)ig  if the null hypothesis is not rejected or 
2ˆ 0v  , otherwise use

ˆmse( )EB

i given by (3.5). Similarly, a MIX estimator of MSE( ˆYL

i ) uses 

2

2 ,
ˆ( )i v YLg   if the null hypothesis is not rejected, otherwise  ˆmse YL

i . Simulation 

studies suggest that the MIX estimators perform better than the second order 

unbiased estimators in terms of relative bias when 
2

v  is small (Molina, Rao and 

Datta 2015).  

The analytical approximation (3.5) based on linearization is valid for the EB 

estimator ˆEB

i , but not readily extendable to MSE estimation for the estimator of 

area mean given by 
1 ˆ( )EB

ig 
. On the other hand, parametric bootstrap is readily 

applicable to general estimators.  We describe the method for estimating  

MSE( ˆEB

i ), but the method follows along the same lines for estimating the MSE 

of general estimators. Assuming normality of  and i iv e  and 
2ˆ 0v  , we generate 

a bootstrap sample {( *
ˆ( , ), 1,..., }i iz i m   in two steps: (1) Generate *i  from 

2ˆ ˆ( , )T

i vN z   independently for 1,...,i m . (2) Generate *
ˆ
i  from *( , )i iN   .  

From the bootstrap data *
ˆ{( , ), 1,... }i iz i m  compute the estimate *

ˆEB

i  in the 

same manner as ˆEB

i  computed from the sample data ˆ{( , ), 1,..., }i iz i m  . 

Repeat the above steps a large number, B , of times to get B bootstrap EB 

estimates * *
ˆ ˆ(1),..., ( )EB EB

i i B   and the bootstrap values of i , denoted by 

* *(1),..., ( )i i B  . A bootstrap MSE estimator is then given by  

1 2

* *

1

ˆ ˆmse ( ) [ ( ) ( )]
B

EB EB

B i i i

b

B b b  



  .        (3.6) 

Noting that the bootstrap FH model is a replica of the FH model for the 

sample data, it follows that 
2 2 2

1 2 3
ˆ ˆ ˆ ˆmse ( ) ( ) ( ) ( )EB

B i i v i v i vg g g      .  

Comparing this approximation to (3.5) it follows that the bootstrap MSE 

estimator is not second order unbiased. It is possible to obtain second order 

unbiased bootstrap MSE estimators by generating second phase bootstrap samples 

from each first phase bootstrap sample (Hall and Maiti 2006).  
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3.3.2. Conditional MSE 

In the previous subsection we presented some results on estimating the 

unconditional MSE of the EB estimator ˆEB

i . However, it is more appealing to 

consider the estimation of conditional MSE of ˆEB

i , treating the small area 

parameters i  as fixed unknown parameters. The conditional MSE is given by 

2ˆ ˆMSE ( ) [( ) | ]EB EB

p i i iE     , where 
1( ,..., )T

m   .  

Expressing ˆ ˆ ˆ ˆ as ( )EB EB

i i i ih     , where 1
ˆ ˆ ˆ( ,..., )T

m    and 

ˆ ˆ ˆˆ( ) (1 )( )T

i i i ih z       , an exactly unbiased estimator of conditional MSE is 

given by  

2ˆ ˆ ˆmse ( ) 2 [ ( ) / ] ( )EB

p i i i i i ih h          .           (3.7) 

Datta, Kubokawa, Molina and Rao (2011a) gave an explicit expression for the 

derivative in the second term of (3.7) when REML estimators of model 

parameters are used.    

The conditional MSE estimator (3.7) can take negative values and it can be 

highly unstable. Datta et al. (2011a) conducted a small simulation study under the 

conditional set-up for 30m   and found that its coefficient of variation (CV) can 

be very high (ranged from 13% to 393%), especially for areas with large sampling 

variances i . Therefore, the conditional MSE estimator is not reliable as the 

estimator of the conditional MSE, although conditionally unbiased. It would be 

worthwhile to study if the bootstrap MSE estimator (3.6) can track the conditional 

MSE and still perform well in terms of CV.  

3.4. Parametric bootstrap confidence intervals 

Bootstrap data *
ˆ{( , ), 1,..., }i iz i m   can be used to construct confidence 

intervals on i . Chatterjee, Lee and Lahiri (2008) proposed to use the bootstrap 

data to approximate the distribution of the pivotal 
2 1/2

1
ˆ ˆ( ) / [ ( )]EB

i i i i vt g    . 

The bootstrap value of it  is given by 
\* 2 1/2

* 1 *
ˆ ˆ ˆ( ) / [ ( )]EB EB

i i i i vt g    . In 

practice, we generate a large number, B , of bootstrap pivotals, denoted by 
* *(1),..., ( )i it t B , and determine the lower and upper points, 1 2 and q q  such that 

the area between the lower and  upper points of the empirical bootstrap 

distribution is equal to a specified nominal level 1  . A bootstrap (1 ) 

level interval on i  is then obtained from 1 2iq t q   as  

2 1/2 2 1/2

2 1 1 1
ˆ ˆˆ ˆ( ) [ { ( )} , { ( )} ]CLL EB EB

i i i v i i vI q g q g       1 2: ( , )i ic c   (3.8) 
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Chatterjee et al. (2008) showed that, under regularity conditions and normality 

of  and i iv e  , the interval (3.8) is second order correct in the sense that the error 

in its coverage is lower order than 
1m
. The corresponding (1 )   level 

second order correct bootstrap interval on the mean 
iY  is obtained by back 

transformation as
1 1

1 2[ ( ), ( )]i ig c g c 
, provided ( )i ig Y  is a one-to-one 

function. 

Casas-Cordero et al. (2014) used bootstrap intervals for the poverty rates iP  

in Chilean Communas. In their case, the bootstrap confidence interval on the 

poverty rate iP  is given by 
2 2

1 2[sin ( ),sin ( )]i ic c . 

3.5. Practical issues 

We need to address several practical issues in implementing EB estimation 

under the FH model. Those issues include (i) covariates subject to sampling or 

measurement errors, (ii) unknown sampling variances i , (iii) linking model 

(3.2) incorrectly specified and (iv) benchmarking EB estimators to a reliable 

direct estimator at an aggregate level. We give a brief account of methods 

proposed to deal with the above practical issues. 

Covariates subject to sampling errors. The FH model assumes that the 

covariates iz  are population values not subject to sampling or measurement  

errors. However, some of the covariates might be obtained from an independent 

survey with much larger area sample sizes than the survey of interest. For 

example, Ybarra and Lohr (2008) studied the estimation of mean body mass index 

i   for 50 small areas in the US using direct estimates ˆ
i  obtained from the 2003-

2004 U. S. National Health and Nutrition Examination Survey (NHANES); 

NHANES values are obtained through medical examinations. They also used 

direct estimates ˆiz  of the mean self-reported body mass index iz , obtained from 

the 2003 U. S. National Health Interview Survey (NHS), as the covariate in the 

FH model. Area sample sizes for the NHANES are much smaller than those for 

the NHS and the direct estimates ˆiz  are reliable and strongly correlated with the 

direct estimates ˆ
i . Ybarra and Lohr (2008) derived an optimal estimator of i  

under the above set-up assuming that the variance of ˆiz  is known. This estimator 

has the same form as the naïve estimator ˆEB

i  with iz  replaced by ˆ
iz , but it 

attaches a larger weight to the direct estimator than the naïve estimator. The 

proposed estimator can lead to substantial gain in efficiency over the naïve 

estimator under the above set-up. Also, unlike the naïve estimator, it is never less 

efficient than the direct estimator. Marchetti et al. (2015) applied the Ybarra-Lohr 
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estimator to estimate poverty rates in Tuscany region of Italy, using ˆ
iz  derived 

from “big data” on mobility comprised of different car journeys automatically 

tracked with a GPS device. We predict that the use of big data will receive 

considerable attention in future SAE applications. 

Unknown sampling variances. The FH model assumes known sampling 

variances i . Wang and Fuller (2003) and Rivest and Vandal (2003) relaxed this 

assumption by substituting a direct estimator ˆ
i  based on unit level data, for the 

case of 
i iY  . The effect of estimating the sampling variances is to inflate the 

MSE of the EB estimator relative to the case of known sampling variances. As a 

result, the MSE estimator (3.5) with ˆ
i  substitute for i  is no longer second 

order unbiased and it could lead to significant underestimation of the true MSE.  

The above authors derived second order unbiased MSE estimators that contain 

an extra term arising from the estimation of i . On the other hand, if “smoothed” 

estimates ˆ
iS  of the sampling variances are used in the EB estimator, then no 

adjustment to the MSE estimator (3.5) is needed, provided the number of areas, 

m , is not small (Rivest and Vandal 2003).  

Incorrectly specified linking model. The EB estimator uses the assumed 

linking model to estimate the model parameters
2 and v  . Jiang, Nguyen and 

J. S. Rao (2011) suggested an alternative approach that does not appeal to the 

linking model to estimate the model parameters and uses only the sampling model 

(3.1). They minimize the total sampling MSE of the best estimators 

1( ,..., )B B B T

m    with respect to the model parameters. The total MSE is given 

by 
2(| |B

pE   ) 
2

1
( )

m B

p i ii
E  


  , where pE  denotes the expectation with 

respect to the sampling model conditional on 1( ,..., )T

m   . The resulting 

estimators of
2 and v  , called Best Predictive Estimators (BPEs), are then 

substituted into 
B

i  to get Observed Best Predictor (OBP) of i . Since the BPEs 

do not appeal to the assumed linking model, the associated OBPs may be more 

robust to misspecification of the linking model than the customary EBs. Empirical 

results showed that under correct specification of the linking model, the OBP and 

EB estimators perform similarly, and lead to considerable efficiency gains when 

the linking model is not correctly specified.   

Estimation of MSE of OBP estimator of i  is problematic because the 

assumed linking model is misspecified. A way around this difficulty is to estimate 

the conditional MSE of the OBP given , similar to (3.7) for the EB estimator. 

Jiang et al. (2011) proposed a second-order unbiased estimator of the conditional 
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MSE of OBP but it involves the term 
2ˆ ˆ( )OBP

i i   similar to the term 

2ˆ ˆ( )EB T

i iz   in (3.7). As a result, the proposed MSE estimator can be highly 

unstable as in the case of (3.7).  

Benchmarking methods. It is desirable in practice to ensure that the model-

based estimators of area means when aggregated agree with a reliable direct 

estimator. If i  is the area mean, then the EB estimators 
EB

i of area means do 

not satisfy this benchmarking property in the sense
1 1

ˆ ˆ ˆ,
m mEB

t t t tt t
W W   

   , 

where tW  is the known proportion of units in area t  and ̂  is the direct 

estimator of the aggregate mean.  

Simple adjustments to the EB estimators to satisfy benchmarking include ratio 

benchmarking and difference benchmarking respectively given by  

ˆ ˆ ˆ( / )RB EB EB

i i t tW                                        (3.9) 

and  

ˆ ˆ ˆ ˆ( )DB EB EB

i i t tW      .                              (3.10) 

Steorts and Ghosh (2013) derived a second-order unbiased estimator of 

ˆ( )DB

iMSE   given by 
2

4
ˆ ˆ ˆmse( ) ( ) ( )DB EB

i i vmse g    , where the common term 

2

4
ˆ( )vg   is positive. This result shows that the effect of benchmarking is to 

increase the MSE. However, in their application to estimation of poor school age 

children in the USA they found negligible inflation in MSE due to difference in 

benchmarking.    

A limitation of RB and DB estimators is that a common adjustment factor is 

applied to all the EB estimators regardless of their precision. Alternative 

benchmarked estimators that avoid the above limitation have been proposed 

(Wang, Fuller and Qu (2008) and Datta et al. (2011b). Bell, Datta and Ghosh 

(2013) extended the Wang et al. method to multiple benchmark constraints. Two 

alternative methods (Wang, Fuller and Qu 2008) and You, Rao and Hidiroglou 

2013) provide self-benchmarking estimators of area means in the sense that 

estimators that automatically satisfy the benchmarking constraint are obtained. 

The method of You et al. (2013) replaces the estimator of   used in the EB 

estimator by an alternative estimator that depends on the benchmarking weights 

tW . On the other hand, the method of Wang et al. (2008) replaces the covariate 

vector 
T

iz  by ( , )T

i i iz W  in the linking model (3.2) and then uses the EB 

estimator of the area mean based on the augmented model. An advantage of both 

methods is that MSE estimation requires no new theory.  
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4. Basic unit level nested error models 

4.1. Estimation and MSE estimation  

In some applications, for example business surveys, unit level sample data

{( , ), 1,...,n ; 1,..., }ij ij iy x j i m   are often available for the sampled areas, 

where in is the sample size in area i . We assume that the area population means 

iX  of the auxiliary variables 
ijx are known for the estimation of area means 

iY .  

For the estimation of complex non-linear parameters, such as poverty 

measures, we need to know all the population values , 1,...,ij ix j N , where iN

is the number of population units in area i . We assume a basic unit level nested 

error model for the population and assume that the same model holds for the 

sample (Battese, Harter and Fuller 1988): 

T

ij ij i ijy x v e   ,                              (4.1) 

where 
2

iid~ (0, )i vv N   are random area effects independent of unit errors 

2

iid~ (0, )ij ee N  . Under the above set-up, unit level models can lead to 

significant efficiency gains over area level models, because the model parameters 
2 2( , , )v e    can be estimated more accurately using all the 

in n unit level 

observations. In some applications, it is more realistic to assume unequal error 

variances 
2 2 2

eij ij ek  , where 
ijk is a known constant (Stukel and Rao 1999). For 

example, in business surveys with a scalar covariate ijx , the choice 
2

ij ijk x  is 

often used. 

The area mean iY  may be approximated by 
T

i i iX v   , assuming that 

iN  is large. Then, the best estimator of i  is given by 

[ ( ) ] (1 )( )B T T

i i i i i i iy X x X         ,                 (4.2) 

where ( , )i iy x  are the area sample means and 
2 2 2/ ( / )i v v e in     . The 

estimator (4.2) is a weighted combination of the sample regression estimator of 

( )T

i i iy X x    and the regression synthetic estimator 
T

iX  . In practice, we 

replace the model parameters by suitable estimators 
2 2ˆ ˆ ˆ( , , )v e    , in particular 

REML estimators and the resulting EB estimator is denoted by ˆ EB

i .  

Note that (4.2) does not take account of survey weights, ijw , unlike the EB 

estimator (3.2) under the area level model. As a result, it is not design consistent 

as the area sample size increases, unless the weights are equal within each area. It 
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is desirable to ensure design consistency because in could be moderately large for 

some of the areas, for example California when the US states are regarded as 

areas. A pseudo-EB estimator, proposed by You and Rao (2002), avoids this 

difficulty by taking account of weights and at the same time ensuring self-

benchmarking.   

Estimation of MSE ˆ( )EB

i  has received considerable attention, and second 

order unbiased MSE estimators have been derived using Taylor linearization, 

jackknife and bootstrap methods. Hall and Maiti (2006) relaxed the normality 

assumption of model (4.1) and obtained second order unbiased MSE estimators 

using a double-bootstrap method that matches the estimated second and fourth 

moments of  and i ijv e . The first phase bootstrap samples are used to obtain a first 

order MSE estimator, similar to (3.6) for the area level model, and its bias is then 

corrected using the second phase bootstrap samples. Regarding the choice of first 

phase and second phase bootstrap sample sizes, 1 2 and B B , Fuller and Erciulescu 

(2014) demonstrated that the choice 2 1B   and 1 / 2B R  leads to smaller 

bootstrap error than other choices of 1 2 and B B , where 1 2( 1)R B B  is the total 

number of bootstrap replicates. This result implies that one should select a single 

second phase bootstrap sample from each first phase bootstrap sample. 

Pfeffermann and Correa (2012) studied efficient methods of bootstrap MSE 

estimation for the normal case and proposed an empirical bootstrap bias 

correction method that performed significantly better than the Hall-Maiti method.  

4.2. Practical issues 

As in the case of the FH model, we need to address practical issues in 

implementing EB estimation under the basic unit level model (4.1). Those issues 

include (i) model misspecification, (ii) robust estimation in the presence of 

outliers, (iii) estimation of complex parameters, (iv) measurement errors in the 

covariates and (v) informative sampling. We give a very brief account of methods 

proposed to deal with the above issues. 

Model misspecification: Jiang, Nguyen and J. S. Rao (2014) extended their 

OBP method to the nested error model and studied its performance under 

misspecification of either the mean function ( ) Tm x x   or the variance of the 

unit error ije or both , assuming simple random sampling within areas. They also 

proposed a bootstrap estimator of MSE of the OBP estimator of area mean. An 

alternative approach to dealing with misspecification of mean function is to use a 

semi-parametric nested error model with unspecified mean function ( )m x . 

Opsomer et al. (2008) used a truncated polynomial spline basis to approximate the 

mean function for the scalar x  case and showed that it leads to a linear mixed 

model but it does not have a block diagonal covariance structure unlike model 
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(4.1). They obtained the EB estimators of area means and also proposed a 

bootstrap estimator of MSE.  

Robust estimation: Estimation of area means that are robust to outliers in the 

random effects iv  and/or unit errors 
ije  has received considerable attention in 

recent years. Sinha and Rao (2009) proposed robust EBLUP estimators and 

associated bootstrap MSE estimators. Their results suggest that the customary 

EBLUP (or EB) is robust to outliers in iv  but not to outliers in 
ije . They assumed 

mean zero random effects and unit errors. Computational issues associated with 

the Sinha-Rao method are addressed in Schoch (2012). Rao, Sinha and 

Dumitrescu (2014) extended robust EBLUP estimation to the semi-parametric 

spline models. Chambers et al. (2014) studied bias-adjusted robust estimators and 

associated MSE estimators using area-specific residuals. Jiango, Haziza and 

Duchesne (2014) developed efficient bias corrections using all the sample 

residuals.  

An alternative approach to REBLUP is the M-quantile method (Chambers and 

Tzavidis 2006). The method uses unit level data and assumes that all “M-

quantiles” of the conditional distribution of y  given x  are linear in x , but 

random area effects are not directly incorporated into the model. Tzavidis and 

Chambers (2005) studied bias-adjusted M-quantile estimators. 

Estimation of complex area parameters. Estimation of complex parameters, in 

particular poverty measures (poverty rate, poverty gap and poverty severity) has 

received considerable attention in recent years because of growing demand for 

reliable area-level poverty indicators. Molina and Rao (2010) developed EB 

estimators for complex parameters under a nested error model that uses log 

(welfare variable) as y . The EB method performed significantly better than a 

“simulated census” method widely used by the World Bank (WB) for poverty 

mapping in developing countries. Diallo and Rao (2014) relaxed the normality 

assumption by using skew normal (SN) distributions on  and/or i ijv e . Their 

results indicate that the normality based EB estimators are sensitive to non-

normality of ije  but not to non-normality of iv . Berg and Chandra (2014) also 

used nested error models for the log of the variable of interest, but their focus was 

on estimating area means of the variable of of interest.  

 

Measurement errors in covariates. Ghosh and Sinha (2007) formulated a 

functional measurement unit level error model with a scalar area level covariate 

ix  subject to measurement errors. They assumed that independent values ijx  of 

the true ix  are measured such that ijx  corresponds to ijy . Under this set-up they 

obtained a pseudo-EB estimators of area means. Datta, Rao and Torabi (2010) 

obtained more efficient pseudo-EB estimators by making fuller use of the 
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available data. A more realistic model assumes that the 
ijx  values are drawn from 

an independent survey (Arima, Datta and Liseo 2014). Ghosh, Sinha and Kim 

(2006) and Torabi, Datta and Rao (2009) studied structural measurement error 

models with stochastic ix . 

Informative sampling. Most of the recent SAE papers assumed non-

informative sampling in the sense that the assumed population model also holds 

for the sample. Under informative sampling, the survey design is related to the 

variable of interest given the predictor variables in the model, and in this case 

population model may not hold for the sample data. The pseudo-EB estimator of 

Rao and You (2012) uses the survey weights to ensure design consistency, but it 

is derived under non-informative sampling. However, empirical results suggest 

that it performs quite well in terms of bias under informative sampling unlike the 

EB estimator that ignores survey weights (Stefan 2005, Verret, Rao and 

Hidiroglou 2015).      

Pfeffermann and Sverchkov (2007) proposed a bias-adjusted EB estimator for 

unit level models under informative sampling by modelling the conditional 

expectation of sampling weights given the sample as a function of  and y x . They 

also studied the case of informative sampling of areas and units within areas. An 

alternative approach, when all areas are sampled, augments the unit level model 

(4.1) by including a suitable function of the selection probability ijp  of unit ( )ij  

as an additional covariate 
ijg  and then uses standard EB estimators based on the 

augmented model (Verret, Rao and Hidiroglou 2015). The augmented model 

approach performed well in empirical studies, but it assumes that the population 

mean,
iG , of the augmented variable is known. The selection of the augmenting 

variable may be based on plots of model (4.1) residuals against different choices 

of ijg . In particular, if ij ijg p is a suitable choice, then the mean 
1

i iG N   is 

known.  

5. Model selection and checking 

Model-based small area estimation heavily depends on the validity of the 

assumed model for the sample data. It is therefore important to use appropriate 

methods for model selection and then do checking of the selected model through 

residual analysis, influential diagnostics, etc. Most of the recent literature on 

model selection assumes non-informative sampling. Variable selection is an 

important component of model selection. Recent methods for variable selection in 

linear mixed models include fence methods (Jiang, J. S. Rao, Gu and Nguyen 

2008), conditional AIC for predictive performance (Vaida and Blanchard 2005) 

and Han (2011) for the FH model. Muller, Scealy and Welsh (2013) present a 

comprehensive review of model selection in linear mixed models. One major 
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problem with existing model diagnostics is the assumption of non-informative 

sampling. If sampling is informative, then the identified sample model may not 

hold for the population and hence it can lead to erroneous inferences. The 

augmented model approach of Verret et al. (2015) might be a way to get around 

this difficulty because the identified sample augmented model also holds for the 

population. Alternatively, the approach of Pfeffermann and Sverchkov (2007) to 

deal with informative sampling only requires fitting the model holding for the 

sample data and the sample model for the weights. Hence, the previous model 

diagnostics should apply under their approach. Pfeffermann (2013) reviewed 

recent method for model selection and checking. Both internal evaluations 

through model diagnostics and external evaluations, based on comparing 

estimates derived from models with reliable values obtained from external 

sources, play an important role in small area estimation.  

6. Concluding remarks 

We have focused on recent important developments related to the basic area 

level and unit level models and highlighted some practical issues in implementing 

model-based small area estimation, in particular EB (or EBLUP) methods. Due to 

space limitations, hierarchical Bayes (HB) method, based on assumed priors on 

model parameters, is not covered in this paper. The longest chapter in the author's 

2003 book is on the HB approach to SAE. It is a powerful approach and provides 

“exact” inferences for complex models. Also, we did not include recent 

developments in SAE based on generalized linear mixed models (GLMMs) used 

for unit level binary or count data. Many recent extensions of the basic models are 

also not covered in this paper. SAE is experiencing explosive growth and we will 

see many important new developments in both theory and applications in the next 

10 years. Review papers on SAE in the past 10 years include Rao (2005, 2008), 

Jiang and Lahiri (2006), Datta (2009) and Pfeffermann (2013). 
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Triple-goal estimation of unemployment rates for U.S.
states using the U.S. Current Population Survey data

Daniel Bonnéry 1Yang Cheng2 Neung Soo Ha3 Partha Lahiri4

ABSTRACT

In this paper, we first develop a triple-goal small area estimation methodology for
simultaneous estimation of unemployment rates for U.S. states using the Current
Population Survey (CPS) data and a two-level random sampling variance normal
model. The main goal of this paper is to illustrate the utility of the triple-goal
methodology in generating a single series of unemployment rate estimates for three
separate purposes: developing estimates for individual small area means, producing
empirical distribution function (EDF) of true small area means, and the ranking of
the small areas by true small area means. We achieve our goal using a Monte Carlo
simulation experiment and a real data analysis.
Key words: complex survey data; empirical distribution function; Monte Carlo
Markov Chain; rank; risk; small area estimation;

1. Introduction

The national unemployment rate is one of the five key economic indicators pub-
lished by the United States Bureau of Labor Statistics (BLS) and represents the
number of unemployed as a percentage of the labor force. BLS publishes unem-
ployment rate estimates for the nation and its different demographic and geographic
subdomains. For example, unemployment rate estimates are produced for all states
and the District of Columbia, all metropolitan statistical areas (MSA), all counties,
cities and towns of New England, and all cities with population 25,000 or greater.
The local unemployment rate estimates are used for regional planning and fund al-
location under various federal assistance programs. The primary source of data for
the unemployment rate statistics for both small and large domains is the Current
Population Survey (CPS) conducted by the Census Bureau for BLS. The data are
collected for about 729 MSAs consisting of more than 1,000 counties covering ev-
ery state and the District of Columbia. More information about the CPS can be
found at http://www.bls.gov/cps/

1Joint Program in Survey Methodology, University of Maryland. E-mail: dbonnery@umd.edu
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The Census Bureau has been using the so-called AK composite estimation tech-
nique for generating national employment and unemployment levels and rates for
the last several decades. The AK composite estimation technique, developed us-
ing the ideas of Gurney and Daly (1965), essentially improves on the standard
survey-weighted estimates by borrowing strength over time. For more informa-
tion on the AK estimation, see Lent et al. (1999). The estimation methodol-
ogy for the BLS Local Area Unemployment Statistics (LAUS) can be found at
http://www.bls.gov/lau/laumthd.htm. The state level unemployment statis-
tics are based on a paper by Pfeffermann and Tiller (2006). For each month, model-
based census division estimates are first benchmarked to the non-seasonally adjusted
national A-K composite estimate and then similar model-based state estimates are
benchmarked to the benchmarked estimate of the state’s division. The unemploy-
ment estimates for the states or the census divisions can be viewed as benchmarked
empirical best prediction (EBP) estimates, derived using a state-space model and
implemented via an innovative Kalman Filter updating scheme that simplifies the
computational burden in a complex production environment.

In a statistical decision-theoretic framework, BLS addresses the problem of
point estimation under a squared error loss function and the estimation of the cor-
responding risk measured by the mean squared prediction error (MSPE). These are
indeed important statistical decision problems. It is expected that BLS will con-
tinue to focus on the point estimation and the corresponding MSPE because of a
long history of such unemployment statistics series and official publication require-
ments. One can, however, envision a variety of statistical decision problems related
to unemployment statistics. For example, different stakeholders may be interested
in ranking different states in order of unemployment rates or identifying states with
unemployment rates exceeding a certain specified threshold for regional planning
and fund allocation problems. The need for answering research questions other than
point estimation can be found in different contexts. For example, the goal can be
estimating the performance evaluation, like the rank, among different companies;
see Landrum et al. (2000). Reporting an ensemble of estimates can also provide
useful interpretation in disease mapping to ascertain variation in disease rates for
different geographical regions; see Conlon and Louis (1999) and Devine and Louis
(1994).

Note that the research questions mentioned above correspond to different s-
tatistical decision-theoretic problems and thus, statistically speaking, a research
question-specific unemployment series can be found, which is likely to be differ-
ent from BLS published series. Of course, the published unemployment rates can
be used to answer a variety of research questions, but they may not be well suited
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for a wide range of problems. To elaborate this point, if the ranks of parameters are
the target, under the Bayesian approach, the conditional expected ranks are optimal
under squared error loss function, but ranking posterior means, which are optimal
for point estimation under squared error loss, can perform poorly; see Goldstein
and Spiegelhalter (1996). If the feature of interest is the histogram or the empirical
distribution function (EDF) of the parameters, then the conditional expected EDF
is optimal under integrated squared error loss function, and the histogram of the
posterior means of the parameters is underdispersed; see Ghosh (1992). There are a
number of papers on the estimation of parameters for an individual small area, e.g.
Rao (2003), Jiang and Lahiri (2006), Pfeffermann (2013), a histogram of small area
parameters, e.g. Louis (1984), Lahiri (1990), Ghosh (1992), and ranking small area
parameters, e.g. Laird and Louis (1989).

Although different series can be produced to address different questions, report-
ing several ensembles for all different situations would be inefficient and may cause
inconsistencies. While there does not exist a set of point estimates that simultane-
ously optimize all of these criteria (Gelman and Price, 1999), Shen and Louis (1998)
developed an interesting method, called “triple-goal” estimation method, which pro-
duces estimates that perform reasonably well with respect to all three criteria.

In Section 2, we explore a triple-goal small area estimation methodology for
simultaneous estimation of small area means using the CPS complex survey data.
The main goal is to produce a set of small area estimates that are good for simulta-
neously meeting three different goals of developing estimates for individual small
area means, producing histogram of true small area means, and ranking of the s-
mall areas by true small area means. We discuss evaluation of our methodology in
Section 3.

2. Adaptation of the triple-goal estimation methodology to estimate un-
employment rates for U.S. states

The main challenge for adapting the existing triple-goal methodology to estimate
unemployment rates for U.S. states is to incorporate the complex survey features of
the CPS. Let π̂i be the survey-weighted direct estimate of the true unemployment
rate πi for the ith state (i = 1, · · · ,m). We are interested in producing triple-goal
estimates of π = (π1, · · · ,πm). To obtain triple-goal estimates of πi’s and to compare
with the corresponding Bayesian estimates (posterior means of πi’s), we consider
the following hierarchical model.
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For i = 1, . . . ,m,

Level 1 (sampling distribution) : π̂i|πi
ind∼ N

(
πi,

πi(1−πi)

ni;eff

)
;

Level 2 (prior distribution) : logit(πi)|µ,A
iid∼ N(µ, A),

where πi and ni;e f f are the “true” unemployment rate and the effective sample size
for state i, respectively. The effective sample size for a state is the ratio of the
CPS sample size for that state and the national estimate of design effect (deff). We
assume flat priors on both µ and A.

We note that the BLS uses a two-level time series normality-based model to
combine previous survey data. While the BLS model will be of interest to produce
triple-goal unemployment rate estimates, in this paper we focus on the above rel-
atively simple cross-sectional random sampling variance two-level normal model
for demonstrating the utility of triple-goal estimation for multi-purpose estimation.
Like the BLS model, we find it convenient to assume normality for the survey-
weighted proportions, but use a random sampling model to incorporate uncertainty
in estimating sampling variances of the survey weighted proportions. Such a model
was considered earlier in different contexts by Liu et al. (2014) and Ha et al. (2014).

The triple-goal estimation method involves the following three steps (see Shen
and Louis (1998) for further details):

Step 1: Produce element-specific point estimates with “optimality” qualities for
the region of interest;

Step 2: Obtain an ensemble of point estimates that best approximate the histogram
of the true parameter ensemble; see Louis (1984);

Step 3: Rank within a selected ensemble.

The procedure for obtaining triple-goal estimators follows along the line of Shen
and Louis (1998), which is described below:

First, we need to obtain an estimate of the empirical distribution function (EDF)
of π . The EDF of π is defined as:

Fm(α) =
1
m

m

∑
j=1

I {π j ≤ α},

where α ∈ R and I is the indicator function. Under the following integrated
squared error loss (ISEL) function for a given EDF estimator F̃m:

ISEL(Fm, F̃m) =
∫ [

Fm(α)− F̃m(α)
]2 dα,
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the Bayes estimator of EDF is given by

F̂m(α) = E [Fm(α)|π̂] = 1
m

m

∑
j=1

P(π j ≤ α|π̂).

Secondly, we need to obtain the rank of the parameter ensemble π . The rank of
πi is defined as

Ri = rank(πi) =
m

∑
j=1

I {πi ≥ π j}.

Under the rank squared error loss (RSEL) function for a given rank estimator R̃,
defined as

RSEL(R, R̃) =
1
m

m

∑
j=1

(R j− R̃ j)
2,

the Bayes estimator of Ri is given by

R̄i = E(Ri|π̂) =
m

∑
j=1

P(πi ≥ π j|π̂).

The R̄i’s are not integers in general; however, it is easy to transform them in
order and denote it by:

R̂i = rank(R̄i|R), i = . . . ,m.

Finally, we generate an ensemble of point estimates, conditional on the optimal
estimate of the ensemble EDF, F̂m, and the optimal estimates of the ranks, R̂i. Fur-
thermore, the added constraint that F̂m is a discrete distribution with at most m mass
points, the triple-goal estimator is defined as:

π̂
T G
i = F̂−1

m

(
2R̂i−1

2m

)
, i = 1, . . . ,m.

We use MCMC to implement the triple-goal method. The simulated samples
after deleting the first B “burn-in" samples, i.e.{

µ
(B+`),A(B+`),π(B+`), `= 1, · · · ,L

}
,

are considered as L simulated samples from the posterior distribution of β ,A,π .

The posterior density of π is approximated by{
π
(B+`), `= 1, · · · ,L

}
.
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In particular, we need the following approximations:

F̂m(α)≈ 1
m

m

∑
j=1

{
1
L

L

∑
`=1

I
[
π
(B+`)
j ≤ α

]}
,

R̄i ≈
m

∑
j=1

{
1
L

L

∑
`=1

I
[
π
(B+`)
i ≤ π

(B+`)
j

]}
.

3. Evaluation

Our ultimate goal is to develop a triple-goal estimation system for the state unem-
ployment rates using the CPS data. As in any real life data analysis, we encounter
the challenging problem of evaluation of triple-goal estimates relative to the com-
monly used direct and posterior means since we do not have true unemployment
values. We consider two options. First, we compare different estimates using sim-
ulated data generated using the model given in Section 2 and the CPS data. While
such an evaluation is model-dependent, we argue that this is a reasonable approach
since our main goal in this paper is to compare direct estimates, posterior mean-
s and triple-goal estimates for three separate purposes given a working model. In
Subsection 3.1, we present results from such an evaluation study. The other option
for evaluation is to use a real data that contain the truth or a gold standard. We
do not have such data for unemployment rate estimation research. Since estima-
tion of unemployment rates is essentially a problem of estimation of proportions, in
Subsection 3.2 we use the well-known batting average data described in Efron and
Morris (1975), which contain true batting averages (true proportions).

We now evaluate direct, posterior mean, triple-goal estimators of ranks, EDFs,
and individual parameters. To be specific, we compare different estimators using
the following four summary evaluation measures:

(i) Root Average Squared Deviation (RASD):
√

1
m ∑

m
i=1(π̃i−πi)2

(ii) Root Integrated Squared Error Loss (RISEL):
√∫ [

Fm(t)− F̃m(t)
]2 dt

(iii) Variance Ratio (VR): ∑
m
i=1(π̃i− ¯̃π)2

∑
m
i=1(πi−π̄)2

(iv) Root Rank Average Squared Deviation (RRASD):
√

1
m ∑

m
i=1(R̃i−Ri)2,

where π̄i ( ¯̃π) is the average of the πi’s (π̃i’s), average being taken over all m states.
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3.1. Evaluation using simulated data

Using the two-level normal model described earlier with µ = π̂, the national unem-
ployment rate estimate, and A = ∑

51
i=1(π̂i− ¯̂π)2/51, where π̂i is the survey-weighted

CPS unemployment rate for state i (i = 1, · · · ,m), we generate unemployment rate
direct estimates and simulated true values for the states. We can then compare dif-
ferent methods using simulated values.

Table 1 displays values of the four evaluation measures for the three estima-
tors. From the VR measure, it is clear that the variability of the direct estimates
of the state unemployment rates overestimates the corresponding variability of the
simulated unemployment rates across the states. On the other hand, the posterior
means of the state unemployment rate estimates overshrink. The triple-goal esti-
mates are almost perfect in terms of this criterion. Based on the RISEL criterion,
the triple goal estimates are also the best among the three sets of estimates in terms
of estimating the EDF of the simulated unemployment rates. The criterion RRASD
suggests that in terms of the rank, triple-goal estimates are the best, but they are
only marginally better than the posterior means. In terms of the RASD criterion,
posterior means are the best as expected, but are only marginally better than the
triple-goal estimates.

Figure 1 provides histograms of three sets of estimates for the states and the
simulated values. From a visual inspection, it is clear that the histogram for the
triple-goal estimates is the closest to that of the true values when compared to the
histograms of the posterior means and the direct estimates.

RASD RISEL VR RRASD
direct 0.0097 0.0122 1.2861 8.2652

post. mean 0.0086 0.0121 0.8316 8.1889
triple-goal 0.0095 0.0091 1.0200 8.1746

Table 1: Summary statistics for the unemployment data

3.2. Evaluation using a real data with true values

As mentioned before, in this subsection we use the well-known baseball data, which
were used earlier by researchers in evaluating different small area methodologies.
The data contain batting averages of eighteen major league baseball players in the
1970 season. Each player had batted 45 times and their batting averages are record-
ed up to that point. Using this data alone, Efron and Morris (1975) wanted to predict
each player’s batting average for the remainder of the 1970 season. Here, a player
corresponds to a small area like a state in the unemployment rate estimation.
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Figure 1: Histograms for the unemployment data

We report the four summary evaluation measures for the three sets of estimates
in Table 2. In Figure 2, we plot the histograms for the three sets of estimates of
batting averages and the true batting averages. The conclusion is similar to the one
in Subsection 3.1.

RASD RISEL VR RRASD
direct 0.0572 0.0486 3.3920 5.8878

post.mean 0.0311 0.0311 0.1899 5.8214
triple-goal 0.0334 0.0094 1.0328 5.8022

Table 2: Summary statistics for the baseball data

4. Concluding Remarks

In this paper, we extend the triple-goal methodology, originally proposed by Shen
and Louis (1998), to a hierarchical model not considered earlier in modeling unem-
ployment rates for small areas. First, instead of using fixed and known sampling
variance of a survey-weighted unemployment rate for a small area, we have used
the true variance formula of a sample proportion with sample size replaced by the
effective sample size in order to incorporate the complex survey design. Secondly,
to borrow strength from small areas, we use normality on the logistic function of the
unknown true unemployment rates, which appear in both the means and variances
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in the sampling distribution.
We reiterate that the triple-goal method is for multi-purpose inferences. In theo-

ry, this approach should reduce the overshrinking problem associated with the stan-
dard Bayesian estimates (posterior means) targeted for point estimation and should
do better than rival methods in estimating ranks and empirical distribution function
of the true values. While our evaluation studies demonstrate a clear superiority of
the triple-goal method in reducing the overshrinking problem and estimating the
empirical distribution function of the true values, it is only marginally better than
the posterior means and direct estimates in estimating ranks. This could be due to
certain approximations applied to the optimal rank estimates in order to produce in-
teger valued ranks of the small areas. Under the theoretical setting, posterior means
should perform better than the triple-goal estimates in terms of point estimation of
the small area proportions. Our evaluation studies, however, show that they are only
marginally better.

While the goal of this paper is not to find the posterior means and triple-goal
estimates under the best possible working model, a good working model is expected
to improve on both the standard Bayesian and triple-goal methods. Thus model
selection will be a problem of great interest before implementing the triple-goal
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method for producing a new unemployment rate series for multi-purpose uses. In the
future, we plan to develop a benchmarked triple-goal estimation system using the
multi-level time series model used by BLS for its production of official statistics for
the states. Neither of the two methods of evaluation considered in the paper should
be considered an ideal method, which does not seem to exist in small area estimation
evaluation. But nonetheless our evaluation study should shed some light on the
merit of triple-goal for multi-purpose inferences and should encourage researchers
to think of new ideas for evaluating small area methods.
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COVARIATE SELECTION FOR SMALL AREA
ESTIMATION IN REPEATED SAMPLE SURVEYS

Jan A. van den Brakel1, Bart Buelens2

ABSTRACT

If the implementation of small area estimation methods to multiple editions of a
repeated sample survey is considered, then the question arises which covariates to
use in the models. Applying standard model selection procedures independently
to the different editions of the survey may identify different sets of covariates for
each edition. If the small area predictions are sensitive to the different models, this
is undesirable in official statistics since monitoring change over time of statistical
quantities is of utmost importance. Therefore, potential confounding of true change
and methodological alterations should be avoided. An approach to model selection
is proposed resulting in a single set of covariates for multiple survey editions. This
is achieved through conducting covariate selection simultaneously for all editions,
minimizing the average of the edition-specific conditional Akaike Information Cri-
teria. Consecutive editions of the Dutch crime victimization survey are used as a
case study. Municipal estimates of three survey variables are obtained using area
level models. The proposed averaging strategy is compared to the standard method
of considering each edition separately, and to an elementary approach using co-
variates selected in the first edition. Resulting models, point estimates and MSE
estimates are analyzed, indicating no substantial adverse effects of the conceptu-
ally attractive averaging strategy.
Key words: area level models, cAIC, Hierachical Bayesian predictors.

1. Introduction

At national statistical institutes, estimation procedures for surveys based on proba-
bility samples are traditionally based on design-based or model-assisted inference
procedures. Well-known examples are the π-estimator (Narain, 1951; Horvitz and
Thompson, 1952) and the generalized regression estimator (Särndal, Swensson and
Wretman, 1992). These approaches are particularly appropriate in the case of large
sample sizes. In the case of small sample sizes, however, design-based and model-
assisted estimators have unacceptably large variances. This occurs when estimates

1Statistics Netherlands, Department of Statistical Methods and Maastricht University, Department
of Quantitative Economics. E-mail: jbrl@cbs.nl

2Statistics Netherlands, Department of Statistical Methods. E-mail: bbus@cbs.nl
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are required for detailed breakdowns of the population in subpopulations or domains
according to various socio-demographic or geographic classification variables. In
such cases, model-based estimation procedures are required to increase the effec-
tive sample size of the separate domains with sample information observed in other
domains or preceding periods. This class of estimation procedures is known in the
literature as small area estimation (SAE) (Rao, 2003; Pfeffermann, 2013) and offers
promising opportunities for official statistics (Boonstra et al., 2008).

A common approach to introducing SAE in an existing survey is to apply SAE
methods to historic editions of the survey, producing small area estimates for multi-
ple past editions at the same time. This article focuses on the selection of covariates
to be used in the SAE models in this setting. In the literature, model selection pro-
cedures mostly focus on the selection of optimal models for one particular survey
data set (Claeskens and Hjort, 2008). If in each edition of a repeated survey a sepa-
rate and different model is selected, the question arises to what extent the small area
predictions are comparable over time. In official statistics potential confounding
of estimates of change over time of some statistic with variations in the inference
procedures must be avoided. This article contributes to the existing literature by
addressing the question how to select a single optimal model for the production of
SAE predictions for independent, repeated editions of a sample survey.

An approach is proposed in which the model selection criterion is averaged over
all available editions, leading to a single set of covariates to be used in each edition.
This novel approach is compared to the standard approach of selecting a set of co-
variates for each edition independently using four past editions of the Dutch crime
victimization survey. In addition, a simple scenario is included whereby covariates
are selected using only the first of a series of survey editions. In this paper mod-
els are considered that only use cross-sectional correlation. Alternative approaches
that combine cross-sectional and temporal data are proposed by Rao and Yu (1994),
Datta et al. (1999) and Pfeffermann and Tiller (2006). These approaches might also
be considered to select one single optimal model for subsequent survey editions.
These approaches are not considered for implementation in the Dutch crime vic-
timization survey since they are considerably more complex and computationally
intensive.

The article continues in Section 2 with a presentation of the SAE methods used
and details covariate selection procedures. Section 3 introduces the crime victimiza-
tion survey and potential covariates. Results are presented and discussed in Section
4. Conclusions are drawn in Section 5.
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2. Methods

2.1. Small Area Estimation

In small area estimation multilevel models are used to improve the estimation of
small domain parameters. These models use relevant auxiliary information as co-
variates. In this article the area level model is used (Fay and Herriot, 1979), where
the input data for the model are the direct estimates for the domains. Approaches
to covariate selection discussed below can be applied to unit level models (Bat-
tese, Harter and Fuller, 1988) as well. The area level model is considered, since it
takes the complexity of the sample design into account as the dependent variables
of the model are the design-based estimates derived from the probability sample
and available auxiliary information used in the weighting model of the generalized
regression (GREG) estimator. Let θ̂i denote the GREG estimates of the target vari-
ables θi for the domains i = 1, . . . ,m. In the area level model, the direct domain
estimates are modeled with a measurement error model, i.e. θ̂i = θi + ei, where ei

denotes the sampling error with design variance ψi. The unknown domain parame-
ter is modeled with available covariates for the i−th domain, i.e. θi = z

′
iβ +vi, with

zi a K-vector with the covariates zi,k for domain i, β the corresponding K-vector
with fixed effects and vi the random area effects with variance σ2

v . For each variable
a separate univariate model is assumed. Combining both components gives rise to
the basic area level model, originally proposed by Fay and Herriot (1979):

θ̂i = z
′
iβ + vi + ei, (1)

with model assumptions

vi
iid∼N (0,σ2

v ) and ei
ind∼ N (0,ψi). (2)

It is assumed that vi and ei are independent and that ψi is known.
Model(1) is a linear mixed model and estimation often proceeds using Empiri-

cal Best Linear Unbiased Prediction (EBLUP), where the between domain variance
σ2

v is estimated with the Fay-Herriot moment estimator, maximum likelihood or
restricted maximum likelihood, see Rao (2003), ch. 6 for details. A weakness
of these methods is that in some situations the estimated model variance tends to
zero, see e.g. Bell (1999) and Rao (2003). To avoid these problems, the Hierar-
chical Bayesian (HB) approach is followed in this article, Rao (2003), section 10.3.
Therefore, the basic area level model is expressed as an HB model by (1) and (2)
and a flat prior on β and σ2

v . The HB estimates for θi and its MSE are obtained as
the posterior mean and variance of θi. To account for the uncertainty in the between
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domain variance, integration over the posterior density for σ2
v is conducted.

Estimates for the design variances ψi are available from the GREG estimator but
are used as if the true design variances are known, which is a standard assumption in
small area estimation. Therefore, it is important to provide reliable estimates for ψi.
The stability of the estimates for ψi is improved using the following ANOVA-type
pooled variance estimator

ψi =
1− fi

ni
S2

p,

S2
p =

1
n−m

m

∑
i=1

(ni−1)S2
i;GREG,

with fi the sample fraction in domain i, ni the sample size in domain i, n = ∑
m
i=1 ni

and S2
i;GREG the estimated population variance of the GREG residuals.

2.2. Conditional AIC

The model selection procedures discussed here are optimization routines, minimiz-
ing the conditional Akaike Information Criterion (cAIC) proposed by Vaida and
Blanchard (2005).

The cAIC is applicable to mixed models where the focus is on prediction at
the level of clusters or areas (Vaida and Blanchard, 2005). It is defined as cAIC =

−2L + 2p, where L is the conditional log-likelihood and p a penalty based on a
measure for the model complexity. In the case of a fixed effects model, p is the
number of model parameters. The random part of a mixed model also contributes
to the number of model degrees of freedom p with a value between 0 in the case of
no domain effects (i.e. σ̂2

v = 0) and the total number of domains m in the case of
fixed domain effects (i.e. σ̂2

v → ∞). In the expression of the cAIC, p is the effective
degree of freedom of the mixed model and is defined as the trace of the hat matrix
H, which maps the observed data to the fitted values, i.e. ŷ = Hy, see Hodges and
Sargent (2001).

When comparing models, the one with the lowest cAIC value is preferred.

2.3. Covariate selection procedures

Covariate selection procedures are aimed at establishing a set of covariates – in
the present setting the fixed effects – to use in models specified by equation (1).
This boils down to finding an optimal subset from a larger set of available candi-
dates. All three methods detailed below proceed along the same lines: they follow a
step-forward covariate selection strategy which starts from an intercept-only model
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adding covariates one-by-one until there is no improvement in terms of the selection
criterion. This may result in sub-optimal models as the procedure converges to a lo-
cal minimum of the selection criterion but not necessarily to the global minimum
(Claeskens and Hjort, 2008). The focus here, however, is on establishing a single set
of covariates for use in repeated survey editions. Alternative search routines con-
verging to the global minimum of the selection criterion can be applied analogously
to the step-forward routine used here.

Some general notation is introduced. When C candidate covariates are available
for inclusion as a fixed effect in a model specified by equation (1), the set of selected
covariates is denoted by s and the set of remaining covariates by r. For ease of use
the candidate covariates are assumed to be ordered in a fixed but arbitrary order, so
that they can be referred to by their index. For example, a model containing the
jth covariate – with 1 ≤ j ≤ C – as a fixed effect, can be identified by s = { j}.
Consequently, in such case r = {i}i6= j. Evidently, the equality s∪ r = {1, . . . ,C}
always holds. Sets of selected and remaining covariates that are specific to a survey
edition t are denoted by st and rt respectively.

2.3.1 Selecting an optimal set for each edition separately

For a series of independent cross sectional surveys repeated at times t = 1, . . . ,T , a
standard covariate selection routine consists in selecting covariates for each edition
indepentently.

Covariate selection procedure ’stnd’. Repeat for all editions t ∈ {1, . . . ,T}:
Initialization Set rt = {1, . . . ,C} and st = {}, obtain the corresponding cAIC

value and call this cAIC0. Set i = 0.

Repeat Attempt extending the model with one covariate:

a / Set i = i+1.

b / Calculate cAIC for all models st∪{ j}, ∀ j ∈ rt , and call these cAIC j.

c / If min(cAIC j)< cAICi−1 then set cAICi = min(cAIC j), extend st to
include the corresponding covariate j, remove that covariate from
rt .

Until The model is not extended or all candidate covariates are included in
the model.

The result are sets st of selected covariates for each edition t. In general, st and st ′

can be different for t 6= t ′.
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The generic model specification given by equation (1) is adapted to reflect the
repeated nature of the survey.

θ̂i,t = z[stnd]
′

i,t βt + vi,t + ei,t , (3)

for i = 1, . . . ,m and t = 1, . . . ,T , with model assumptions

vi,t
iid∼N (0,σ2

v,t) and ei,t
ind∼ N (0,ψi,t). (4)

The vectors z[stnd]
i,t consist of covariates contained in st at the level of the domains i,

with st established through the stnd covariate selection procedure.

2.3.2 Selecting one optimal set for all editions simultaneously

Since the standard method may result in different sets of covariates for different
survey editions, an alternative is proposed here, resulting in a single set of covari-
ates for all editions. Formally, the following procedure enforces that st = st ′ for all
t, t ′ ∈ {1, . . . ,T}.

Covariate selection procedure ’avrg’. Consider all survey editions t = 1 . . .T si-
multaneously.

Initialization Let r = {1, . . . ,C} and s = {}. Use r and s for all t, obtain
the corresponding cAIC values, and call these cAIC0,t . Define cAIC0 =
1
T ∑t cAIC0,t . Set i = 0.

Repeat Attempt extending the model with one covariate:

a / Set i = i+1.

b / For all editions t ∈ {1, . . . ,T}, calculate cAIC for all models s∪{ j},
∀ j ∈ r, and call these cAIC j,t .

c / Define cAIC j =
1
T ∑t cAIC j,t .

d / If min(cAIC j) < cAICi−1 then set cAICi = min(cAIC j), extend s to
include the corresponding covariate j, remove that covariate from
r.

Until The model is not extended or all candidate covariates are included in
the model.

This strategy is based on averaging the model selection criterion cAIC and results
in a single set s of covariates to be used in all editions t. The corresponding model
specification, with a fixed set of covariates for repeated surveys, is written as (3)
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and (4) where the vectors z[stnd]
i,t are replaced by vectors, say z[avrg]

i,t , that consist of
covariates contained in s at the level of the domains i at the time periods t, with s
established through the avrg covariate selection procedure.

2.3.3 Selecting an optimal set based on the first edition only

An elementary approach also resulting in a single set of covariates is to use the first
edition of a series of repeated surveys to establish the set of covariates and to use
these in all subsequent editions.

Covariate selection procedure ’frst’.
Apply procedure stnd for t = 1 to obtain s1.

The set of covariates s1 obtained based on the first edition is used at all times. The
model takes the form of (3) and (4) where the vectors z[stnd]

i,t are replaced by vectors,

say z[ f rst]
i,t , that consist of covariates contained in s1 at the level of the domains i at

the time periods t. This strategy is included to assess and illustrate its performance.
In other settings than the one discussed in the present article, statisticians may be in
a situation where a survey is foreseen to be repeated in the future, but SAE estimates
are required at the time of the first edition. The only option then is to use that edition
for covariate selection.

3. Data

3.1. Crime victimization survey

The Dutch crime victimization survey underwent several redesigns in the past, in-
cluding in 2008 and 2012. In the period from 2008 through 2011 the survey is
known as the Integrated Safety Monitor (ISM). These four editions of the ISM are
used as a case study in the present article. The purpose of the ISM is to publish in-
formation on crime victimization, public safety and satisfaction with police perfor-
mance, among others. Each annual ISM sample is obtained independently through
stratified simple random sampling of persons aged 15 years or older residing in the
Netherlands. The population register serves as the sampling frame. The country
is divided into 25 police districts, which are used as the stratification variable in
the sample design. The yearly sample size of about 19,000 respondents is divided
equally over the strata. In addition to this national sample, local authorities such
as municipalities and police districts can draw supplementary samples in their own
regions on a voluntary basis, with the purpose to obtain precise local estimates.
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These supplementary samples are also based on stratified simple random sampling,
but now with a more detailed geographical stratification variable, usually neighbor-
hood. Table 1 gives an overview of the oversampling and the number of respondents
for the years 2008 through 2011. Participation in the oversampling scheme by lo-
cal authorities was encouraged in the years 2009 and 2011 resulting in much larger
samples in these editions.

Table 1: Overview of response and oversampling in ISM surveys 2008 - 2011.
2008 2009 2010 2011

Number of oversampled municipalities 77 239 21 225
Size response national sample 16,964 19,202 19,238 20,325
Size response supplemental sample 45,839 182,012 19,982 203,621
Percentage of population in oversampled areas 29% 65% 16% 66%

Data collection is based on a sequential mixed mode design using internet (WI),
paper (PAPI), telephone interviewing (CATI) or face-to-face interviewing (CAPI).
For the data collection of the additional regional samples the WI, PAPI and CATI
modes are mandatory. The use of the CAPI mode is recommended but not manda-
tory since this mode is very costly. Statistical inference for official publication pur-
poses is based on the GREG estimator. The inclusion probabilities in the ISM are
determined by the sampling design, accounting for stratification and oversampling
at regional levels. The GREG estimator uses a complex weighting scheme that is
based on the auxiliary variables age, gender, ethnicity, urbanization, household size,
police district, and the strata used in the regional oversampling scheme. In addition,
the weighting scheme contains a component that calibrates the response to a fixed
distribution over the data collection modes with the purpose to stabilize the mea-
surement error between the subsequent editions of the ISM, (Buelens and Van den
Brakel, 2015). Variance estimates are obtained with the standard Taylor series ap-
proximation of the GREG estimator, see Särndal, Swensson and Wretman (1992),
ch. 6.

The GREG estimator can be used to produce reliable official statistics for re-
gions with relatively large sample sizes. With the aforementioned sample design
this implies that the GREG estimator can be used to produce official statistics at the
level of police districts and in the regions where additional samples are drawn also
at the level of municipalities. For regions where no additional samples are drawn,
sample sizes are too small to produce reliable estimates at the level of municipalities
with the GREG estimator. Since there is a growing demand for such figures, SAE
procedures are developed to produce reliable official statistics on crime victimiza-
tion at the municipal level. Three important ISM variables under study are listed in
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Table 2.

Table 2: Overview of key ISM variables and their associated statistics.
Variable Description of statistic
victim Percentage of people who indicated that they were a victim of crime in

the last 12 months
degen Degeneration of the neighborhood (on a scale 1-5)
contpol Percentage of people who had contact with the Police in the last 12

months

3.2. Candidate covariates

The success of increasing the precision of the domain estimates using SAE meth-
ods critically depends on the availability of correlated auxiliary information. An
overview of 21 potential covariates used for model building is given in Appendix
A. These are obtained from the Police Register of Reported Offences (PRRO) and
from the population register.

The auxiliary variables mode2 and oversampled require some explanation. In
areas where local authorities draw supplemental samples, the fraction of responses
obtained through non-interviewer administered modes is larger compared to areas
without such oversampling. This is caused by the fact that CAPI is not conducted for
the supplemental samples. There are clear indications that there are systematic dif-
ferences in measurement error between responses obtained through interviewer and
non-interviewer administered modes (Buelens and Van den Brakel, 2015; Schouten
et al., 2013). As mentioned in section 3.1, the GREG estimator calibrates the re-
sponse to fixed mode distributions to level out large fluctuations in measurement
error due to large fluctuations in the distribution of the response over the different
modes (Buelens and Van den Brakel, 2015). Since the calibration occurs at the po-
lice district level and not at the municipal level, it can be expected that the fraction
of non-interviewer administered modes or a dummy indicator to differentiate be-
tween municipalities where oversampling took place or not, has predictive power
for at least some of the target variables, due to potential correlation between these
covariates and mode-dependent measurement error present within the municipal es-
timates.

4. Results

The different covariate selection strategies are applied to the four ISM editions for
selecting covariates for SAE models for the three study variables. The sections be-
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low discuss the sets of selected covariates and compare performance of the resulting
models. The HB estimates are computed using the statistical software environment
R (R Development Core Team, 2009) and package hbsae (Boonstra, 2012).

4.1. Covariate selection results

The covariate selection results are given in Tables 3 and 4. When using the stnd ap-
proach, different sets of covariates are selected in different survey editions. Not only
do the covariates differ, also their number can vary between years. The variables se-
lected through the avrg strategy often appear in at least one of the stnd models. The
frst approach is not listed in Table 3 as it uses the set of covariates selected through
the stnd approach in 2008.

Naturally, the stnd models result in lower cAIC values than the other strategies,
see Table 4. By definition, the avrg and frst procedures result in the same sets of
covariates to be used for all editions. For 2008, the frst and stnd approaches are
identical and can therefore be expected to perform better than the avrg approach in
that edition. For the subsequent years, 2009-2011, the cAIC values associated with
the avrg approach are mostly smaller than or equal to the cAIC values obtained with
the frst approach. In some cases the covariates selected for 2008 perform well in
other years too, this is the case for example with victim in 2010.

4.2. Small area estimates

The purpose of applying SAE techniques in official statistics is to increase precision
of area estimates. When considering the use of the avrg or frst approaches it is of
interest to compare the reductions in variance achieved with these strategies com-
pared to the stnd approach. An appropriate quantity to study in this context is the
mean reduction in the coefficient of variation (MRCV),

MRCV =
1
m

m

∑
i=1

CV (θ̂i,t)−CV (θ̃i,t)

CV (θ̃i,t)
, (5)

with θ̂i,t the GREG estimator and θ̃i,t the HB prediction for domain i, and CV (x) the
coefficient of variation of estimator x (the estimated standard error divided by the
point estimate). Note that MRCV would not be a suitable model selection criterion
as it is susceptible to over fitting.
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Table 3: Covariates selected by the different methods. Strategy frst uses the covari-
ates selected for stnd in 2008.

Variable Method Covariates (listed in order in which they were selected)
victim stnd 2008 logdens, propcrimedef2, oversampled, nonwestimmi,

old,
westimmi, highincome, lowincome, density, carsphh

stnd 2009 sqrtdens, propcrimedef2, carsphh, mode2, old, westimmi
stnd 2010 sqrtdens, propcrimedef1, young
stnd 2011 propcrimedef1, sqrtdens, old, totcrime, mode2, rent,

nonwestimmi, meanvalue, lowincome, oversampled
avrg sqrtdens, propcrimedef1, young, oversampled, totcrime,

westimmi

degen stnd 2008 rent, totcrime, prov, old, meanvalue, unemployed
stnd 2009 rent, prov, totcrime, meanvalue, mode2, old, young
stnd 2010 rent, prov, meanvalue, violcrime, oversampled, mode2,

totcrime, biketheft, old, density, logdensity, lowincome
stnd 2011 rent, totcrime, biketheft, mode2, old, meanvalue,

logdens, violcrime, lowincome, carsphh
avrg rent, prov, violcrime, meanvalue, totcrime, mode2,

biketheft, oversampled, old, propcrimedef2

contpol stnd 2008 logdens
stnd 2009 sqrtdens, violcrime, young, mode2
stnd 2010 logdens, westimmi
stnd 2011 logdens, violcrime, biketheft, westimmi, prov, highin-

come
avrg logdens, violcrime, westimmi

The MRCV values obtained in this study are listed in Table 5. While the largest
reductions are naturally achieved with the stnd models, the suboptimality of the
avrg and frst models is mild. Overall, the reductions achieved with the latter meth-
ods are only a few percentage points smaller than those achieved with the optimal
models. Comparing the avrg and frst approaches, the former mostly result in greater
reductions, although not always.
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Table 4: Covariate selection results.
number of covariates cAIC

Variable Method 2008 2009 2010 2011 2008 2009 2010 2011
victim stnd 10 6 3 10 -949 -1308 -914 -1395

avrg 6 6 6 6 -934 -1308 -902 -1381
frst 10 10 10 10 -949 -1304 -905 -1393

degen stnd 6 7 12 10 724 353 761 273
avrg 10 10 10 10 722 357 766 276
frst 6 6 6 6 724 361 784 294

contpol stnd 1 4 2 6 -161 -661 -698 -811
avrg 3 3 3 3 -157 -657 -696 -805
frst 1 1 1 1 -161 -657 -693 -798

Table 5: Mean reduction in coefficient of variation (in %).
Variable Method 2008 2009 2010 2011
victim stnd -76 -57 -88 -63

avrg -72 -56 -86 -60
frst -76 -55 -83 -60

degen stnd -47 -31 -55 -32
avrg -46 -31 -53 -32
frst -47 -31 -50 -30

contpol stnd -92 -86 -83 -82
avrg -90 -86 -83 -87
frst -92 -87 -82 -88

Comparing Tables 4 and 5, it is observed that cAIC and MRCV values do not
always exhibit the same pattern. For example the cAIC values for the variable
contpol in 2011 indicate that the stnd approach is best, followed by the avrg and
frst approaches. The corresponding MRCV values on the other hand reverse this
pattern, with the frst approach resulting in greatest reduction and the stnd in lowest.

The values in Table 5 indicate that the SAE method in this case is most beneficial
for the variable contpol with reductions in the coefficient of variation of up to
almost 90%. The gains in precision for victim are smaller and for degen the
smallest at around 30% in 2009 and 2011.

In line with the observation in section 3.1 that the oversampling in the ISM was
much more intense in 2009 and 2011, it is seen in Table 4 that the cAIC values
for these years are smaller than for 2008 and 2010 for each variable and method,
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indicating better model fits in editions with larger samples. The gains to be had from
SAE, however, are larger in the editions with smaller sample sizes, see Table 5.

Of practical relevance is the effect of the covariate selection strategy on the HB
point estimates. SAE estimates obtained through the stnd, avrg and frst approaches
are compared to GREG estimates in Figure 1. Four municipalities with varying
sample sizes are chosen as an example. The number at the top of each panel in the
plot refers to the rank of the municipality when ordered according to sample size
(0001 being the smallest, and 0418 the largest). The four types of estimates are com-
pared. The differences between the three types of SAE estimates are much smaller
than the difference between the SAE and GREG estimates, apart from the larger
municipalities where all estimates almost coincide, such as in Amsterdam. In the
smaller municipalities, where the sample sizes are generally smaller, the differences
are larger and the advantage of using SAE methods becomes apparent. While the
avrg and frst approaches lead to point estimates close to those obtained through the
stnd approach, sometimes there are differences, in particular in the smaller munici-
palities. An example is the variable degen in municipality ’0008’ (top left in middle
panel of Fig. 1). There, the avrg estimates are closer to the stnd estimates than the
frst estimates for the years 2009-2011. This is an indication that situations can arise
where the covariates selected in 2008 are suboptimal in later editions, while those
selected through the averaging strategy perform better overall.

More detailed results are available online in a Statistics Netherlands research
report (Buelens and Van den Brakel, 2014). In this document the point estimates
and variance estimates under the different model selection procedures are compared.
Additional information on model evaluation is also included in this paper.

5. Conclusion

The issue considered in this article is the choice of model covariates when applying
small area estimation repeatedly in consecutive, independent editions of a survey.
The model under consideration is the area level model known as the Fay-Herriot
model in combination with an Hierarchical Bayesian prediction approach. Model
selection in this setting boils down to selecting an optimal set of covariates from a
set of possible candidates.

While selecting an optimal set of covariates for each edition separately may be
preferable from a modeling perspective, in official statistics it is important to avoid
all potentially confounding elements in estimation of temporal change of published
statistical results. Using the same set of covariates in SAE models every year is
deemed essential. A strategy is proposed in which all editions of a survey are con-
sidered simultaneously, and a single set of covariates is selected. This approach uses
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the cAIC criterion and operates by minimizing the cAIC averaged over all survey
editions. A simple additional approach is included in the analyses, consisting of
selecting covariates based on the first edition of a survey and using this set in all
subsequent editions.

In the four editions of the crime victimization survey, it is shown that the models
obtained through the averaging approach are only mildly suboptimal. The result-
ing coefficients of variation are marginally larger than those obtained for estimates
based on specific optimal models for each edition. Models based on the first edi-
tion only are somewhat worse than the models obtained through averaging, but not
substantially. In this application, point estimates are found to be very similar under
all three SAE approaches, with the estimates obtained through the averaging mod-
els closer to the optimal models than the estimates obtained by using only the first
edition. The models obtained through the averaging approach are used to produce
official statistics about crime victimization and public safety at the municipal level,
for twelve ISM survey variables in addition to the three discussed in this article.

The fact that using the first edition of a repeated survey to establish models once
and that using them unaltered thereafter provides reasonable results not dramatically
different from using optimal models in each edition, is an empirical finding for
this application. This is the approach that would ordinarily be taken when a new
survey is introduced with the plan to repeat it at future points in time. When SAE
statistics are required in the first edition there is no other option than to base model
selection on that edition alone. When multiple editions are available, however, it is
recommendable to conduct model selection on these editions simultaneously using
the proposed averaging strategy. Even if a number of past editions are available, it
remains necessary to evaluate the selected models if the data under new editions of
the survey become available. Changing the model might require a revision strategy
for figures already published in the past.

While the averaging method is developed for area level models in the present
study, it is in principle applicable to situations with other models as well includ-
ing the unit level model (Battese, Harter and Fuller, 1988) and models with spatial
effects (You and Zhou, 2011). Similarly, other model selection criteria than cAIC
could be used if desired. Buelens and Van den Brakel (2014) considered leave-one-
out cross validation and found it to result in less parsimonious models than cAIC.
Recently, Lahiri and Suntornchost (2015) proposed a new variable selection crite-
rion specifically for Fay-Herriot models. Each of these alternatives can immediately
be plugged into the selection strategies presented in this article.
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Figure 1: Time series of GREG and SAE estimates obtained through the stnd, avrg
and frst approaches for four municipalities for victim (top), degen (middle) and
contpol (bottom).
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Appendix A: Auxiliary variables defined for municipalities

westimmi: share of western immigrants in the population

nonwestimmi: share of non-western immigrants in the population

prov: province

density: housing density (number of dwellings per square kilometer)

logdens: natural logarithm of density

sqrtdens: square root of density

meanvalue: mean house value (available from housing register)

carsphh: average number of cars owned by households

young: share of population aged 15-30

old: share of population aged 65+

rent: share of houses that are rented (as opposed to owned)

lowincome: share of households with a low income (nationwide in lowest quintile)

highincome: share of households with a high income (nationwide in highest quintile)

unemployed: share of population registered at the employment agency as looking for work

totcrime: number of crimes registered by the Police per 1.000 inhabitants

propcrimedef1: number of property crimes registered by the Police per 1.000 inhabitants

(definition CBS)

propcrimedef2: number of property crimes registered by the Police per 1.000 inhabitants

(definition Bureau Veiligheid)

biketheft: number of bicycle thefts registered by the Police per 1.000 inhabitants

violcrime: number of violent crimes registered by the Police per 1.000 inhabitants

mode2: share of non-interviewer administered modes (paper and web) in the

ISM survey

oversampled: binary variable indicating whether the municipality took part in the

ISM oversampling scheme
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SMALL AREA ESTIMATION FOR SKEWED DATA 

IN THE PRESENCE OF ZEROES  

Forough Karlberg1 

ABSTRACT 

Skewed distributions with representative outliers pose a problem in many surveys. 

Various small area prediction approaches for skewed data based on transformation 

models have been proposed. However, in certain applications of those predictors, 

the fact that the survey data also contain a non-negligible number of zero-valued 

observations is sometimes dealt with rather crudely, for instance by arbitrarily 

adding a constant to each value (to allow zeroes to be considered as “positive 

observations, only smaller”, instead of acknowledging their qualitatively different 

nature). 

On the other hand, while a lognormal-logistic model has been proposed  

(to incorporate skewed distributions as well as zeroes), that model does not include 

any hierarchical aspects, and is therefore not explicitly adapted to small area 

prediction. 

In this paper, we consolidate the two approaches by extending one of the already 

established log-transformation mixed small area prediction models to incorporate 

a logistic component. This allows for the simultaneous, systematic treatment of 

domain effects, outliers and zero-valued observations in a single framework. We 

benchmark the resulting model-based predictors (against relevant alternatives) in 

applications to simulated data as well as empirical data from the Australian 

Agricultural and Grazing Industries Survey. 

Key words: small area estimation, representative outliers, zero-valued 

observations, lognormal-logistic mixture model. 

1. Introduction 

1.1. Estimation in the presence of skewed data 

It is a well-known fact that survey data frequently are skewed (Huber 1981, 

Fuller 1991, Barnett and Lewis 1994). Examples include the income (Mincer 1970) 

and wealth (Huggett 1996) of private individuals as well as many of the variables 

observed in Business surveys (Chambers 1986, Thorburn 1993, Hidiroglou and 
                                                           
1 Luxembourg Statistical Services. E-mail: Forough.Karlberg@LuxStat.eu. 

mailto:Forough.Karlberg@LuxStat.eu
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Smith 2005, Zimmermann and Münnich 2013, Shlomo and Priam 2013). These 

extreme values are not erroneous; on the contrary, to take but one example, a large 

enterprise typically constitutes an important part of the local economy of a 

municipality – and to treat them as anomalies by merely eliminating them when 

they are encountered would be erroneous. Such extreme values are to be regarded 

as representative outliers in the terminology of Chambers (1986). Various methods 

have been developed to treat the issue of estimation in the presence of such outliers, 

e.g. by adjusting outlyingness, possibly in connection with determining a boundary 

(threshold) for the outliers (Searls 1966, Kokic 1998, Hubert and Van der Veeken 

2007), as well as some methods with downweighting (Hidiroglou and Srinath 1981, 

Lee 1995, Sinha and Rao 2009).  Historically, there are different approaches used 

for transforming the data (including  important outliers) to linearity (Carroll and 

Ruppert 1988, Chen and Chen 1996, Chandra and Chambers 2011, Berg and 

Chandra 2012),  with some applications concentrating on the finite population 

distribution of a survey variable (Royall 1982, Jiang and Lahiri 2006, Salvati et al., 

2012). Karlberg (2000a) conducts model-based estimation under a lognormal 

model and extends it to a lognormal-logistic (Karlberg, 2000b). This has the double 

advantage of moderating the impact of outliers that are in the sample and, in case 

no outliers are included, to adjust for their (assumed) presence in the population. 

However, there are also issues with lognormal models. First, the back-

transformation introduces bias which must be corrected for; while technically 

challenging, this is manageable; bias-correction terms are provided by, e.g. 

Karlberg (2000b). More importantly, as with all model-based estimation, severe 

bias could result in case the presumed lognormal model does not hold. 

By logical extension, small area estimation involving skewed variables is also 

a challenge, compounded by the fact that the samples for each domain are smaller, 

leading to an even higher sensitivity to outliers (Lehtonen et al., 2003). Various 

methods, some of them including log-transformation of the data, have been 

proposed (Chambers and Dorfman 2003, Slud and Maiti (2006), Chandra and 

Chambers 2011, Berg and Chandra 2012, Zimmermann and Münnich 2013). 

1.2. The added complexity of zero-valued observations 

It is not infrequent to encounter skewed variables that, while considerably right-

skewed, also contain a sizeable proportion of zero-valued observations (Lamberta 

1992, Chen et al., 2003). Obviously, estimation methods based on logarithmic 

transformation are no longer directly applicable to such variables. Sometimes, this 

is addressed by merely adding an arbitrary constant  (=1 being common practice) 

to the variable (see Young and Young 1975), which then again becomes possible 

to logarithm. However, this manner of treating zero-valued observations is not 

unproblematic. First, from a technical point of view, it is hard to argue that the 

resulting logarithmed variable is normally distributed – it would rather be bimodal, 

with one mode at ln(), and definitely not continuous, with a large number of values 

assuming the exact same value ln(). Moreover, the choice of the constant  is 
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arbitrary, with a different choice rendering different results. Finally, and most 

importantly, it could be argued that a variable assuming the value 0 is something 

more than a computational problem or a technical nuisance – sample units with 

zero-valued observations are in fact often qualitatively different from those with 

positive values. Taking wages as an example, a person with a wage figure of 0 is 

typically not “gainfully employed but with a salary of 0”, but rather unemployed or 

otherwise out of the labour market. Similarly, a farm with a crop area of 0 does 

typically not belong to a crop farmer who just happens to not grow any crops, but 

rather to a farmer focusing on other activities, such as dairy, forestry or livestock. 

1.3. Solutions investigated in this paper 

The lognormal-logistic model discussed by Karlberg (2000b) seems to be a 

more appropriate way to address this issue. The estimator associated with that 

model first fits a logistic model (to deal with the zero-valued observations), and 

thereafter fits a lognormal model to the positive observations. However, the model 

in question is not directly designed to accommodate small area estimation. In this 

paper, we will therefore devote Section 2 to extending the model of Karlberg to 

incorporate hierarchical elements (or, put differently, extending the model of Berg 

and Chandra (2012) to incorporate a logistic element). This is achieved by 

straightforward, practical combinations of already existing tools (see Pfeffermann, 

2013); this paper includes no major theoretical contributions. The empirical 

properties of the four resulting estimators are then examined in Section 3, for 

random lognormal-logistic data, as well as for data from the Australian Agricultural 

and Grazing Industries Survey (AAGIS). The findings are discussed in Section 4, 

which also brings up possible future lines of study. 

2. Methods 

2.1. The lognormal-logistic model 

Under the lognormal-logistic model studied in this paper, we will, just like 

Karlberg (2000b), assume that Yij , the value of unit j for area i for the variable of 

interest(Y), is the product 

Yij = Ỹij∆ij 

of a “lognormal component”  ijY
~

 and a binary (0 or 1) “logistic component” ij with 

independence between the two components. 
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2.1.1. The lognormal component 

Letting Xij denote a vector of auxiliary variables for unit j, we assume that 

ln(Ỹij) = Z̃ij = 𝐁𝐗ij + ui + eij 

where B is an unknown parameter, and, for the area-level effects, we have that 

they are i.i.d. 

ui~N(0, σu) 

and for the residuals that they are i.i.d. 

eij~N(0, σe) 

with, furthermore, independence between any ui and any eij. 

2.1.2. The logistic component 

Letting ij denote a vector of auxiliary variables for unit j (possibly identical 

Xij), we assume that the logistic component values are conditionally independently 

Bernoulli distributed: 

∆ij~Bernoulli (
exp(𝛃𝚵ij + ωi)

1 + exp(𝛃𝚵ij + ωi)
) 

where β is an unknown parameter and the area-level effects are i.i.d. 

ωi~N(0, σω). 

2.1.3. Relationship with previous models 

We see from the first column of Table 1 that estimators for unit-level lognormal 

models (without a logistic component) have been defined without area effects by 

Karlberg (2000a) and with area effect by Berg and Chandra (2012). From the two 

other columns (with stochastic ij), we see, however, that to date, only the simplest 

case (i.e. with no hierarchical components) has been treated; this corresponds to 

Karlberg (2000b). 

In this paper, we will therefore proceed to investigate lognormal-logistic 

estimators of small area means corresponding to all four possible cases. 
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Table 1. Relationship between the model parameters and previously addressed

 models 

 ij  1 ij stochastic 

 (i.e. no logistic component) = 0 > 0 

u= 0 Karlberg (2000a) Karlberg (2000b) – 

u > 0 Berg and Chandra (2012) – – 

2.2. Fitting the model and estimation of small area means 

2.2.1. Estimation of the model parameters and fitted area effects 

In order to evaluate the various estimators, a simulation study has been 

conducted. Due to the availability of appropriate SAE packages in R, the study was 

set up through a couple of R scripts. For all four possible options, the estimation 

procedure proposed in this paper is as follows: 

1. First, the logistic model parameters are estimated. Two cases are possible: 

a.  If there is no logistic area effect (i.e. if =0), the logistic parameter  is 

estimated by means of logistic regression via the GLM function. 

b. If  > 0, the parameters  and  are estimated (and the i-values are 

fitted) using hierarchical logistic regression via the HGLM function 

(Rönnegård et al., 2010). 

2. Based on the logistic regression outcome: 

a.  Estimated probabilities are computed for each unit as  

p̂ij =
exp(�̂�𝚵ij + ω̂i)

1 + exp(�̂�𝚵ij + ω̂i)
 , 

b. area frequencies with positive Yij values are estimated by  

N̂+i = ∑ ∆ijj∈si
+ ∑ p̂ijj∈ri

 , and 

c. area auxiliary variable averages for the observations with positive Yij values 

are estimated by 

�̂̅�+i = (∑ ∆ij𝐗ijj∈si
+ ∑ p̂ij𝐗ijj∈ri

) N̂+i⁄  . 

3. Thereafter, the lognormal model parameters are estimated. 

a. If there is no lognormal area effect (i.e. if u=0),  B and e are fitted as in 

Karlberg (2000b). 
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b. If u > 0, the parameters B, u and e are estimated (and the ui-values are 

fitted) as in Battese, Harter and Fuller (1988) using the eblupBHF function 

(Molina and Marhuenda, 2013), i.e. the empirical best linear unbiased 

predictor (EBLUP; see Rao 2003, and Wang and Fuller 2003). 

2.2.2. Prediction of unobserved values 

If there is no lognormal area effect, then the lognormal component of each 

unobserved value is predicted, as in Karlberg (2000b) by the back-transformed 

predicted values of Zij multiplied by a bias correction factor: 

Ŷ̃ij = exp (Ẑ̃ij) exp (
�̂�e

2

2
(1 − aij) +

�̂�e
4

4n+
) 

where n+ is the number of positive observations in the sample (obtained as the sum 

of all observed values of ij),   

aij = 𝐗i
´(𝐗´𝐗)

−1
𝐗j 

and  

Ẑ̃ij = �̂�𝐗ij . 

If the model incorporates lognormal area effects, then the lognormal 

components are instead predicted, as in Berg and Chandra (2012), by  

Ŷ̃ij = exp (Ẑ̃ij) exp (
�̂�e

2

2
(

γi

n+i
+ 1)) 

where the number of positive observations in area i is denoted by 

n+i = ∑ ∆ij,j∈si
  

γi = �̂�u
2 (�̂�u

2 + �̂�e
2 n+i⁄ )⁄ ,  

and  

Ẑ̃ij = �̂�𝐗ij + ûi . 

Combining this with the logistic probability estimates, each unobserved value 

is predicted by  

Ŷij = Ŷ̃ijp̂ij . 
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2.2.3. Estimation of small area means 

Finally, based on the sum of the observed and predicted values, the small area 

means are simply estimated by: 

Ŷ̅i =
1

ni
(∑ Yijj∈si

+ ∑ Ŷijj∈ri
) .  

To distinguish between the four possible lognormal-logistic (LL) estimators, 

subscripts based on the hierarchical components are used, as indicated in Table 2.  

Table 2. The four lognormal-logistic small area estimators obtained by

 combining the dispersion parameter models 

                    Logistic 

Lognormal 
= 0 > 0 

u= 0 00ˆ LL

iY  ω0ˆ LL

iY  

u > 0 0ˆ uLL

iY  ωˆ uLL

iY  

 

Letting T̂ denote the population total estimator of Karlberg (2000b), we have 

that  

T̂ = ∑ NiŶ̅i
LL00a

i=1    

where a is the number of areas. As the exact same model is used, the variance 

estimator of Karlberg (2000b) is easily applicable to Ŷ̅i
LL00 . 

3. Empirical evaluation of estimator properties 

3.1. Estimators evaluated and benchmark estimators 

The lognormal-logistic estimators of small area means have been evaluated 

against estimators based on the raw (unlogarithmed) Yij values. For real survey data, 

we used 

(i) the direct estimator 
DIR

iŶ , as implemented in the SAE package (Molina and 

Marhuenda, 2013) 

(ii) the synthetic unit-level regression estimator 
REG

iŶ  (thus without area 

effect), used for benchmarking purposes by Karlberg (2000b) and  

(iii) the Battese, Harter, Fuller estimator (1988) 
BHF

iŶ  as implemented in the 

said SAE package. 
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For random data, we limited the set of benchmark estimators to (ii) and (iii), 

since there was no model misspecification for the lognormal-logistic estimators 

rendering the direct estimator superior in terms of unbiasedness. Since there are 

two sets of auxiliary information  and X used by the lognormal-logistic estimators, 

we used the union of those matrices as auxiliary information for the benchmark 

estimators (ii) and (iii) using auxiliary information. 

3.2. Stochastic data 

3.2.1. Lognormal-logistic parameters 

There are numerous ways to vary the ways in which stochastic data are 

generated. In this simulation study, we fixed most parameters, in essence only 

varying the small area sample size ni and, directly or indirectly, the dispersion 

parameters of the two types of area-level effects (ui and i). 

First, we limited the study to lognormal-logistic data, saving the investigation 

of possible model misspecification to the simulation study related to real survey 

data. In terms of size, we used only a=20 small areas, and fixed the ratio between 

small area (population) size and small area sample size to Ni/ni=20, and also 

imposed the restriction that ni be the same across all of the a areas. Considering the 

essence of auxiliary variables being sufficiently captured by one auxiliary variable 

for the purposes of this simulation study, we limited the   and X matrices to contain 

(in addition to the requisite intercept dummies) a sole auxiliary variable each. We set 

these variables to be i.i.d. normal distributed, i.e. 1ij ~ N(0,1) and X1ij ~ N(0,1) 

(thus having zero correlation between the two auxiliary variables; X = 0). 

We invariably used the logistic regression parameter β=(1,1); with the logistic 

intercept parameter 0 thus equal to 1, the resulting number of non-zero Yij values 

is roughly equal to e/(1+e)  ¾. We thus have roughly ¼ zero-valued observations 

in the population. We used the lognormal regression parameter B=(0,1) throughout. 

3.2.2. Simulation study 

With most parameters fixed, we tried out the Cartesian product of the following 

free parameters: 

 We used two different area sample sizes ni=20 and ni=5. 

 With the overall variance in the lognormal component fixed at 

σ 
2 = σu

2 + σe
2 = 1,  

we varied the area effect proportion  

pσ = σu
2 σ 

2⁄   

in small increments from 0 to 0.2. 
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 We varied the logistic area effect standard deviation  in small increments 

from 0 to 1.5. 

For each parameter combination, we generated K=100 random populations and 

drew a single stratified random sample from each of them. (However, if any sample 

with no positive observations at all for an entire area, i.e. where any n+i=0, was 

encountered, the population was regenerated, and the sample was redrawn.) The 

three benchmark and four lognormal-logistic estimators were then used to estimate 

the small area averages, and for each area i and replicate k, the relative bias of the 

estimator EST was calculated as 

RBi(k)
EST = (Ŷ̅i(k)

EST − Y̅i(k)) Y̅i(k)⁄    

and the relative MSE of EST was obtained as 

RMSEi(k)
EST = (RBi(k)

EST)
2

. 

Thereafter, in view of the fact that with the stochastic data, the small areas are 

interchangeable, the overall relative bias of the estimator EST is obtained by 

averaging RBi(k) across all areas as well as across all replicates as:  

RBEST =
1

aK
∑ ∑ RBi(k)

ESTa
i=1

K
k=1    

and the overall relative root mean squared error is obtained as: 

RRMSEEST = √
1

aK
∑ ∑ RMSEi(k)

ESTa
i=1

K
k=1   .  

The relative efficiency of an estimator EST w.r.t. a benchmark estimator BNCH, 

can then be obtained as 

REBNCH
EST = RRMSEBNCH

2 RRMSEEST
2⁄   .  

3.2.3. Results 

In Figure 1, the observed relative efficiency at an area level sample size ni=20 

for each dispersion parameter combination is illustrated for each 

estimator/benchmark estimator (columns; orange labels / rows; green labels) pair. 

In essence, green colour coding indicates superiority w.r.t. the benchmark, and red-

orange-yellow patterns indicate various degrees of inferiority. Given the multitude 

of comparisons that we perform below, we will, for compactness, use the index as 

a shorthand form to refer to an estimator in running text; for instance, we let LL00 

denote the estimator 

Ŷ̅i
LL00    
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This largely corresponds to the row and column labels of the figures presenting the 

results (although the figures use “w” for , and have a leading “Y” for the 

estimators based on unlogarithmed values). 

A reasonable conjecture is that there is monotonicity of the true relative 

efficiency w.r.t. to the dispersion parameters, meaning that if the number of 

replicate populations was larger, the colour regions would be contiguous. 

Match-ups where a colour mosaic is displayed are thus an indication of lack of 

precision in terms of RE estimation. The prevalence of such “mosaics” in Figure 1 

thus means that we can only express ourselves in terms of general tendencies 

regarding the impact of dispersion parameters on the RE of an estimator w.r.t. 

another estimator. We would have to conduct a simulation study with somewhat 

more replicates to be able to more precisely define the boundaries at which one 

estimator becomes more efficient than the benchmark estimator. 

However, already the general tendencies observed are quite informative. 

Starting out with the intra-class comparison among the lognormal-logistic 

estimators, we see, as expected, that if the logistic area dispersion parameter  

increases (rightwards in each pane), the estimators incorporating  (LLu and 

LL0) fare better than the corresponding estimators lacking those components (LLu0 

and LL00, respectively). The pairwise comparisons in question (LLu vs. LLu0; LL0 

vs. LL00) indicate that this superiority holds already for very small positive values 

of , with the boundary somewhere around =0.2. Similarly, an increase in the 

lognormal area effect proportion (upwards in each pane) renders the estimators 

incorporating a positive parameter u (LLu and LLu0) more efficient than those that 

do not (LL0 and LL00, respectively). The pairwise comparisons in question (LLu 

vs. LL0; LLu0 vs. LL00) indicate that this superiority occurs already at a very modest 

area effect proportion (the boundary seemingly falling somewhere around 

p=0.025). 

Turning our attention to comparisons with the design-unbiased (DIR) and 

model-based (REG and BHF) estimators based on raw, untransformed Yij values, it 

appears from Figure 1 that the lognormal-logistic estimator incorporating both 

variants of area-level effects, LLu, is more efficient than the estimators based on 

untransformed data, with the possible exception of situations where both  and u 

are very small. 

While Figure 1 presents the bottom line, i.e. the relative efficiency, it could also 

be interesting to explore the relative bias of the various estimators. The results (not 

shown here) indicate that, as expected, the relative bias of the direct estimator is 

invariably low regardless of the parameterisation – typically in the range of ±1%. 

At p=0, as  increases from 0 to 1.5 the relative bias of the appropriate estimator 

LL0 increases only moderately (from 2% to 6%), whereas the bias of the estimator 

LL00, which lacks a logistic area component, increases dramatically (from 2% to 

30%). At p=0.2 and =0, the estimators lacking a lognormal area component have 
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a relative bias of 20%, compared to a modest relative bias of 5% for those that allow 

for a positive value of u . 

 

Figure 1. Relative Efficiency (RE) of each of  the four evaluated estimators 

(columns) against seven benchmark estimators (rows) for various values 

of the lognormal-logistic parameters  and p . Each rectangle 

corresponds to 100 stratified random samples; each of them drawn from 

a different lognormal-logistic data set. For each of the a=20 small areas 

(each with a size Ni=400), the sample size is ni=20. 

Figure 2 summarises the relative estimator efficiencies for random data with 

area level sample size of ni=5 (with the sampling proportion remaining the same, 

the area population size Ni is 5·20=100 here, whereas it was 20·20=400 for the 

results summarised in Figure 1 above). To summarise the results for that very small 

sample size, we could say that the same general tendencies hold, but with the 

area-level dispersion parameter boundaries shifted upwards (to 0.3 and 

p0.075). However, Figure 2 is much more of a “mosaic” nature. This is due to 

the far more volatile nature of both numerator and denominator (in turn due to the 

high volatility of the small area estimators caused by the very low sample sizes for 

the small areas). A surprising finding is, however, that for very large values of the 
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logistic dispersion parameter (1.5) the direct estimator turns out to be superior 

to those based on lognormal-logistic models. This might be attributed to the very 

low number of non-zero observations used to estimate the lognormal distribution 

parameters and area effects. 

 

Figure 2. Relative Efficiency (RE) of each of  the four evaluated estimators 

(columns) against seven benchmark estimators (rows) for various values 

of the lognormal-logistic parameters  and p . Each rectangle 

corresponds to 100 stratified random samples; each of them drawn from 

a different lognormal-logistic data set. For each of the a=20 small areas 

(each with a size Ni=100), the sample size is ni=5. 

3.3. Survey data 

3.3.1. The AAGIS data 

Like, e.g. Chandra and Chambers (2005) and Chambers and Tzavidis (2006) 

and Molina (2009), we have applied our lognormal-logistic estimators data 

obtained from a sample of 1652 farms that participated in the Australian 

Agricultural and Grazing Industries Survey (AAGIS). This survey includes a 

number of variables with skewed distributions and a sizeable proportion of 0s, 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY                   553 

 

lending itself well to lognormal-logistic modelling. Moreover, as the data are 

subdivided into 29 regions (areas), it is also useful for Small Area Estimation. Out 

of the 1652 observations, we have excluded one with a zero-valued observation for 

a possible auxiliary variable (to allow us to logarithm it if needed). Some basic 

characteristics of the variable Beef Cattle are provided in Appendix 1. 

The only possible Y variable for our class of estimators is Beef Cattle, since the 

other variables with zero-valued observations have some areas for which there are 

no observations with positive values at all, rendering estimation with the current 

implementation of the BHF estimator in the SAE package impossible. (Obviously, 

this would have to be resolved before such lognormal-logistic estimators are 

implemented in production.) We have used Farm Area as the auxiliary variable for 

the logistic component as well as for the lognormal one. 

In the simulation study, we have drawn stratified samples (treating the AAGIS 

data, albeit they are from a sample survey, as a population of size 1651). The only 

parameter varied has been ni , for which we have used six different 

parameterisations, of two different types: (i) the same absolute number across areas 

(capped at a sample fraction of 50% per area) and (ii) a constant sample fraction 

per area (with a minimum absolute sample size of 1). 

For each parameterisation, we have used 100 replicates. It should be underlined 

that in contrast to the evaluation of estimator performance for random data (where 

the areas could be considered interchangeable), the performance measures have 

been calculated area by area (across all replicates), and not across all small areas. 

The area-specific relative bias of area i is thus obtained as  

RBEST;i =
1

K
∑ RBi(k)

ESTK
k=1    

and the other performance measures are obtained analogously. 

3.3.2. Results 

As could be seen from Figure 3, the bias is severe for LL00  and  LLu for certain 

small areas, with the relative bias sometimes extremely high. With   DIR unbiased 

by design, this inevitably carries over into the direct estimator being superior in 

terms of relative efficiency for such areas, as illustrated by Figure 4. Taking area 1, 

the area with the smallest number of positive observations (N+1=4) as an example, 

we have that the relative bias of LL00 is around 100, which, in spite of the high 

variance of  DIR, carries over a relative efficiency of the direct estimator of 

approximately 104. 
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Figure 3. Average relative bias of the DIR, LL00 and LLu estimators of Beef Cattle 

area means for various sample sizes. 100 replicates have been used for 

each sample size parameter. 

Owing to these findings, we do not present findings regarding the other 

benchmark estimators or lognormal-logistic estimators here; if the lognormal-

logistic estimators fail to outperform the direct estimators, their performance 

relative to each other and relative to other benchmark estimators becomes less 

interesting.  

In Appendix 1, the drivers for these tendencies are investigated. In short, as is 

often the case for small area estimation (Chambers et al., 2014), a model which 

works reasonably well at population level is found to be inappropriate at the area 

level. 

 

no. of positive observations 
 N+i in the area 
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Figure 4.  Relative efficiency of the DIR and LLu estimators (w.r.t. LL00) of Beef 

Cattle area means for various sample sizes. 100 replicates have been 

used for each sample size parameter 

4. Conclusions 

In Section 2 of this paper, we have arrived at four different lognormal-logistic 

estimators of small area means by combining the lognormal small area estimator of 

Berg and Chandra (2012) with the lognormal logistic model of Karlberg (2000b), 

and optionally incorporating hierarchical logistic regression. 

We have conducted a simulation study to investigate the estimator properties 

under ideal circumstances, i.e. when the presumed lognormal-logistic model holds. 

As seen from Section 3.2, the estimators behave largely as predicted, i.e. when 

lognormal and/or logistic area-level effects are present, models incorporating such 

effects are superior, in terms of relative efficiency. Interestingly, this holds already 

no. of positive observations 
 N+i in the area 
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for rather small effects; the “penalty” for “unnecessarily” estimating a parameter 

when such a parameter is not present (thus introducing “white noise” into the 

estimation process) seems to be very modest. Using LLu for lognormal-logistic 

data thus seems to be the best option (with the possible exception of situations with 

very low sample sizes (say ni5) combined with large heterogeneity between the 

areas in terms of the proportion of positive observations (say 1.5) when the 

direct estimator might be a safer option). 

However, the model assumptions could be challenged. First, the assumption 

about independence between the lognormal and logistic components, made in 

Section 2.1, could be challenged; Pfefferman et al. (2008) convincingly argue for 

assuming a correlation between the two types of random effects; an extension of 

the model presented in this paper following the Bayesian approach proposed by 

Pfefferman et al. to relax the independence assumption. Even more critical is the 

fact that in real life data do not necessarily comply with a lognormal-logistic model, 

rendering the possible presence of correlation an issue of secondary importance. As 

could be seen from Section 3.3, the estimator’s performance for the Beef Cattle 

variable of AAGIS is disastrous for certain small areas. This is studied in Appendix 

1, where it is found that the small area estimation fails even if the model is fitted to 

the entire AAGIS data set, as going from national level to regional (area) level leads 

to severely biased estimates for some areas. Given this failure at small area 

population level, it is no surprise that the performance is bad when estimation is 

carried out for random samples. The situation is somewhat improved when area-

level random effects are introduced – but an intolerable bias level remains for many 

areas. 

It would be interesting to evaluate whether this is an artefact of the AAGIS data, 

i.e. if there are other real data sets where the lognormal-logistic estimators fare 

better, and what the properties of such data sets are (e.g. larger “small areas”, or 

more highly correlated variables) – or if this poor performance is all but 

unavoidable. It could be argued that the performance issues are not so much related 

to the data as to the model, and there are a number of possible improvements of the 

lognormal-logistic models, such as somehow integrating it into the robust weighted 

mixed model of Chandra and Chambers (2011), which might be worth exploring.  

Minor possible improvements also include a more formal treatment of the bias 

correction factor (currently simply carried over from Berg and Chandra; 2012), and 

the development of a proper model-based variance estimator (currently only readily 

available for LL00), possibly even with an uncertainty measure for this variance (see 

Royall and Cumberland 1978 and Fellner 1986). Practical extensions to allow for 

some n+i=0, and extensions to also allow negative values of Yij are also worth 

considering. 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY                   557 

 

REFERENCES 

BARNETT, V., LEWIS, T., (1994). Outliers in Statistical Data, 3rd ed. John Wiley 

& Sons. 

BATTESE, G.E., HARTER, R.M., FULLER, W.A., (1988). An error component 

model for prediction of county crop areas using survey and satellite data, 

Journal of the American Statistical Association, Vol. 83, pp. 28–36. 

BERG, E., CHANDRA, H., (2012). Small area prediction for a unit level lognormal 

model, Federal Committee on Statistical Methodology Research Conference. 

CARROLL, R., RUPPERT, D., (1988). Transformation and Weighting in 

Regression, Chapman and Hall. 

CHAMBERS, R. L., (1986). Outlier robust finite population estimation,  Journal of 

the American Statistical Association,  Vol. 81, pp. 1063–1069. 

CHAMBERS, R. L., CHANDRA, H., SALVATI, N., TZAVIDIS. N., (2014). 

Outlier robust small area estimation, Journal of the Royal Statistical Society 

Series B: Statistical Methodology, Vol. 76, pp. 47–69. 

CHAMBERS, R. L., DORFMAN, A. H., (2003). Transformed variables in survey 

sampling, Joint Statistical Meetings, Section on Survey Research Methods. 

CHAMBERS, R. L., TZAVIDIS, N., (2006). M-quantile models for small area 

estimation., Biometrika, Vol. 93, pp. 255–268. 

CHANDRA, H., CHAMBERS, R. L., (2005). Comparing EBLUP and C-EBLUP 

for Small Area Estimation, Statistics in Transition, Vol. 7, pp. 637–648. 

CHANDRA, H., CHAMBERS, R. L., (2011). Small area estimation under 

transformation to linearity, Survey Methodology, Vol. 37, pp. 39–51. 

CHEN, G., CHEN, J., (1996). A Transformation Method for Finite Population 

Sampling Calibrated with Empirical Likelihood, Survey Methodology, Vol. 22, 

pp. 139–146. 

CHEN, J., CHEN, S.-Y., RAO, J. N. K., (2003).  Empirical Likelihood Confidence 

Intervals for the Mean of a Population Containing Many Zero Values, The 

Canadian Journal of Statistics, Vol. 31, pp. 53–68. 

FELLNER, W. H., (1986). Robust estimation of variance components, 

Technometrics, Vol. 28, pp. 51–60. 

FULLER, W. A., (1991), Simple estimators for the mean of Skewed populations, 

Statistica Sinica, Vol. 1, pp. 137–158. 

HIDIROGLOU, M. A., SMITH, P. A., (2005). Developing Small Area Estimates 

for Business Surveys at the ONS, Statistics in Transition, Vol. 7, pp. 527-539. 



558                                                                           F. Karlberg: Small area estimation … 

 

 

HIDIROGLOU, M. A., SRINATH, K. P., (1981). Some estimators of a population 

total from simple random samples containing large units,  Journal of the 

American Statistical Association Vol. 76, pp. 690-695. 

HUBER, P. J., (1981). Robust Statistics, John Wiley. 

HUBERT, M., VAN DER VEEKEN, S., (2007). Outlier detection for skewed data, 

Journal of Chemometrics Vol. 22, pp. 235–246. 

HUGGETT, M., (1996). Wealth distribution in life-cycle economies, Journal of 

Monetary Economics, Vol. 38, pp. 469–494. 

JIANG, J., LAHIRI, P., (2006). Estimation of Finite Population Domain Means: A 

Model-Assisted Empirical Best Prediction Approach, Journal of the American 

Statistical Association, Vol. 101, pp. 301–311. 

KARLBERG, F., (2000a). Population Total Prediction Under a Lognormal 

Superpopulation Model, Metron, Vol. LVIII, pp. 53–80. 

KARLBERG, F., (2000b). Survey Estimation for Highly Skewed Populations in 

the Presence of Zeroes, Journal of Official Statistics, Vol. 16, pp. 229–241. 

KOKIC, P. N., (1998). On Winsorisation in Business Surveys, SSC Annual 

Meeting, Proceedings of the Survey Methods Section. 

LAMBERTA, D., (1992). Zero-Inflated Poisson Regression, With an Application 

to Defects in Manufacturing, Technometrics, 34, pp. 1–14. 

LEE, H. L., (1995). Outliers in Business Surveys, In Business Surveys Methods, 

edited by Cox, Binder, Chinnappa, Christianson, Colledege and Kott, Chapter 

26. John Wiley. 

LEHTONEN, R., SÄRNDAL C. E., VEIJANEN, A., (2003). The effect of model 

choice in estimation for domains, including small domains, Survey 

Methodology, Vol. 29, pp. 33–44. 

MINCER, J., (1970). The Distribution of Labor Incomes: A Survey With Special 

Reference to the Human Capital Approach, Journal of Economic Literature 8, 

pp. 1–26. 

MOLINA, I., (2009). Uncertainty under a multivariate nested-error regression 

model with logarithmic transformation, Journal of Multivariate Analysis, Vol. 

100, pp. 963–980. 

MOLINA, I., Marhuenda, Y., (2013). Package ‘sae’,   

http://cran.r project.org/web/packages/sae/sae.pdf  

PFEFFERMANN, D., (2013). New Important Developments in Small Area 

Estimation, Statistical Science 28, pp. 40–68. 

PFEFFERMANN, D., Terryn, B. Moura, F. A. S., (2008). Small area estimation 

under a two-part random effects model with application to estimation of literacy 

in developing countries, Survey Methodology, Vol. 34, pp. 235–249. 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY                   559 

 

RAO, J. N. K., (2003), Small Area Estimation, Wiley. 

ROYALL, R. M., (1982), Finite populations (Sampling from), Entry in the 

Encyclopedia of Statistical Sciences. 

ROYALL, R. M., CUMBERLAND, W. G., (1978). Variance estimation in finite 

population Sampling,  Journal of the American Statistical Association Vol. 71, 

pp. 351–358. 

RÖNNEGÅRD, L., SHEN, X. ALAM, M., (2010). hglm: A Package for Fitting 

Hierarchical Generalized Linear Models, The R Journal Vol. 2, pp. 20-28, 

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Roennegaard~et~al.  

SALVATI, N., Chandra, H., Chambers, R. L., (2012). Model Based Direct 

Estimation of Small Area Distributions, Australian & New Zealand Journal of 

Statistics 54, pp. 103–123. 

SEARLS, D. T., (1966). An estimator which reduces large true observations, 

Journal of American Statistical Association, Vol. 61, pp. 1200–1204. 

SINHA, S. K., RAO, J. N. K., (2009). Robust small area estimation, Canadian 

Journal of Statistics, Vol. 37, pp. 381–399. 

SHLOMO, N., PRIAM, R., (2013). Improving Estimation in Business Surveys. 

Chapter 4.2, 52–70 in BLUE-ETS Deliverable D6.2: Best practice 

recommendations on variance estimation and small area estimation in business 

surveys, edited by R. Bernardini Papalia, C. Bruch, T. Enderle, S. Falorsi, A. 

Fasulo, E. Fernandez-Vazquez, M. Ferrante, , J.P. Kolb, R. Münnich, S. Pacei, 

R. Priam, P. Righi, T. Schmid, N. Shlomo, F. Volk and T. Zimmermann. 

SLUD, E., MAITI, T. (2006). Mean-squared error estimation in transformed 

Fay-Herriot models, Journal of the Royal Statistical Society: Series B 

(Statistical Methodology), Vol. 68, pp. 239–257. 

THORBURN, D., (1993). The treatment of outliers in economic statistics, 

Proceedings of the International Conference on Establishment Surveys, 

Buffalo, New York. 

WANG, J., FULLER W. A., (2003). The Mean Squared Error of Small Area 

Predictors Constructed with Estimated Area Variances.” Journal of the 

American Statistical Association, Vol.  98, pp. 716–723. 

YOUNG, K. H., YOUNG, L. Y., (1975). Estimation of Regressions Involving 

Logarithmic Transformation of Zero Values in the Dependent Variable, The 

American Statistician , Vol. 29, pp. 118–120. 

ZIMMERMANN, T., Münnich, R., (2013). Coherent small area estimates for 

skewed business data, Proceedings of the 2013 European Establishment 

Statistics Workshop. 

  



560                                                                           F. Karlberg: Small area estimation … 

 

 

                     APPENDIX 

Appendix 1. Methodological details 

A.1. Regression line fit at population level 

In an attempt to identify the root cause of the poor performance of the 

lognormal-logistic estimators, we started out by fitting the model associated with 

LL00  to the entire population, i.e. the 1651 AAGIS observations. As could be seen 

from Figure A1, the model fits the data reasonably well; this is corroborated by the 

performance of T̂ for the very same variables observed by Karlberg (2000b). 

 

Figure A1. Regression line (red) fit to the logarithmed positive values of Beef 

Cattle for all 1651 observations (black) of AAGIS. The application of 

the bias correction factor is illustrated by the blue line. 
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A.2. Estimator performance at area level 

Figure A2 demonstrates the effect of proceeding to the area level. There, we 

see that sometimes (taking the 4/43 area with 4 positive and 43 zero observations 

at the bottom left as an example) the entire area is composed of observations far 

from the regression line. Further investigations (not explicitly presented here) 

demonstrate that even if the large heterogeneity between areas in terms of zero 

valued observations (ranging from 0% to 91%, as could be seen from Table A1) is 

disregarded, the model completely fails to capture the structure of the positive 

values in a number of areas. 

 

Figure A2. Regression line (red) fit to the logarithmed positive values of Beef 

Cattle for all 1651 observations of AAGIS, illustrated together with 

the observations (black) area by area. The number of positive/zero 

observation per area is indicated in the red strip above each area. 

Obviously, if there is a severe bias even in an ideal situation, even with the 

model fit to the entire population, this is what could be expected to hold on average 
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for samples drawn from that population as well. This is precisely what we observe 

in Figure 3 for certain of the areas in the simulation study. 

As the incorporation of area effects allows the fitting of a model that is closer 

to the values observed for each area, the bias of LL00  is, as could be seen from 

Figure 3, somewhat less severe across most areas, in particular the smaller ones. 

However, the performance is still unacceptable for that estimator as well. 

Table A1. Some characteristics of the AAGIS variable Beef Cattle 

Area i No. of farms 𝑁𝑖 (𝑁𝑖 − 𝑁+𝑖) 𝑁𝑖⁄  ∑ Yi
N𝑖
j=1 𝑁+𝑖⁄   

1 47 91% 26.5 

2 6 0% 7523.5 

3 10 0% 8945.7 

4 51 76% 28.8 

5 25 40% 1554.7 

6 19 11% 4285.6 

7 55 65% 136.6 

8 83 73% 1148.9 

9 36 36% 1985.5 

10 30 17% 430.1 

11 60 58% 100.2 

12 80 65% 97.8 

13 30 3% 2774.7 

14 30 0% 12903.0 

15 35 6% 5878.8 

16 34 0% 404.5 

17 40 13% 1129.4 

18 60 32% 670.5 

19 51 12% 1139.6 

20 73 32% 643.6 

21 62 13% 530.9 

22 77 21% 387.0 

23 74 16% 390.7 

24 79 19% 434.8 

25 108 33% 435.2 

26 103 28% 415.5 

27 81 6% 526.6 

28 95 12% 632.5 

29 117 16% 980.6 

All areas 1651 30% 1308.5 
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BORROWING INFORMATION OVER TIME
IN BINOMIAL/LOGIT NORMAL MODELS

FOR SMALL AREA ESTIMATION

Carolina Franco1, William R. Bell2

ABSTRACT

Linear area level models for small area estimation, such as the Fay-Herriot model, face
challenges when applied to discrete survey data. Such data commonly arise as direct
survey estimates of the number of persons possessing some characteristic, such as the
number of persons in poverty. For such applications, we examine a binomial/logit nor-
mal (BLN) model that assumes a binomial distribution for rescaled survey estimates
and a normal distribution with a linear regression mean function for logits of the true
proportions. Effective sample sizes are defined so variances given the true proportions
equal corresponding sampling variances of the direct survey estimates. We extend the
BLN model to bivariate and time series (first order autoregressive) versions to permit
borrowing information from past survey estimates, then apply these models to data
used by the U.S. Census Bureau’s Small Area Income and Poverty Estimates (SAIPE)
program to predict county poverty for school-age children. We compare prediction re-
sults from the alternative models to see how much the bivariate and time series models
reduce prediction error variances from those of the univariate BLN model. Standard
conditional variance calculations for corresponding linear Gaussian models that sug-
gest how much variance reduction will be achieved from borrowing information over
time with linear models agree generally with the BLN empirical results.
Key words: area level model, complex surveys, American Community Survey, bi-
variate model, SAIPE.

1. Introduction

Small area estimation by area level models often uses linear Gaussian mixed mod-
els, specifically the model of Fay and Herriot (1979). When such models are ap-
plied to data from a repeated survey the question arises as to whether better re-
sults may be obtained by borrowing information from past data. Time series ex-
tensions to the Fay-Herriot (FH) model have thus been explored. See, e.g., Ghosh
et al. (1996), Datta, Lahiri, Maiti, and Lu (1999), Saei and Chambers (2003), Rao

1U.S. Census Bureau. E-mail: Carolina.Franco@census.gov.
2U.S. Census Bureau. E-mail: William.R.Bell@census.gov.
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and Molina (2015, Sections 4.4.3, 8.3, and 10.9), Esteban et al. (2012), and Pratesi
et al. (2010, Chapter 3). Huang and Bell (2012) investigated the use of a bivariate
FH model that, for each area, borrowed information from an estimate obtained by
pooling recent past survey samples, which is similar to borrowing information from
an average of past survey estimates.

Area level modeling has also been extended through the use of Generalized
Linear Mixed Models (GLMM), which have been discussed in the context of small
area estimation by Ghosh, et al. (1998) and Rao and Molina (2015, Section 10.13).
GLMMs have potential advantages for modeling inherently discrete data arising
from direct survey estimates of the number of persons that possess a certain char-
acteristic (e.g., the number of persons in poverty). This can also be thought of as
modeling survey estimates of the corresponding proportions (e.g., poverty rates).
Directly applying a linear Gaussian model to such data may risk producing nonsen-
sical results such as negative predictions or, more likely, prediction intervals that
include negative values. Taking logarithms can eliminate these problems but cre-
ates the problem of dealing with direct estimates of zero that arise when no one in
an area’s sample possesses the characteristic whose prevalence is being estimated.
Analogous problems arise if predicted proportions or their interval limits exceed
one, or if direct estimates of proportions equal one. GLMMs avoid such problems
and may also help account for the skewness typically inherent in such data when the
underlying proportion is near zero or one.

This paper focuses on small area models that combine both extensions just men-
tioned. To address the challenges posed by discrete survey data, we use a bino-
mial/logit normal (BLN) model. This particular GLMM assumes a binomial distri-
bution for discrete observations, and a normal distribution with a linear regression
mean function for logits of the binomial proportions. We determine effective sam-
ple sizes for the binomial distributions to preserve sampling variances estimated via
a generalized variance function. To borrow information from past data we extend
the BLN model to a bivariate version and then to a time series version. The latter
uses a first order autoregressive model (AR(1)), although other time series structures
could be used. The normality assumption for the random effects in the logits of the
proportions facilitates these extensions for modeling dependence. One qualification
to note is that the extensions assume independence of the sampling errors of the
survey estimates for all years covered by the time series model, as well as for the
two equations of the bivariate model.

Our motivating application comes from the U.S. Census Bureau’s Small Area
Income and Poverty Estimates (SAIPE) program. SAIPE provides annual poverty
estimates for various age groups for states, counties, and school districts of the U.S.
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An important SAIPE product is school district age 5–17 poverty estimates used by
the U.S. Department of Education in allocating federal funds (over $14 billion in
2013) to school districts. For more information on the SAIPE program, see Bell et
al. (2015) or the SAIPE web page at http://www.census.gov/did/www/saipe/.

The survey data source used by SAIPE, which we also use here for illustration,
is poverty estimates from the American Community Survey (ACS). The ACS is the
largest household sample survey in the United States, sampling approximately 3.5
million addresses per year. It collects data on a broad range of population charac-
teristics such as income, health insurance coverage, and education, and publishes
estimates annually. For areas with populations of 65,000 or more, ACS publishes
estimates based on a single year of data collection. For the smallest places, pub-
lished estimates use data pooled from five years of ACS samples. The ACS, with its
5-year estimates, has effectively replaced the decennial census long form sample,
which was last carried out in Census 2000. SAIPE poverty models use ACS 1-year
estimates, which are not publicly released for counties with populations less than
65,000.

We focus here on modeling county poverty for school-aged (5-17) children,
a key component of developing the SAIPE poverty estimates for school districts.
The SAIPE production model has as a covariate the log of the Census 2000 long
form county estimates of age 5–17 children in poverty. This covariate is going
further and further out of date, motivating consideration of replacing it with past,
but more recent, ACS data. Huang and Bell (2012) thus explored bivariate FH
models for current ACS 1-year and past ACS 5-year poverty estimates. This issue
also motivates the bivariate and time series extensions to the BLN model that we
study here.

Our interest in studying the BLN model applied to SAIPE data stems from its
potential advantages for modeling discrete data discussed above, a relevant con-
sideration for the ACS 1-year estimates for small counties. Slud (2000, 2004) did
several analyses comparing results from GLMM models to results from models sim-
ilar to the SAIPE county production model. Slud (2000) showed advantages to the
use of a unit level BLN model of sampled counts compared to a linear Fay–Herriot
model for logged counts when the data were simulated from the GLMM model.

The rest of the paper proceeds as follows. Section 2 presents the BLN model
and its extensions to bivariate and time series (AR(1)) versions. Section 3 presents
results from application of these models to ACS county poverty data for 2012. We
compare results between the variants of the BLN model to illustrate the potential
benefits of the two different ways of borrowing information from past data. Sec-
tion 4 provides conclusions.
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2. Binomial/Logit Normal (BLN) Models

The BLN model may be written as

yi|pi,ni ∼ Bin(ni, pi) i = 1, . . . ,m (1)

logit(pi) = x′iβ +ui (2)

where logit(pi) = log[pi/(1− pi)], ui ∼ i.i.d. N(0,σ2
u ), and ni is the sample size for

area i. The model as given by (1)–(2) can be readily applied to unweighted sample
counts yi, but doing this ignores any complex aspects of the survey design. For
applications to complex survey data where the yi are survey weighted estimates, two
problems arise. First, the possible values for the yi will not be the integers 0,1, . . . ,ni

for any direct definition of sample size ni. Instead, yi will take a value from a finite
set of unequally-spaced numbers (not necessarily integers) determined by the survey
weights that apply to the sample cases in area i. Second, the sampling variance of
yi implied by the binomial distribution in (1), ni pi(1− pi), will be incorrect.

To address these problems we start by defining an “effective sample size” ñi,
and an “effective sample number of successes” ỹi, determined to maintain: (i) the
direct survey weighted estimate p̃i of the true proportion, and (ii) a corresponding
sampling variance estimate, v̂ar(p̃i). For the latter we set

ñi = p̆i(1− p̆i)
/

v̂ar(p̃i) (3)

where p̆i is a preliminary model-based prediction of the population proportion pi (on
which var(p̃i) truly depends), and v̂ar(p̃i) depends on p̆i through a fitted generalized
variance function (GVF). Franco and Bell (2013) give a detailed explanation of
the implementation of this GVF for application of the BLN models to the ACS
county poverty data used in SAIPE models. Liu, Lahiri, and Kalton (2007) and
You (2008) used essentially this type of sampling variance model, but applied it in
models of survey estimates of proportions assumed to follow either a normal or a
Beta distribution.

Having thus determined ñi, we set ỹi = ñi× p̃i and, after rounding, substitute
(ñi, ỹi) for (ni,yi) in (1). Note that ỹi = 0 if p̃i = 0, but this does not cause problems
since the BLN allows for observations of zero. Moreover, p̆i > 0 in (3) implies
ñi > 0 even if p̃i = 0. Rounding of ñi and ỹi may be required by computer software
for the fitting of models such as (1)–(2).
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We extend the univariate BLN given by (1)–(2) to a bivariate BLN, written as

ỹ1i|p1i, ñ1i ∼ Bin(ñ1i, p1i) ỹ2i|p2i, ñ2i ∼ Bin(ñ2i, p2i) (4)

logit(p1i) = x′1iβ1 +u1i logit(p2i) = x′2iβ2 +u2i (5)[
u1i

u2i

]
∼ i.i.d. N(0,Σ), Σ =

[
σ11 σ12

σ12 σ22

]
for i = 1, . . . ,m. In (4), for each area i ñ1i and ỹ1i are the effective sample size
and effective number of successes derived as discussed above from a direct sur-
vey estimate y1i and a corresponding sampling variance estimate. Similarly, ñ2i

and ỹ2i are derived from another direct survey estimate y2i and corresponding sam-
pling variance estimate. The bivariate BLN model can be applied to estimates y1i

and y2i from two different surveys or for two different time points from the same
repeated survey. Notice, though, that ỹ1i and ỹ2i are assumed conditionally inde-
pendent (given p1i, ñ1i and p2i, ñ2i), as will be the case if the samples on which they
are based are drawn independently. This is true for our application of the bivariate
BLN in Section 3, where y1i and y2i are ACS 1-year and previous 5-year poverty
estimates, respectively, since ACS samples are drawn approximately independently
each year. (The ACS housing unit samples are drawn independently each year from
one of five population subframes to which U.S. residential addresses are randomly
assigned, with rotation of the subframes on a five-year cycle. Sampling fractions for
most areas are 5% or less. See U.S. Census Bureau (2014, pp. 32–46).)

Instead of summarizing the information in five prior years of ACS data through
the resulting 5-year estimates, a logical alternative to consider is to use the cor-
responding five individual 1-year estimates. Putting this together with the current
1-year estimates, implies modeling six years of ACS 1-year estimates. We do this
by extending the BLN to assume the model errors uit have an AR(1) correlation
structure:

ỹit |pit , ñi ∼ Bin(ñit , pit) i = 1, . . . ,m, t = 1, . . . ,T (6)

logit(pit) = x′itβt +uit = x′itβt +σt ũit (7)

ũit = φ ũi,t−1 + εit (8)

where −1 < φ < 1. The εit are assumed distributed as i.i.d. N(0,1− φ 2) so that
var(ũit) = 1 (Box and Jenkins 1970, p. 58) and var(uit) = σ2

t . Note that this ver-
sion of the BLN-AR(1) model has different regression coefficients (βt) and different
model variances (σ 2

t ) each year. We have three reasons for making this assumption.
First, the true regression coefficients and model variances may actually differ year-
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to-year. Second, this assumption is implicitly made in current SAIPE production by
fitting the univariate production models separately for each year. Third, and most
importantly here, the assumption facilitates comparisons of results, especially the
comparisons of posterior variances and standard deviations that we make in Sec-
tion 3, to corresponding results obtained from the univariate and bivariate BLN
models. Both the univariate and bivariate BLN models use regression coefficients
and a model variance specific to the prediction year.

A more conventional version of the BLN-AR(1) model would set βt = β and
σ2

t = σ2
u for all years t in the model. With this assumption, the covariance matrix of

ui = (ui1, . . . ,uiT )
′ has the general form (Box and Jenkins 1970, pp. 56-58)

var(ui) = σ
2
u


1 φ · · · φ T−1

φ 1 · · · φ T−2

...
...

. . .
...

φ T−1 φ T−2 · · · 1

 . (9)

For the heteroscedastic version given by (7)–(8), we drop σ2
u in (9) and pre- and

post-multiply the matrix there by a diagonal matrix with diagonal elements σt .
Linear Gaussian models with AR(1) model errors for ACS poverty data were in-
vestigated by Taciak and Basel (2012) for application to logs of ACS county 5-17
poverty estimates, and by Hawala and Lahiri (2012) for application to ACS esti-
mates of county 5-17 poverty rates. Esteban et al. (2012) applied such models to
data from the Spanish Living Conditions Survey to improve direct survey estimates
of the male and female poverty rates for Spanish provinces.

3. Application: Borrowing Information from Past Data in Small Area
Estimation of Poverty for U.S. Counties

To illustrate the potential for variance reductions from the bivariate and AR(1) ex-
tensions to the BLN models, we apply these models to estimating poverty rates for
school aged children in U.S. counties in 2012. The univariate BLN (1)–(2) models
the 2012 ACS 1-year county poverty estimates, the bivariate BLN (4)–(5) models
these estimates together with the 2007–2011 ACS 5-year county poverty estimates,
and the BLN-AR(1) (6)–(8) models the ACS 1-year county poverty estimates from
2007–2012. We shall compare prediction results from these models for 2012 for
3,136 counties, omitting 6 counties from the SAIPE universe which were not con-
sistently defined across all 6 years of data. We did the same analysis with data
corresponding to prediction years 2010 and 2011 and obtained very similar results.

The regression variables used in each of the models included 1 for an intercept
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term, and logistic transformations of the following:

• the proportion of child tax exemptions “in poverty” for the county, i.e., the
ratio of the number of child exemptions claimed on tax returns whose adjusted
gross income falls below the poverty threshold divided by the total number
of child exemptions for the county. (Notes: (i) In general terms, a “child
tax exemption” is a child listed on an income tax return who is economically
dependent on the person filing the return. (ii) The poverty threshold used is
that applicable to a family of the size implied by the number of exemptions
(persons) listed on the tax return.)

• an adjusted version of the county “child tax filer rate,” which is defined as the
number of child exemptions in the county claimed on tax returns divided by
the county population age 0–17.

• the “SNAP participation ratio,” defined as the ratio of county recipients of
benefits from the Supplemental Nutrition Assistance Program (SNAP), a pro-
gram that subsidizes food expenses of low income persons, in July of the
previous year to the county population of the previous year.

Huang and Bell (2012) used the above ratio variables in bivariate models for ACS
poverty rates, while Bell et al. (2007) used their logarithms in models for logs of
ACS poverty rates. For x2i in equation (5) of the bivariate BLN, we used the above
variables defined for the middle year (2009) of the 5-year interval.

An issue arises for the child tax filer rate in that it often exceeds 1 due to the
number of child tax exemptions in a county exceeding the county’s age 0–17 pop-
ulation. This occurs because the upper age limit for a child tax exemption can
exceed 17, ranging as high as 23 for university students, and with no age limit for
disabled children. The issue was addressed by multiplying all child tax filer rates
by a constant factor to bring the maximum rescaled filer rate just below 1, permit-
ting the logistic transformation. This adjustment is discussed further in Franco and
Bell (2013).

We used the JAGS software (Plummer 2010) to implement the three models
via a Bayesian approach with noninformative priors. Regression parameters were
given normal priors with large variances, while the random effect variances in our
models were given flat priors on intervals [0,κ] chosen wide enough to contain
essentially all the posterior probability as judged from examination of their posterior
densities for a univariate model. The parameters ρ of the bivariate BLN and φ

of the BLN-AR(1) models were given flat priors on (−1,1). We determined the
effective sample sizes ñi and effective numbers of successes ỹi for the BLN models
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as discussed in Section 2 for both the ACS 1-year and ACS 5-year poverty estimates.
We used separately fitted GVFs for the sampling variances for each year of the 1-
year estimates, as well as a separately fitted GVF for the variances of the 5-year
estimates.

3.1. Variance reductions from the extensions of the BLN model

Figure 1 compares the posterior means and standard deviations obtained from JAGS
for the rates of school-aged children in poverty for U.S. counties in 2012 from the
univariate, bivariate, and AR(1) BLN models. Parts (a) and (b) show that the pos-
terior means are similar regardless of which of the models we choose. Figure 1(c)
shows the posterior standard deviations tend to be lower for the bivariate BLN model
than for the univariate BLN model, suggesting some value to incorporating the ACS
5-year estimates into the model. The gains are modest, however. The average per-
centage reduction in posterior standard deviations from using the bivariate versus
the univariate model is approximately 5%, with about an 11% corresponding aver-
age reduction in posterior variances. The AR(1) model, on the other hand, yields
only a 2.3% average decrease in standard deviations and a 4.6% decrease in vari-
ances compared to the univariate model. On average, it has larger posterior standard
deviations than does the bivariate model, as reflected in Figure 1(d).

As the returns from using the bivariate or AR(1) BLN models to borrow in-
formation from past data are so modest, the question arises as to whether the data
provide much evidence of dependence over time in the model errors uit . In fact, the
posterior mean of ρ from the bivariate BLN is .51 with a 95% posterior (credible)
interval of (.43, .60), while the posterior mean of φ from the AR(1) model is 0.44,
with a 95% interval of (.39, .50). So the data provide clear evidence of dependence
over time in the uit , but modeling this dependence does not produce much reduction
in prediction uncertainty for the county 5–17 poverty rates.

3.2. How much improvement should we expect from borrowing information
from past data?

As a rough guide to how much improvement might be expected from the bivariate
or AR(1) models over the univariate model, we consider the linear FH model case
when the true dependence structure is a stationary AR(1) model and all model pa-
rameters are known. We also assume for simplicity that the model error variance σ2

u
and the sampling variances vi remain constant over time. For this case it is straight-
forward to compute and compare the posterior variances (prediction MSEs) for the
univariate, bivariate, and AR(1) versions of the FH model using standard results on
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Figure 1: Comparison of posterior means and standard deviations for 2012 U.S.
county poverty rates of school-aged children for univariate, bivariate, and AR(1)
BLN Models.

conditional variances in a multivariate normal distribution – see the Appendix. Note
that, since model parameters are assumed known, the predictions for each model are
optimal conditional on the data used, but the data conditioned on differs across the
three models.

Percent reductions in posterior variances for the bivariate and AR(1) models
compared to the univariate model depend only on the parameter φ and variance ratio
vi/σ2

u . Figure 2(a) shows contour plots of the percent variance reductions achieved
by the AR(1) model as functions of φ and vi/σ2

u . (The plot assumes φ ≥ .4; a mirror
image results for φ ≤ −.4, and percent reductions are small for |φ | < .4.) It shows
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Figure 2: Contour plots of posterior variance percent reductions for small area esti-
mates achieved by the FH-AR(1) model using 6 years of data compared to the uni-
variate and bivariate FH models, when the true population characteristics actually
follow an AR(1) model. Contours are shown as functions of the AR(1) parameter φ

and var(ei)/var(ui), the ratio of the sampling error variance to the model error vari-
ance. (a) Reductions from the AR(1) versus the univariate model. (b) Reductions
from the AR(1) versus the bivariate model.

that the variance reductions increase with increasing values of φ , and decrease as
the value of vi/σ2

u deviates from 1.0. (Note that the x-axis in Figure 2(a) is on a
log scale.) For values of φ such as .50 or less, the variance reductions are small,
no more than about 7% when vi/σ2

u = 1, and less as vi/σ2
u moves away from 1.0.

Large variance reductions require larger values of φ . For example, to achieve a 20%
or greater reduction in variance requires φ ≥ .75.

Esteban et al. (2012) reported results related to those of Figure 2(a) obtained
from a simulation study of the FH-AR(1) model, though augmented with a time-
invariant area level random effect. This feature, and some other differences (most
notably that their simulations provide estimates of the full prediction MSEs, not
just a first order approximation) make their specific numerical results not directly
comparable to ours. However, their results obtained with the alternative values of
φ = 0, .25, .5, .75 (denoted as ρ in their paper) are consistent with the general con-
clusions we draw from Figure 2(a). First, they found that borrowing from past data
yielded little if any benefit for φ ≤ .5. Then, for φ = .75, their augmented FH-AR(1)
model appears (judging from their Figure 4.1) to reduce prediction MSEs by about
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10%, or in some cases slightly more, relative to those obtained by applying this
model with φ fixed at 0. Their simulation model assumed different values of the
sampling variances across areas and time points, resulting in values of their ratio
of sampling to model variance ranging from roughly .325 to .8 overall. The values
within this range that were covered by a given simulation experiment varied as this
depended on the value used for φ in the experiment. Esteban et al. also remarked
that other simulations they did without the time-invariant random effect led to the
same basic conclusions.

Figure 2(b) shows contours of percentage variance reductions from using the
AR(1) model versus the bivariate model when the latter is applied to current year
survey estimates and the average of survey estimates over the previous five years.
We take this use of the five-year average as an approximation to the use of ACS
5-year estimates. Since the calculations assume the AR(1) is the true model, the
bivariate model must have higher posterior variances. However, the reduction in
variance from using the AR(1) model is generally small – less than 10% except for
a small region in the upper left corner of the plot for high values of φ and values of
vi/σ2

u < .5.

One might wonder whether larger variance improvements from the AR(1) or
bivariate models might result if more years of data were used compared to the six
years assumed for the plots of Figure 2. Doing the same contour plots for the cases
of 10 years of data and 20 years of data produced little change in the plots, except
for very large values of φ and within a limited range of large vi/σ2

u values, where
more substantial advantages to the AR(1) over the bivariate model were observed.
Over almost all of the range of φ and vi/σ2

u , using more years of past data appeared
to make little difference.

The values of the variance ratios, vi/σ2
u , across the areas i = 1, . . . ,m in the

model will clearly affect how much variance improvement is achieved in specific
areas. To gauge this effect for our application, we fitted a linear FH model to the
ACS estimated county poverty rates, for which we had the sampling variances vi

from the GVF, and, using the posterior mean of σ2
u , we calculated the ratios vi/σ2

u .
Figure 3 shows a histogram of these variance ratios with the x-axis on a log scale.
Most of the values lie between .1 and 10, though some extend beyond this. The
variance ratios across the U.S. counties thus reflect much of the x-axis range of the
contour plots in Figure 2.

Figures 2 and 3, the simulation results of Esteban et al. (2012), and the esti-
mates of φ for the AR(1)-BLN model, suggest that for our application only small
improvements in posterior prediction variances would be realized from the AR(1)
or bivariate models compared to the univariate BLN. This is consistent with the
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Figure 3: Histogram of the ratios of the sampling variances to the model variance
in the FH model for the 2012 U.S. county poverty rates of school-aged children

posterior variance comparisons discussed in Section 3.1. Two other results from
these comparisons may still seem surprising. First, the improvements for the bivari-
ate BLN model are somewhat larger than the theoretical calculations for the linear
model would suggest. Second, the improvements for the bivariate BLN model are
larger than are those for the AR(1) model. While one would expect some limi-
tations on how well calculations for linear FH models with parameters assumed
known apply to fitted BLN models, that does not seem to explain these results since
we obtained very similar results when we made the same comparisons using the
bivariate and AR(1) extensions to the FH model applied to county poverty rates. In
this case the bivariate FH model reduced prediction error standard deviations and
variances compared to the univariate FH model by, on average, 5% and 9% (com-
pared to 5% and 11% for the bivariate BLN). Corresponding figures for the AR(1)
FH model were 2.7% and 5.2% (compared to 2.3% and 4.6% for the AR(1) BLN).
In any case, differences between the comparisons for the BLN models and those for
the FH model (both empirical and theoretical results) are not large, and all lead to
the main conclusion that, given the value of φ for the AR(1) model, modest vari-
ance reductions would be achieved by the bivariate or AR(1) models relative to the
univariate model.

3.3. Impact of removing model covariates

To illustrate a case where greater improvement would be expected from borrowing
information over time, we repeated our empirical analyses after removing the re-
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gression covariates from the BLN models, leaving only the intercept terms. Without
the regressors, the posterior means of ρ and φ skyrocketed to .92 and .94, respec-
tively. We are now in the region of the parameter space where, by Figure 2(a), we
would expect to see very substantial reductions in posterior variances from using
a bivariate or AR(1) model rather than a univariate model. For this case, Figure 4
shows substantial differences between both the posterior means and posterior stan-
dard deviations of county poverty rates from the univariate and bivariate BLN mod-
els. In fact, we now see an average 25% reduction in posterior standard deviations
and a 43% reduction in posterior variances from using the bivariate versus the uni-
variate model. The AR(1) and bivariate BLN models performed similarly (results
not shown on the plots), with the AR(1) yielding, on average, 1.3% higher poste-
rior standard deviations compared to the bivariate BLN. The average reductions in
standard deviations and variances for both the bivariate and AR(1) FH models for
poverty rates were 26% and 45%.
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Figure 4: Comparisons of the posterior means and standard deviations for the 2012
U.S. county poverty rates of school-aged children for the univariate and bivariate
BLN models with no regressors

3.4. Some model checks

For the linear (FH) model, where yi = (x′iβ +ui)+ ei, examination of standardized
residuals defined as (yi− x′iβ̂ )/[v̂ar(yi− x′iβ̂ )]

1/2 provides a standard model check.
We seek an analog for the BLN model (1)–(2). Since the inverse to (2) is pi =

(1+ e−(x
′
iβ+ui))−1 and E(ui) = 0, it may seem natural to use residuals defined as
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yi/ni − p̂i where p̂i = (1 + e−x′iβ̂ )−1 and β̂ is an estimate of β . However, even
with β known, (1+ e−x′iβ )−1 is not an unbiased estimator of E(yi/ni) due to the
nonlinearity of the logistic transformation and the presence of the random effects
ui. Instead, we define residuals as yi/ni−E(yi)/ni and compute

E(yi/ni) = (1/ni)Epi [E(yi|pi)] = Epi(pi) =
∫

∞

−∞

(1+ e−zi)−1 f (zi)dzi (10)

where zi = logit(pi), f (zi) is the N(x′iβ ,σ
2
u ) density, and Epi(•) denotes uncondi-

tional expectation over the distribution of pi.

To standardize the residuals we need the unconditional variance

var(yi) = Epi [var(yi|pi)]+varpi [E(yi|pi)]

= Epi [ni pi(1− pi)]+varpi [ni pi]

= niEpi [pi]−niEpi [p
2
i ]+n2

i varpi [pi]. (11)

To compute (11) requires computing Epi [p
2
i ] which, analogous to (10), is

Epi [p
2
i ] =

∫
∞

−∞

(1+ e−zi)−2 f (zi)dzi. (12)

Substituting the posterior means of β and σ2
u into f (zi), both (10) and (12) can

readily be computed by numerical integration. We used the “integrate” function in
R (R Core Team 2013) for this purpose. We then computed standardized residuals
as [yi/ni−E(pi)]/[var(yi)

1/2/ni].

Figure 5 plots such standardized residuals for 2012 from the equation for ỹ1i of
the bivariate BLN given by (4)–(5) against county effective sample sizes ñ1i. (We
could equally well do this for residuals from the equation for ỹ2i, but focus here
on checking the model for ỹ1i since our interest lies in predictions of p1i.) For
ñ1i “sufficiently large”, standard normal distribution inferences (e.g., ±2.57 for a
99% confidence interval, as denoted by the blue dashed lines on the plot) may be
appropriate given the approximate normal distribution of the binomial, although
precisely how large ñ1i must be for this approximation to hold is unclear (Brown,
Cai, and DasGupta 2001). In any case, in the plot the bulk of the residuals look
reasonably symmetrical, with no systematic biases related to sample size (which is
strongly related to population size). There are a number of large positive residuals,
though mostly these occur at the smaller effective sample sizes, especially for ñi of
about 30 or less, where the direct estimates are erratic. It may seem odd that there is
not a corresponding set of large in magnitude negative residuals. This is due to the
fact that ỹi/ñi ∈ [0,1] while all the predicted pi values are less than 0.54. Extreme
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Figure 5: Standardized residuals from the 2012 bivariate BLN model’s equation for
y1i plotted against county ACS effective sample sizes.

negative residuals are thus unlikely, while extreme positive residuals occur when
ỹi/ñi is large, even 1.0, as happens sometimes with small samples.

We also examined a plot (not shown) of the standardized residuals against the
predicted pi values, which mimics a standard regression diagnostic (plot residuals
against fitted values). This plot did not suggest any systematic biases related to the
predicted county poverty rates.

Brown et al. (2001) suggest as a “calibration diagnostic” comparing model pre-
dictions aggregated to larger areas against corresponding direct survey estimates. In
SAIPE production the county model predictions of the number of age 5–17 children
in poverty are raked (rescaled) to force agreement with corresponding state esti-
mates obtained from an FH model applied to direct ACS estimates of state poverty
rates. For large states substantial weight is given to the direct ACS estimate in the
model predictions, and this raking is then similar to raking to the direct estimates. In
any case, there is practical interest in how much raking of the county model predic-
tions is required. We examine this here for the bivariate BLN and (unraked) SAIPE
production county model predictions derived from the 2012 ACS data.

To explain this in more detail, for the bivariate BLN model we expand our no-
tation slightly to let p̂ ji be the bivariate BLN county model prediction of the age
5–17 poverty rate for county i in state j (treating the District of Columbia (DC)
as both a county and a state in this analysis), and N ji be the 5–17 population esti-
mate for county i obtained from the Census Bureau’s population estimates program.
(Actually, slight modifications are made of the N ji to estimate the county “poverty
universes”, which exclude a relatively small set of persons for whom poverty status
cannot be determined (Bell et al. 2015).) The predicted number of age 5–17 children
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in poverty for state j implied by its county model predictions is then ∑i∈ j p̂ jiN ji. The
SAIPE production county model is an FH model for logarithms of the number of
children age 5-17 in poverty (Bell et al. 2015). Predictions from this model are
transformed to the original (unlogged) scale using a bias adjustment based on prop-
erties of the lognormal distribution and accounting for uncertainty due to estimating
regression parameters of the model. These predictions are then simply summed
across counties to yield state level predictions of the number in poverty.

Figure 6 plots percent differences of the state total estimates of the number
of age 5-17 children in poverty from the two county models – bivariate BLN and
SAIPE production – compared to the corresponding estimates derived from the
SAIPE state model. The percent differences are defined as 100× (1−SAIPE state
model estimate/aggregated county model predictions) so positive values indicate ag-
gregated county model predictions exceeding the state model predictions and nega-
tive values indicate aggregated county model predictions lower than the state model
predictions. The percent differences are plotted for 50 states, with states sorted
by their ACS sample sizes (number of addresses). We dropped Alaska because
it contained 5 of the 6 counties omitted from the modeling due to their not being
consistently defined for all years of our data, which prevented us from getting an im-
plied state poverty prediction for Alaska from the bivariate BLN model. The other
omitted county was in Texas, but it had inconsequential effects on the state total.

Somewhat greater percent differences are to be expected at the left of Figure 6
for the small states where the estimation uncertainty is highest. This tendency is
apparent in the plot. Apart from this, if we examine the blue solid dots in the plot,
we see that the percent differences for the bivariate BLN model appear to be usually
no more than a few percent. The corresponding percent differences for the SAIPE
production estimates (red circles) appear to usually exceed those from the bivari-
ate BLN, as well as being generally larger in magnitude. These impressions are
reflected by Table 1, which summarizes the distributions of the percent differences.

county model min 1st quartile median mean 3rd quartile max
Bivariate BLN −6.3 −1.2 −.5 −.3 .8 3.4

SAIPE production −4.3 .2 2.2 1.8 4.5 11.6

Table 1: Distribution (omitting Alaska – see text) of percent differences between the
state aggregates of county model predictions of 5–17 in poverty from the bivariate
BLN and SAIPE production models compared to the SAIPE state model estimates
for 2012.
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Figure 6: Percent differences between aggregated county model predictions of 2012
state total numbers of age 5–17 children in poverty and corresponding SAIPE state
estimates. Red circles = SAIPE production model (unraked predictions); blue solid
dots = bivariate BLN model.

Ideally we should take account of statistical uncertainty in the state level per-
cent differences, but this is complicated, particularly for the bivariate BLN, by the
dependence between the state and county model predictions due to both coming
from models fitted to ACS data. As a conservative indication, 90% prediction in-
tervals for the SAIPE state model predictions, expressed in multiplicative percent-
age terms, range from lows of around ±1.7% for the largest states (California and
Texas) to highs of about ±11% to ±13% for some of the smallest (Wyoming, New
Hampshire, and DC). These figures should overstate the uncertainty in the percent
differences since we would expect positive dependence between the state and county
model predictions.

4. Conclusions

Several conclusions stand out from the empirical and theoretical results presented
in this paper. A general conclusion is that to achieve substantial variance reductions
by jointly modeling current and past data requires fairly high levels of dependence
over time in the random effects (model errors) of small area models. With modest
levels of dependence, variance reductions from including past data are likely to be
limited. A conclusion specific to the empirical example on modeling ACS poverty
estimates is that the regression covariates used in the models do a good job explain-
ing variation in poverty across counties and over time, leaving residuals with modest
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levels of dependence. Without these covariates in the models, the dependence over
time in the model errors is strong, and borrowing information from past data then
substantially reduces posterior (prediction error) variances.

A second general conclusion is that a bivariate model for the current year’s
estimate and the average of the estimates for some number of immediately preced-
ing years may do about as well as an AR(1) model in borrowing information from
past data for small area predictions. In fact, in the example bivariate models did
slightly better than the corresponding AR(1) models. Additional comparisons could
be made to models with more general dependence structures, such as a higher order
AR model or a general 6×6 covariance matrix. While we intend to pursue this, we
are confident that this will not alter the main conclusions expressed in the preced-
ing paragraph. We also conjecture that bivariate models may do reasonably well in
comparisons to other time series models with stationary autocorrelations, such as
higher order AR models. It seems less clear whether this will be the case for models
with nonstationary dependence, such as random walks. Consideration of the bivari-
ate model is natural for the SAIPE application given that the ACS annually produces
5-year estimates for all U.S. counties and other small areas, and these 5-year pooled
sample estimates can be thought of as similar to 5-year averages of 1-year estimates.
While the bivariate model may seem less natural in other applications, it could be
considered as a somewhat simpler alternative to using a time series model.

Appendix: Calculating Prediction MSEs for the Bivariate and FH-AR(1)
Models

For extending the linear FH model to bivariate and AR(1) versions, let yit be the
direct survey estimate for area i and time t = 1, . . . ,T of population characteristic
Yit , so yit = Yit + eit where eit is the sampling error. For simplicity we assume the
model parameters are known (first order approximation) and also assume normality,
so that the best linear predictor (BLP) is the conditional expectation and the pre-
diction MSE is the conditional variance. With parameters assumed known we need
not explicitly consider the regression mean for E(Yit), as this does not affect the
conditional variances, which are our focus here. Also, since the FH model assumes
independence over areas i, the BLP for area i then uses data for only that area, so
we simplify the notation by dropping the subscript i. We further simplify by assum-
ing that var(Yt) = var(ut) = σ2

u and var(et) = v are constant over time. Within this
simplified setup, we seek MSEs for the bivariate and FH-AR(1) predictors of YT ,
the most recent true population quantity, given data y = [y1, . . . ,yT ]

′.
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Let z = Ay = AY+Ae where A is a k×T matrix of the form

A =

[
A11 0
0′ 1

]
⇒ z =

[
A11y1

yT

]
(13)

where y1 = [y1, . . . ,yT−1]
′ and 0 is a (k− 1)× 1 vector of zeroes. For the FH-

AR(1) model k = T and A11 = IT−1, while for the bivariate model k = 2 and A11 =

(T − 1)−1[1, . . . ,1]. Letting Σe ≡ var(e), and similarly defining Σu, Σy, and Σz, we
have Σy = Σu + Σe, Σz = AΣyA′, and cov(e,z) = ΣeA′. From standard results on
conditional variance in a multivariate normal distribution, and since predicting e is
equivalent to predicting Y, then

var(Y|z)≡ var(e|z) = Σe−ΣeA′(AΣyA′)−1AΣe.

We are assuming Σe = vI, and we write Σu = σ2
u R, where R is the T ×T correlation

matrix of Y. Then Σy = σ2
u (λ I +R) where λ = v/σ2

u is the noise-to-signal ratio.
Thus,

var(e|z) = vI− vA′[σ2
u A(λ I +R)A′]−1Av

= v{I−λA′[A(λ I +R)A′]−1A}.

Let Ω ≡ [ω j`] = [A(λ I + R)A′]−1. We are interested in the (T,T )th element of
var(e|z), which is

var(YT |z)≡ var(eT |z) = v
{

1−λ [0′,1]A′ΩA
[

0
1

]}
.

From the definition of A in equation (13), [0′,1]A′ = [0′,1], so that this reduces to

var(YT |z) = v(1−λωT T ) (14)

where ωT T is the (T,T )th element of Ω. The expression (14) is easily computed
given v, σ2

u , and R. For our comparisons, R is the AR(1) correlation matrix given in
equation (9), which is determined solely by φ . Hence, Ω is determined by λ and φ .
Note that for the bivariate model, A is 2×T and Ω is then a 2×2 matrix.

The prediction MSE of the univariate FH model is var(YT |yT ) = σ2
u v/(σ2

u + v)
(Rao and Molina 2015, eq. (6.1.8)). The percent reduction in prediction MSE from
the FH-AR(1) or bivariate models relative to the univariate FH model is thus 100
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times

1− var(YT |z)
var(YT |yT )

= 1− σ2
u + v
σ2

u v
v(1−λωT T )

= 1− (1+λ )(1−λωT T ).

This expression depends on only λ and φ .
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A PROPOSAL USING STRUCTURE PRESERVING 
ESTIMATORS 

Angela Luna, Li-Chun Zhang1, Alison Whitworth, Kirsten Piller2  

ABSTRACT 

This paper addresses the problem of producing small area estimates of Ethnicity 
by Local Authority in England. A Structure Preserving approach is proposed, 
making use of the Generalized Structure Preserving Estimator. In order to identify 
the best way to use the available aggregate information, three fixed effects models 
with increasing levels of complexity were tested. Finite Population Mean Square 
Errors were estimated using a bootstrap approach.  However, more complex 
models did not perform substantially better than simpler ones. A mixed-effects 
approach does not seem suitable for this particular application because of the very 
small sample sizes observed in many areas. Further research on a more flexible 
fixed-effects estimator is proposed.  

1. Introduction 

Estimates of demographic characteristics are among the main outputs of 
National Statistical Institutes (NSIs). In addition to national and regional 
estimates, for topics such as Labour Force, Household composition or Ethnicity, 
periodic estimates at lower levels of geographic aggregation are in high demand 
both for public policy and research purposes.   
In census years, given the availability of data for almost all individuals in the 
population, it is straightforward to produce reliable estimates for small geographic 
domains. In contrast, during the inter-censal period, updated socio-demographic 
data can only be obtained via sample surveys or administrative systems. It is 
generally difficult to obtain reliable direct estimates for small geographic domains 
from sample surveys due to the small sample sizes. Data from administrative 
systems do not have this problem but, in contrast, may not cover the topics of 
interest. Moreover, definitions of the variables and domains in administrative 
                                                   
1 University of Southampton. 
2 Office for National Statistics ONS-UK. 
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sources reflect the requirements of the administrative systems, which may be 
different from those for statistical purposes. This can result in comparability issues 
with figures obtained from population censuses or household surveys. 

From the statistical perspective, the estimation for small domains in the 
presence of limited, or even null domain-specific sampling data can be framed 
within the field of Small Area Estimation (SAE). Research in SAE has gained 
relevance in the last decades due to an increasing demand for small area outputs 
in the Official Statistics sector, as well as in many others.  Readers interested in 
SAE can find a comprehensive account of methods in Rao (2003). For a review 
of the most important developments of the last decade, see Pfeffermann (2013).     

Implementation of SAE methods in the field of Official Statistics faces 
specific challenges and specialized research has been encouraged in the European 
context. Projects such as EURAREA (Eurostat, 2001-2004) and EU-SAE 
(ESSnet, 2009-2012) provide comprehensive reviews of the available SAE 
methods with potential applications in a broad set of topics covered by Official 
Statistics, taking into consideration the specific requirements and characteristics 
of European statistical systems. Special attention has been given to the use of SAE 
methods for the measurement of poverty, via collaborative projects such as 
SAMPLE (Small Area Methods for Poverty and Living conditions Estimates, 
European Commission, 2008-2011) or AMELI (Advanced Methodology for 
Laeken Indicators, 2008-2011). The deliverables of all the above mentioned 
projects are available online.  

At present, comparatively few official figures in the region are being produced 
using SAE methods. In the UK case, the Office for National Statistics (ONS) 
periodically disseminates small area estimates regarding three main topics:  
population estimates by age and sex using the Census and its coverage survey; 
average household income and households in poverty using the Family Resources 
Survey and administrative data maintained by the Department for Work and 
Pensions; and unemployment, making use of the Annual Population Survey and 
the administrative register for Jobseeker’s Allowance.  

Nonetheless, the interest in understanding the potential gains that can be 
obtained from a more extensive use of SAE methods in the context of official 
statistics remains. The ONS established the Census Transformation Programme 
in January 2015 to take forward the National Statistician’s recommendation to 
make the best use of all available data in the production of population statistics. 
This involves research into the potential use of administrative data as well as 
surveys to produce population, household and characteristic information currently 
provided in the Census. SAE methods provide a framework for intergrating 
sources. In this paper we investigate the problem of how to obtain estimates of the 
distribution of the population by ethnic group, in each Local Authority (LA) of 
England, using proxy and survey data. Such estimates are required by local and 
central government for planning services and formulating policy.  More generally 
researchers, local authorities, health authorities and other public and private sector 
organisations could use them to gain an up-to-date picture of the ethnic 
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composition of local populations and to monitor diversity and anti-discrimination 
programmes. 

Ethnicity is a variable for which the use of Structure Preserving Estimators 
(SPREE) (Purcell and Kish, 1980) seems natural. Most SAE methods combine 
existing survey data for the variable of interest with relevant covariate information 
obtained from censuses or administrative sources, to obtain better estimates than 
those from the survey alone. For Labour Force status for instance, covariates such 
as sex, age or level of education can provide some explanatory power, see Molina 
et al. (2007) and Scealy (2010). In the case of ethnicity, on the other hand, it is 
difficult to identify such a set of covariates. Instead, for post-censal updates of the 
LA by ethnicity distribution, the corresponding aggregated census table can 
always be treated as a proxy for the table of interest. 

When a proxy is available, the SPREE approach allows for an intuitive 
modelling of the relationship between the so-called association structure, or 
simply the structure of both the proxy table and the table of interest. The SPREE 
approach is particularly compelling in the case where the margins of the table of 
interest are known in advance or can be accurately estimated because, given the 
margins, the structure is the only unknown component to be estimated. This will 
be explained in more detail in Section 2. 

This application addresses the particular problem of obtaining updated census 
tables of LA by ethnicity during the inter-censal period. However, it is important 
to notice that population censuses in general are going through a process of 
redesign in many European countries. More emphasis is being given to alternative 
operations based on demographic systems that use information from 
administrative sources alone or in combination with survey data. In such a context, 
the potential impact of SAE methods, including the SPREE approach and its 
extensions, is expected to increase considerably in the future. 

The rest of the paper is organised as follows. In the next section, the 
underpinning idea behind the SPREE approach and the GSPREE extension 
(Zhang and Chambers, 2004) is discussed in more detail.  Section 3 describes the 
characteristics of the empirical exercise performed to obtain estimates of the 
distribution by ethnic group and LA in England. Section 4 presents the results of 
our analysis. Finally, Section 5 discusses the main results and points out some 
topics for future work.  

2. SPREE approach 

2.1. Structure Preserving Estimator (SPREE)  

Denote by Y  the population table of interest, with cells ajY , where 

1, ,a A   indexes the set of areas and 1, ,j J  indexes the categories of the 
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variable. Define logY
aj ajY  . Y can be represented in the form of a saturated log-

linear model as: 

0
Y Y Y Y Y
aj a j aj        ,               (1) 

where  (the dot indicating summing over the respective subscript),  

and 0
Y Y Y Y Y
aj aj a j        , for 1, , ,a A   

1, , .j J   Following Purcell and Kish (1980), equation (1) can be used to 
decompose Y  into two parts: the association structure and the allocation 

structure. The former corresponds to the terms aj
Y  , also called interactions, 

and determines the relationship between rows and columns in the table. In the 
theoretical case where rows and columns are independent, all the interaction terms 

are zero. The latter, given by the terms 0
Y , a

Y and  j
Y  , carries information 

about the scale of the table and the disparities within the sets of rows and columns 
and is implicitly determined by the row and column margins of the table.   

Notice that in the SAE setting, it is easier to obtain information related to the 
allocation structure than to the association structure. Even if Y remains unknown, 
accurate estimates of the row marginal, i.e. the area sizes, can be obtained either 
from administrative sources or from population estimates.  Similarly, given that 
the column marginal corresponds to the aggregation over the entire set of areas, it 
can usually be accurately estimated using survey data, if not available from other 
sources.  

Given the margins of Y , i.e., its allocation structure, a proxy of the table of 
interest, denoted by X , can be used to estimate the association structure of Y . 
The term proxy is used here in the customary sense of proxy variable as defined 
in Upton and Cook (2008): “A measured variable that is used in the place of a 
variable that cannot be measured”. A proxy table is therefore supposed to contain 
information for the same set of areas and regarding a similar characteristic as the 
table of interest. In particular, it is assumed to have the same dimension A J . 
Notice that for demographic characteristics during inter-censal periods, the 
corresponding tables from the census year are obvious proxies. More generally, 
proxies can be derived not only from censuses but also from administrative 
sources.  

For the two-way case, the SPREE of Purcell and Kish (1980) simply uses the 
association structure of the proxy table as an estimate for the association structure 

of the table of interest. In other words, denoting by aj
X  the interaction terms for 

the proxy table X  defined as in equation (1), the SPREE is characterised by the 

structural equation:aj
Y  aj

X , for 1, , ,a A  1, , .j J   

The procedure proposed by Purcell and Kish (1980) to obtain the SPREE of 
Y  is straightforward. The known margins of Y  are imposed on X  using a 
multiplicative raking procedure such as the Iterative Proportional Fitting (IPF) 
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algorithm (see for instance Agresti, 2013, p. 365-366). This ensures that the 
association structure of the estimated and proxy tables are the same. Fitting a 

saturated log-linear model with an offset term given by the interactions X
aj  is an 

alternative way to obtain the same estimate (Noble et al., 2002).   
However, assuming that the proxy and the table of interest share exactly the 

same association structure is clearly restrictive in practice. Other estimators have 
been proposed to preserve in a more flexible way the association structure, leading 
to what we have called the SPREE approach. The modifications to the initial 
SPREE of Purcell and Kish (1980) go in two main directions: i) by relaxing the 
structural equation of SPREE to consider other types of relationship between the 
two association structures and ii) by including cell-specific random effects. 
Besides the SPREE, the following estimators can be framed within this approach: 
the Generalized Structure Preserving Estimator (GSPREE, Zhang and Chambers, 
2004), the Extended Structure Preserving Estimator (ESPREE, Cinco, 2010) and 
the estimator proposed in Berg and Fuller (2014).  Notice that in all the above 
mentioned cases the allocation structure is imposed by benchmarking the 
estimates to a set of known margins. The benchmarking has the additional 
advantage of providing some degree of protection against misspecification of the 
assumed model (Pfeffermann, 2013). 

2.2. Generalized Structure Preserving Estimator (GSPREE)  

In some cases, it is possible to have access to a survey estimate of Y . Notice 
that the small area problem persists because the direct estimates of the cell totals 
are usually too unstable to be useful, due to small sample sizes. The GSPREE 
(Zhang and Chambers, 2004) proposes to use such information to update the 
association structure of the proxy table, aiming to reduce the bias of the SPREE. 

The GSPREE is characterised by the structural equation aj
Y  aj

X  for 

1, , ,a A  1, , .j J   Clearly, the SPREE corresponds to the particular case 

 1.  

An estimation procedure for   built directly from the structural equation 
involves several problems. Small sample sizes can lead to zero survey estimates 
for some of the cells, in which case the interaction terms for the survey estimate 
of Y  are not defined.  Moreover, even if all cells have a positive estimate, there 
is not a natural distribution that can be assumed for the interactions – as there is 
for the proportions or the counts – making it difficult to justify a standard approach 
such as Maximum Likelihood, for instance. 

Therefore, instead of formulating a model in the interaction scale, Zhang and 
Chambers (2004) propose to estimate   using the Generalized Linear Structural 
Model (GLSM), a model relating the within-area proportions of the proxy table 
and the table of interest, on the log scale centred around the average of the area. 
The equation that defines the GLSM is: 
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     aj
Y   j  aj

X   (2) 

where  and .  

The terms in the decomposition given in equation (1) satisfy  and 

 for Z  X,Y . Moreover,  j
   j

Y  and aj
   aj

Y  . 

Using these arguments it is straightforward to show that aj
Z   j

Z aj
Z  for 

Z  X,Y , and therefore,  that equation (2) is equivalent to the structural equation 

of the GSPREE. The  j  are nuisance parameters with no practical interest.  

The GLSM is fitted via Iteratively Weighted Least Squares (IWLS) using 

direct estimates of the within-area proportions ̂aj
Y  and estimates of their 

variances. By doing so, it is implicitly assumed that the structural equation of the 
GSPREE holds for the table of direct estimates as well, or at least, that the value 
of   that better relates the table of interest and the proxy table does not change 

when the former is substituted by its direct estimate. Once the estimate ̂  has 
been obtained, the GSPREE of Y  is calculated by imposing the known row and 

column margins on the table of exponentiated estimated interactions , 

using IPF.  
In the absence of estimates of the variance of the direct estimators, it is also 

possible to obtain fully model-based estimates of  . One possibility, mentioned 
in Zhang and Chambers (2004), is to assume a multinomial distribution for the 
sampling cell counts in each area, and obtain an estimator of  using Maximum 
Likelihood (ML). Notice that this approach implicitly assumes that the sampling 
design of the survey is ignorable for Y . Otherwise, direct estimates of the 
proportions can be used instead of the observed proportions, assuming a 
multinomial distribution for the direct estimates of the cell totals. 
Despite not being mentioned in Zhang and Chambers (2004), fully model-based 
estimates of   under the GSPREE structural assumption can also be obtained 

assuming a Poisson distribution for the sampling counts yaj . It is straightforward 

to show that the equation: 

logYaj   a   j  aj
X           (3) 

with  is also equivalent to the structural equation of the GSPREE. Both 

the  a  and the  j  terms for 1, , , 1, ,a A j J   , are nuisance parameters. It 

is possible to fit (3) in a standard software using log-linear models and obtain the 
corresponding ML estimator of  . As with the fitting using the GLSM, this 
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approach assumes that the structural equation also holds for the table of sample 
counts. 
In the application presented in Section 4 we followed a fully model-based 
approach in order to simplify the fitting process. By doing so, we can be incurring 
in a misspecification of the variance structure of the sampling errors. 
Nevertheless, using an argument similar to that for the generalised estimating 
equation approach in Liang and Zeger (1986), it is possible to show that in such a 
case the estimator of β, although not fully efficient, would remain unbiased.  

3.  Empirical exercise: distribution of the population by Ethnicity at 
LA level in England 

An empirical exercise was conducted with the aim of producing small area 
estimates of the distribution of the population by ethnic group for each LA in 
England. Given that some of the sources of information used in this exercise are 
subject to disclosure control, it was necessary to perform all the data analysis in a 
Safe Room of the Virtual Microdata Laboratory (VML) of ONS. Thus, in 
accordance with ONS standards and the principles set out in the Code of Practice 
for Official Statistics, full account has been taken of requirements to safeguard 
confidentiality and uphold relevant data security standards. All the calculations 
hereby presented are the responsibility of the authors.  

This section starts with a description of the data sources used: the proxy table, 
the table of survey estimates and the benchmark totals for the columns and row 
margins. A description of the variable of interest and the definition of categories 
across the different sources is then provided. Finally, the models that were 
involved in the fitting process are presented.  

3.1. Sources of information 

Proxy Information 

Proxy information for the distribution of Ethnicity at the LA level can be 
obtained for England from several sources. For this empirical exercise, aggregate 
data from the 2011 Census and the English School Census3 were used.  

The 2011 Census provides estimates of the counts of persons and households 
who are defined as usual residents of England and Wales on the 27th March. The 
estimated coverage rate for persons in the 2011 Census was 93%. The observed 
counts were adjusted by over and undercount, taking into account the 
characteristics of individuals and households who were missed from the Census 
enumeration.  

                                                   
3 Access to and use of information from the School Census is authorised by data sharing 

regulations i.e. Statistics and Registration Service Act 2007 (Disclosure of Pupil Information) 
(England) Regulations 2009. 
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The English School Census targets the population attending school in England 
and it is carried out every year. It mostly covers the population between 2 and 19 
years old, with almost full coverage of children between the compulsory school 
ages of 5 and 15. The main school census in January collects information on the 
pupil’s ethnicity, which is not asked about in the two other collection periods in 
June and August. Whereas state maintained schools and non-maintained special 
schools are included, independent schools are not covered. This can result in some 
differences between the population estimates for children in compulsory school 
age obtained from this and other sources.  

As the English School Census only provides a good coverage for children 
between 5 and 15 years old, it could be said that for the empirical exercise there 
is one source of proxy information for individuals in the ages 0-4 and 16 or more, 
and two sources for those between 5 and 15 years. In order to use the appropriate 
models for each age group, age-group specific Census tables of LA by Ethnic 
group were produced. Regarding the School Census, the empirical exercise hereby 
presented used information collected in January 2013. 

Survey estimates 

Most household surveys carried out by the ONS collect demographic data. For 
this empirical exercise, the Annual Population Survey (APS) is used for the 
updated estimates for the population by ethnic group. The APS contains detailed 
information on ethnicity, has the biggest sample size among the periodic surveys 
and, except for the Isle of Scilly, it includes information for all Local Authorities 
in England.  

The APS is a household survey that is designed to provide information at a 
local level, on many demographic and socio-economic topics. The data sets are 
published quarterly (January to December; April to March; July to June; and 
October to September) and contain approximately 250,000 individuals. They 
contain the Labour Force Survey (LFS) data and the boost samples to the LFS. 
The boost for England is called the English Local LFS (ELLFS) and has been 
designed to give a minimum sample size of economically active individuals for 
each local education authority. The APS data set for England therefore consists of 
four successive quarters from the LFS, plus the ELLFS boost.  

Both the LFS and the ELLFS use a rotational sampling design involving 
waves. For the LFS, a sample of households is interviewed quarterly for five 
waves, inducing an 80% of overlap between samples of consecutive quarters. For 
the ELLFS a sample is interviewed once a year for four waves. Notice that the 
households are included in the APS only the first time they are interviewed, so 
that each respondent only appears in the data set once. Non-private households 
(some communal establishments, armed forces accommodation, etc.) are excluded 
from the sampling frame. For England the households are sampled through the 
Royal Mail Postcode Address File (PAF) and the National Health Service (NHS) 
communal accommodation list. This empirical exercise uses the data 
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corresponding to July 2012 – June 2013. The reference point is taken as the 
midpoint, so approximately the 31st of December 2012, which ties in with the 
School Census data. 

As with the data from 2011 Census, a survey table from the APS survey was 
produced for each one of the age groups 0-4, 5-15 and 16 or more.  

Benchmark totals  

Estimates of the LA population sizes can be obtained from the official mid-
year population estimates. These estimates are produced using the cohort 
component method, which uses information on components of population change 
to update the most recent census population. The previous year’s population 
estimate by sex, age and LA of usual residence is aged on by one year. Births 
within the 12 months to the reference date are added to the population and deaths 
are removed. The net flows of migration are accounted for internal (cross border 
and between LA) and international flows. There are also adjustments for special 
populations (armed forces and prisoners) who are not represented in the data 
sources used for the components of population change.  

The 2012 and 2013 mid-year population estimates at LA level were used to 
calculate the row marginal. As the reference date of such estimates is 30th of June 
of the corresponding year, an average of the mid-year population estimates for 
2012 and 2013 would provide an estimate of the population close to the 31st of 
December 2012, consistent with the reference period of the other sources involved 
in this exercise.  

The direct estimates of the total population size by ethnic group, obtained from 
the APS at the national level, are used as the column benchmark totals in this 
exercise. Neither for the ethnic group nor the LA margins, a disaggregation by age 
group was considered. 

3.2. Definition of the categories of the variable 

The variable Ethnic group is collected in England in a very detailed way. The 
APS collects information regarding 18 subcategories of Ethnicity, grouped in 7 
main categories: White, Mixed/multiple ethnic groups, Asian/Asian British, 
Black/African/Caribbean/Black British, Chinese, Arab and Other ethnic group. 
The 2011 Census uses 18 subcategories grouped in 5 main categories, with 
Chinese included within Asian and Arab within Other. Finally, the English School 
Census considers a classification similar to the one of the Census, except there is 
not a specific subcategory for Arab and Chinese is included as a subcategory 
within Other instead of within Asian. 

To use a classification that is fully compatible with the three aforementioned 
sources, this empirical exercise uses the classification: White, Mixed/multiple 
ethnic groups, Asian/Asian British, Black/African/Caribbean/Black British, 
Chinese and Other.  
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3.3. Models 

In order to produce an estimate for the table of interest using the GSPREE, 
only a proxy and a survey estimate of the table of interest, and the corresponding 
set of row and column margins are required. However, as it was described in the 
previous section, for the age group 5-15 two different sources of proxy 
information are available in this case. To study how to better use these sources, 
the following three models, with increasing level of complexity, were considered: 

 Model 1: uses the 2011 Census as the only source of proxy information.  
Both the proxy and the survey tables are aggregated at the LA versus 
Ethnicity level, without considering the age group.  

 Model 2: uses the 2011 Census as the only source of proxy information. 
The proxy and the survey tables are split by age group and an independent 
fitting is performed for each one of the three age groups mentioned above. 
The three estimates of the population counts are summed up to produce 
one estimate of the target table. The table of estimates after aggregating 
by age group is then benchmarked to the column and row margins. 

 Model 3: uses both 2011 Census and the English School Census as 
sources of proxy information. In analogy to Model 2, an independent 
fitting is performed for each age group. Each one of those fittings goes 
through two steps: 

o Step 1: construction of an auxiliary structure that is a convex 
linear combination of the two available structures. The coefficient 
of the 2011 Census structure in the convex combination, denoted 
by  , is found via numerical optimisation, as the value that 
minimizes the deviance of the fitting of the model defined by 
equation (3) for that particular age group. 

o Step 2: Estimation of the table of interest for that age group, using 
the survey data, the auxiliary structure built in step 1 and the 
GSPREE.  

As for Model 2, the three estimates of the population counts are summed 
up to produce one estimate of the population table. The benchmark of 
rows and columns is only applied over this last table estimate.  
 

Notice that Model 2 is a particular case of Model 3 where  1. Therefore, a 
Likelihood Ratio Test (LRT) can be used as a diagnostic tool to compare their 
fitting. Given that Model 1 does not fit the three age groups independently, it is 
not possible to consider it nested in either of the other two models. However, an 
approximate Likelihood Ratio Test (LRT) between Model 1 and Model 2 is 
performed by approximating the former as a particular case of Model 2 with the 
same  in all age groups. 
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4. Results 

Possibly due to the sampling design of the APS, no appreciable differences 
were observed in the within-LA distributions of ethnicity calculated from the 
sampling counts, or from direct estimates of the population counts. Therefore, 
sampling counts were used as input for the models. Poisson and Multinomial 
Likelihoods were used for the estimation of  , the latter being closer to a Simple 

Random Sampling design stratified by LA. The estimates of    obtained under 
the two distributions differ only at the third decimal point. Here we present only 
the results for the Poisson MLE.  

The ethnicity variable has a very unequal distribution in the population. 
Aggregating the data of the 2011 Census for the areas under consideration, the 
category White is dominant with 85.42% of individuals, followed by Asian 
(7.10%), Black (3.48%), Mixed (2.25%), Other (1.03%) and finally Chinese 
(0.72%). How different LAs deviate from that global distribution can be observed 
in Figure 1. Notice that for categories Asian and Black it is possible to find some 
areas with proportions considerably higher than the global proportion. Moreover, 
notice that in such areas, non-white individuals are predominantly from one of the 
two above mentioned categories instead of evenly distributed. Meanwhile, for the 
categories Mixed, Chinese and Other, the proportions are uniformly low in all 
local authorities.    

The actual sampling fractions of the APS in some LAs can be quite small. An 
implicit sampling fraction was calculated by dividing the observed sample size by 
the corresponding projected population total in each LA. This varies between 
0.05% and 2.5%, with an average of 0.8%.  

 
Figure 1. Distribution of Ethnicity by LA in the 2011 Census. (a) Boxplot 

proportions in each category by LA.  Red diamond: mean. (b) Detail of 
the largest categories. Lines: White: continuous grey. Asian: dotted 
black. Black: continuous black. After sorting the LAs according to the 
proportion of White, one of each three LA was included in the plot 
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Given the low proportions of individuals belonging to categories such as 
Chinese or Mixed, as well as the small sample sizes observed in most LAs, some 
of the cells of the observed survey composition have zero observations, making it 
impossible to calculate their interaction terms directly. In principle, the presence 
of some sample zero cells does not necessarily cause a problem in terms of the 
estimation of the parameter of the GSPREE, when a fully model-based approach 
such as the one described in Section 2.2 is employed for this task. However, this 
means that the plausibility of the structural equation for this particular variable 
cannot be empirically checked using a scatterplot between interactions of the 
survey and proxy compositions.  For illustration purposes, the pairs of interactions 
at the LA level for the 2001 Census and the 2011 Census in England are shown in 
Figure 2.  Notice how, except for the category Other, interaction terms from the 
same composition 10 years before can still work fairly well as linear predictors.  
Unless period 2011-2013 behaves in a substantially different way than 2001-2011, 
it could be expected for the structural equation to hold at least approximately.  

 

Figure 2. Interaction terms of the composition LA by Ethnicity , Census 2001 and 
2011. Line: Y=X 

The three fixed effects models stated in Section 3.4 were fitted to the data, 
using both the SPREE and GSPREE. In each case the estimated coefficient of the 
GSPREE estimator,  , is very close to 1, i.e. this estimator and the SPREE almost 
coincide. We therefore omit the results for the latter.  The main results for the 
GSPREE are presented in Table 1. The last three columns contain the information 
to perform a LRT comparing the models in increasing order of complexity, as 
explained in section 3.4. In all cases there is evidence indicating that the more 
complex model leads to a slightly better fit. However, the estimates of the within-
area distribution obtained using the three models are very close. For illustration, 
scatterplots between those obtained with Models 1 and 3 are presented in Figure 3.  
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Table 1. Fitting results. Fixed effects models 

Model Age 
group 

Estimated 
Coefficients 

Deviance Difference 
Deviance  

Crit. 
value 

5% Sig. 

1) LA x Ethnicity 
Census 2011 

- b=1.007 4639.41 
7358.58* 

-  

2) LA x Ethnicity|Age 
Census 2011 

0-4 b=0.990 1714.81 
2) vs 1) 
15.06 

5.991 5-15 b=0.963 2441.20 

16 or more b=1.010 3187.51 

3) LA x Ethnicity|Age 
Census 2011 & 
School Census 

0-4 b=0.974; d=0.780 1703.21 
3) vs 2) 
56.51 

7.815 5-15 b=0.958; d=0.677 2414.87 
16 or 
more b=0.998; d=0.913 3168.93 

* Deviance of a Model 2 with b=1.007 in each age group. 
 

 
Figure 3. Estimates of the within-area distribution. Fixed effects GSPREE.  

Model 1 and Model 3. Line: Y=X 

On the other hand, it is expected that if the sample sizes are big enough, an 
estimator based on a mixed effects model would be less biased than its fixed 
effects counterpart. For each of the models, we attempted to calculate the mixed 
effects version of the GSPREE proposed in Zhang and Chambers (2004) but it 
was impossible to achieve convergence in the estimation of the variance-
covariance matrix of the random effects, possibly due to the generally low 
sampling fractions. As an alternative, we fitted a fully parameterised mixed effect 
GSPREE, with a log-link and a Poisson sampling distribution, similar to the one 
described by equation (3) but including cell-level independent random effects with 
category-specific variances, as an extension of Model 1. Only for three of the six 
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categories positive estimates of the variance components were found. The 
estimates are 0.029, 0.014 and 0.101, for White, Mixed and Asian respectively. 
For the other categories, the corresponding variance component estimates were 
set to zero. The issue of negative variance component estimates for some but not 
all the categories will be discussed further in Section 5. 

A set of scatterplots comparing the estimates obtained under the mixed effects 
version of the GSPREE estimator for Model 1 and the fixed effects version for 
Model 3 are presented in Figure 4. Differences in the estimated proportions are 
observed, especially for the categories Mixed, Asian and Chinese. Notice that 
even though for the last three categories the variance component estimate was 
zero, the two estimators do not coincide due to the IPF. Figure 4 does not suggest 
a bad performance of Model 3 in terms of bias, when compared to the mixed effect 
estimator.  

 

Figure 4.  Estimates of the within-area distribution. Mixed effects GSPREE for 
Model 1, Fixed effects GSPREE for Model 3. Line: Y=X 

4.1. Mean Square Error (MSE) evaluation 

To assess the performance of the different estimators in terms of their Finite 
Population Mean Square Error (FP-MSE), a semi-parametric bootstrap approach 
was applied. The bootstrap samples were randomly generated from a plausible 
population composition, instead of randomly selected from a fixed synthetic 
population. Both approaches should perform similarly given that the implied 
sampling fractions of the APS are negligible but the former is considerably 
quicker. Two sampling designs were used: Multinomial, assuming the same 
observed sample size in each area as fixed, and Poisson sampling with random 
sample size. As counts by age are required to fit Models 2 and 3, independent 
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samples were generated for each age group, and the aggregate of the three samples 
was used to fit the Fixed and Mixed effects estimators under Model 1.  

The initial idea was to generate the population composition under a mixed 
effects model split by age. However, as mentioned before, it was impossible to 
obtain positive variance estimates for those models, and even in the case of Model 
1, only three of the six categories have a positive variance component estimate. 
Using such variance components estimates could lead to an overly optimistic 
scenario for the GSPREE because of a lack of heterogeneity.  

An alternative set of variance components was obtained from the two proxy 
tables, School Census 2012-2013 and Census 2011, by considering the School 
Census as a big sample from the true population in the age group 5-15 and using 
the methodology of the mixed effects GSPREE estimator.  The estimated variance 
components are 0 for White, 0.02 for Mixed, 0.05 for Asian, 0.12 for Chinese, 0 
for Black and 0.79 for Other. To allow for extra heterogeneity in all the categories, 
the two zero estimates were replaced by the minimum positive estimated value, 
0.02. These estimates were used in all age groups, to generate the population 
composition from which the bootstrap samples are generated.    

Despite the two zero estimates, we have found the set of variance components 
estimated using the two auxiliary sources more plausible than the one obtained 
from the sampling data under Model 1 in section 4.1, when taking into 
consideration the category specific heterogeneity observed in Figure 2. This could 
be seen as evidence against the performance of the mixed effects estimator 
presented in the previous section. It is possible that, even under Model 1, a 
synthetic estimator needs to be used given the small sample sizes in the cells of 
the survey composition.  

The results in terms of FP-Bias and FP-MSE obtained under Poisson or 
Multinomial sampling were very similar, possibly due to the impact of the 
benchmarking on reducing the variability associated to the random area sample 
size in the case of the Poisson sampling. We will therefore omit one set of the 
results. The results for the Multinomial sampling are presented in Table 2 and 
Figures 5, 6 and 7.  

Table 2. Average FP-Bias and Square root FP-MSE 

    Ethnicity 

Measure Model White Mixed Asian Chinese Black Other 

Average 
FP-Bias 

Model 1 FE -0.00157 0.00013 0.00162 0.00028 -0.0001 -0.00036 

Model 2 FE -0.0008 -0.00001 0.00119 0.00022 -0.0002 -0.0004 

Model 3 FE -0.00156 0.00011 0.00164 0.00029 -0.00009 -0.0004 

Model 1 ME -0.00158 0.00018 0.0016 0.00031 -0.00013 -0.00039 

Average 
Square 

Root FP-
MSE 

Model 1 FE 0.00948 0.00195 0.00691 0.00158 0.00354 0.00717 

Model 2 FE 0.01177 0.00251 0.00895 0.00161 0.00418 0.00651 

Model 3 FE 0.00951 0.00189 0.007 0.00162 0.00357 0.00717 

Model 1 ME 0.00974 0.00187 0.00709 0.00167 0.00355 0.00716 
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Overall, there is no estimator that performs substantially better than the others, 
either in terms of FP-Bias or FP-MSE. Even though the average bias for each 
category is close to zero, according to Table 2, for specific areas there is bias in 
the estimation of the within-area distribution in all the fixed effects estimators, as 
it can be seen from Figure 5. The mixed effects estimator under Model 1 seems 
unable to correct this bias, given that the estimates with bigger biases are those for 
LAs with small sampling fractions. See Figure 6.  

 

Figure 5. FP-Bias with respect to the simulated population composition.  
Red triangle: Mean 

 

 
Figure 6. Implicit sampling fraction Vs. FP-Bias of the mixed effects estimator 
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5. Discussion 

In this paper, we present a feasibility study to produce Small Area estimates 
of the within-area distribution of Ethnicity by LA in England, using the GSPREE. 
It is the first time this approach has been attempted for this type of problem in the 
UK. Unlike other demographic and socio-economic characteristics, Ethnicity is a 
variable for which there is no clear set of covariates identified in the literature, 
which could be used as a predictor. In fact, unless a proxy is involved, it seems 
difficult to expect good performance of a Small Area Estimator in this context. 
Structure Preserving Estimators can be used, given that proxy compositions can 
be obtained either from the last population census or from other sources, such as 
the School Census. 

 
Figure 7. Square root FP-MSE with respect to the simulated population 

composition. Red triangle: Mean 

In this work, we formulated three alternative models to produce the desired 
estimates with the GSPREE. However, in terms of Bias and FP-MSE, no 
substantial improvement was obtained by using more complex models or different 
sources of information. Moreover, given the small sample sizes available from the 
APS, synthetic estimates seem the only possible alternative in this case.  

Notice that the lack of sample size to fit a mixed effects model is not a problem 
only of this application but rather one which all applications of SAE face sooner 
or later, if the aim is to produce estimates at increasingly lower levels of 
aggregation. In this sense, work to improve the synthetic predictor is of highest 
priority. Currently, we are working on a more flexible version of the fixed effects 
GSPREE and we expect to be able to evaluate it against the other estimators 
included in this paper, in the near future. 

When it comes to mixed effects modelling, a particular problem we 
encountered with these data is that the variance component estimate can be 
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negative for some but not all the categories, when the model allows for category-
specific variance components. A possible remedy is to impose a common variance 
component. However, further study is needed in order to determine whether this 
or another random effects modelling strategy can be suitable. 
Evaluation of the estimators in terms of their Bias and FP-MSE is also a topic for 
future work. The conclusions and quality of the evaluation is closely related to the 
plausibility of the characteristics of the artificial finite population, or as in our 
case, of the artificial population composition, from which the bootstrap samples 
are extracted. Additional work is still necessary in this area in order to formulate 
alternative scenarios that can be used to select a model, as well as to increase our 
knowledge on the performance of the proposed estimators.  
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SAE TEACHING USING SIMULATIONS  

Jan Pablo Burgard1, Ralf Münnich2 

 ABSTRACT   

The increasing interest in applying small area estimation methods urges the needs 

for training in small area estimation. To better understand the behaviour of small 

area estimators in practice, simulations are a feasible way for evaluating and 

teaching properties of the estimators of interest. By designing such simulation 

studies, students gain a deeper understanding of small area estimation methods. 

Thus, we encourage to use appropriate simulations as an additional interactive 

tool in teaching small area estimation methods. 

Key words: small area estimation, teaching, simulations, design-based 

simulations, model-based simulations. 

1. Challenges in Teaching SAE 

Small area estimation (SAE) methods are becoming increasingly valuable for 

both methodologists and practitioners, and are used quite regularly in the 

production of official statistics. The last two decades have witnessed an explosion 

of small area estimation methods. However, the advances are mostly in the 

theoretical field, and practitioners still lack adequate knowledge of all the 

advancements in SAE methodology. 

The classical way to present the benefits and drawbacks of SAE methods is 

using slides. Graphs and tables are used for illustration, and often simulation 

results are presented on the slides as well. From experience, however, for many 

students the understanding which estimator is preferably applicable is still lacking. 

These students, in order to obtain a good result in the exam, will memorize mainly 

the advantages and disadvantages of the respective methods. This is certainly not 

the didactic goal, and holds the further restraint that many of them are not able to 

transfer their knowledge to new methods developed later on. 

We emphasize using simulations as an interactive tool to teach SAE methods. 

A large list of literature exists concerning the use of computers in statistical classes 

(McKenzie, 1992) and some papers focus directly on the use of simulations 

                                                      
1 Trier University. E-mail: burgardj@uni-trier.de. 
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(Kalsbeek, 1996, Hesterberg, 1998, DelMas et al., 1999). Hesterberg (1998) 

describes simulations as follows:  

The basic idea in simulation is to emulate real life, where one collects a 

sample of random data (using a survey or an experiment), and summarizes 

the data graphically or numerically. In simulation one generates a sample of 

random data on the computer in a way that mimics a real problem and 

summarizes that sample in the same way. However, instead of doing this only 

once, one may do it many times, to investigate how much summaries vary.  

In the context of statistical education Mills (2003) states that 

Regardless of how clearly a teacher explains a concept, students will 

understand the material only after they have constructed their own meaning 

for the new concepts, which may require restructuring and reorganizing new 

knowledge and linking it to prior or previous knowledge.  

Further he points out that 

[...] meaning is acquired through a significant interaction with new 

knowledge.  
 

An educational concept for teaching mathematics and statistics that addresses 

these aspects is discovery learning proposed, e.g., by Bruner (1961). The key idea 

is to provide students with materials needed to solve the imposed questions - rather 

than providing simply their solutions. However, as Mayer (2004) points out, an 

unguided form of discovery learning is not recommendable. Kirschner et al. 

(2006) state that the learners need guidance to reach a certain level of knowledge, 

from which point on they can increasingly learn from discovery. In an empirical 

evaluation of different teaching methods Alfieri et al. (2011) find that Enhanced 

Discovery Learning shows to have a positive effect on learning. In enhanced 

discovery learning, the teacher accompanies the discovery process by 

instructional guidance, or feedback or other merits. In our view, simulations 

provide a platform for such enhanced discovery learning with a built-in feedback 

system. 

In the following section it is discussed how simulations can be used in the 

special context of SAE to support the students in the process of understanding the 

merits of the different methods at hand. In Section three, an example simulation 

used in graduate classes is provided. We conclude with a summary and outlook. 

2. The Use of Simulations for Teaching SAE 

In SAE, two major types of simulations can be considered, design-based and 

model-based simulations (for a more detailed discussion, see e.g. Burgard, 2013, 

and Münnich, 2014). 

In model-based simulations random samples from a superpopulation model 

are drawn. The methods of interest are then applied to these random samples. This 

is an effective procedure to check particularly whether (a) under optimal 
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conditions, that is when all model assumptions hold, a method yields the 

theoretically expected results and (b) a method is programmed correctly. Usually, 

it is far more sophisticated to derive a real world behaviour in the context of survey 

statistics. As Graham Kalton stated in Malay Ghosh’s honorary symposium in 

2014 

In case we want to apply small area methods in official statistics, we have to 

consider the sampling design.  

In design-based simulations the random samples are drawn according to a 

sampling design from a fixed finite population. It is basically an attempt to 

reproduce the true survey process of interest. A major emphasis has to be laid on 

a realistic population that mimics all important characteristics of the real 

population. This realistic population could be for example an older version of the 

actual population. The design-based simulation then is useful for comparing 

different methods on their applicability in a certain survey context with regards to 

the sampling design. 

Thus, when teaching SAE methods, model-based simulations are a good 

starting point to study the properties of SAE. However, for studying real world 

behaviour, the design-based simulation approach seems considerably more 

appropriate for applications, at least for official statistics. 

As the field of SAE encompasses several statistical disciplines and 

applications, there are multiple decision criteria to acknowledge for when 

choosing appropriate methods. Some central but non-exhaustive aspects to 

consider are the classical statistical properties, user acceptance, as well as 

computational complexity and stability. Performing simulations in either way 

helps to understand advantages and disadvantages of the statistical methods given 

the relevant decision criteria, e.g. triple-goal (Shen and Louis, 1998), and further 

enables the students to evaluate new methods later on their own. 

For most estimators in SAE, classical statistical properties are proven. These 

are generally based on asymptotic theory, regarding sample size, or the number of 

areas or domains. Both asymptotic arguments, however, have to be used carefully 

in SAE, as the typical setting is a small sample size and a finite number of areas 

(Pfeffermann, 2006). By varying the sample sizes within a simulation, the effect 

of small sample sizes or small number of small areas can be visualized. An 

example will be given in the next section. 

An important hurdle is the acceptance of the published small area estimates 

by data users. This argument is specifically important in official statistics, where 

the users of the published data are not necessarily proficient in SAE. In practice, 

one major reservation against many small area estimators is that they are not 

design unbiased. However, as design unbiasedness and small variance of small 

area estimators are usually antagonists, the demand for design unbiasedness may 

better be dropped in favor of reducing the mse of the estimators. This can be 

visualized by using simulations. 
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SAE methods are often computationally very complex. Computation times 
may be prohibitive for too large data sets, and computational stability may depend 
severely on the data structure. Hence, the computability of many programs 
depends on the present sample. Using simulations, in general, a large set of 
different samples is provided and applied. Since many computer codes may fail 
in single samples, the simulation yields a realistic view on possible computational 
issues. Those special samples can be analysed into more detail which might lead 
to a reformulation of the estimator or an improvement of the computer program. 

Additionally, in order to tackle in depth the before mentioned specific issues, 

simulations are a useful tool in the lecture to recapitulate the learned materials. 

3. An Example for Using a Simulation in SAE Teaching 

In general, when teaching SAE we start with the presentation of a new 
estimator and describe its statistical properties. Within the next step, students shall 
generate a superpopulation that fulfills all the assumptions of this estimator. The 
teacher accompanies the process of finding an appropriate superpopulation by 
asking supporting questions. By gradually deviating from the optimal 
superpoplation that fulfills all model assumptions of the estimator, the impact 
from deviations on the performance of an estimator can be observed. 

Design-based estimation methods such as the direct estimator (Cochran, 2007, 
p. 21 et seqq.) rely on asymptotic arguments, and have good performance in large 
sample settings. Their performance, measured in terms of accuracy, is indirect 
proportional to the sample size. However, the sample size tends to be very small 
in SAE applications (Rao, 2003, p. 1). The following example simulation will 
tackle the following questions in this context. How do small sample sizes affect 
the outcome of direct estimators? Are there sample sizes under which we should 
prefer SAE methods to design-based methods? How much can we gain from using 
model-assisted and model-based estimation? 

The students are asked to generate a superpopulation which shows the 
advantages of model-assisted and model-based estimation over the direct 
estimator without auxiliary variables. The discussion generally leads to the idea 
that the correlation between the dependent variable and the covariates, the ratio of 
between area variation and residual error, as well as the sample size will have an 
impact on the outcome of the different estimators. 

The estimators of interest are the direct estimator without auxiliary 
information, the model-assisted direct estimator GREG (Särndal et al., 1992, 
§6.4), and the model-based Battese-Harter-Fuller estimator (BHF, Battese et al., 
1988). From the viewpoint of official statistics, this may be seen as from design 
towards model-based methods (cf. Münnich et al., 2013). Holding the residual 
error constant, the superpopulation for a model-based simulation can be 
constructed with   

• one dependent variable y  as linear function of the realizations x  of an 

arbitrary  random variable X with  
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• normally distributed unit level error terms e  with 0=)(E e  and 

2=)(Var ee  ,  

• and normally distributed area level error terms u  with 0=)(E u  and 

2=)(Var uu  .  

The resulting settings are as follows   

• Setting 1: lower 
2

u  lower cor(y,x)  

• Setting 2: higher 
2

u  lower cor(y,x)  

• Setting 3: lower 
2

u  higher cor(y,x)  

• Setting 4: higher 
2

u  higher cor(y,x)  

By assuming higher and lower values for both, the correlation between y  and 

x  and for 
2

u , the magnitude of the gain in efficiency of one estimator over the 

others can be visualized. As can be seen from Figure 1, the improvement of using 

the model-assisted as well as the model-based estimator over the direct estimator 

is the larger the higher the correlation between y  and x . Additionally, the smaller 

the variance 
2

u , and therefore the smaller the ratio 
2

2

e

u



 , the higher is the 

improvement over the direct estimator. Further, it becomes apparent that in the 

case of rather small sample sizes (n=4) the improvement of using the model-

assisted and model-based estimators over the direct estimator without auxiliary 

covariates is larger than in the case of n=40. Especially the gain from using the 

BHF over using the GREG is more pronounced in the case of low sample sizes 

(n=4).  

 

Figure 1. Rrmse of the estimators in the settings 1–4 
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Another perspective on the performance of estimators rather than looking at 

the rrmse, which is more convincing to many practitioners, is to look at the Monte-

Carlo probability of lying within an acceptable interval. Such an acceptable 

interval can be defined as an interval in which the estimates should at least lie in. 

For instance, in Figure 2 an absolute distance of 1 from the true value is defined 

as acceptable. The Monte-Carlo probability of lying within the interval is then 

simply the rate of samples with successes within the Monte-Carlo simulation. The 

gain of using a model to not using auxiliary variables is immense. However, if 

sample size is larger, the gain from using the BHF over the GREG is not that 

pronounced as in the case of low sample sizes (n=4). 

Certainly, in this context a considerable number of measures and their impact 

on the selection of adequate estimators can be investigated via simulations, which 

furnishes a better understanding of the entire methodology. 

 

Figure 2. Monte-Carlo probability of lying within an acceptable interval  

 in setting 3 

 4. Summary and Outlook 

Teaching SAE methods covering both theory and applications is a challenging 

task. Students attending SAE classes rarely have a strong statistical education 

background with experience in applications. In this context we are convinced that 

the above presented approach of using simulation for teaching SAE methods is a 

very useful additional tool in teaching SAE. It provides a better and more 

sustainable understanding of applying and choosing appropriate SAE methods. 
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CHALLENGES  TO  ACADEMICS  AND  NSI1 
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ABSTRACT 

The aim of the paper is to present some experiences in teaching Small Area 

Estimation (SAE). SAE education experiences and challenges are analysed from 

the academic side and from the NSI side. An attempt was undertaken to discuss 

SAE issues in a wider perspective of teaching statistics. In particular, the topics 

refer to Polish conditions, but they are presented against the background of 

selected international experiences and practices. Information comes from a 

special inquiry - a survey conducted among employees of statistical offices and 

academics from universities involved in SAE research. A further issue is 

inclusion of SAE in the EMOS project (European Master in Official Statistics). 

The survey is extended with information collected by monitoring of trainings and 

projects organized by the leading centres dealing with SAE. The results obtained 

are related to a similar survey within Eurostat project: ESSnet on Small Area 

Estimation, which was conducted in 2010. The study includes interest in learning 

and the need to implement SAE methodology, a range of subjects taught as well 

as a range of applications, forms of training, type of courses, software used and 

teaching methods. In particular, it intends to answer how strong the interest in 

small area estimation is, what the demand for practical and theoretical knowledge 

in the field is and what the recommendations for universities and statistical 

institutes are.  

Key words: Small Area Estimation, statistical education.  
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1. Introduction 

“Statistical thinking will one day be as necessary for efficient citizenship as 

the ability to read and write” (Samuel S. Wilks3). In the society of today, where 

every day we are inundated with a lot of information, the problem of statistical 

education is gaining greater and greater importance. The question of 

misunderstanding or misinterpretation of statistical data can be viewed in terms of 

the consequences. In addition to global issues, particular attention is paid to 

information at the local level, as it usually involves problems that are close to 

most of us. 

The question of statistical education is extremely extensive and beyond the 

scope of this study. We restrict ourselves to one area of statistical research, which 

is Small Area Estimation (SAE). Conference on SAE held in Poznan in 

September 2014 was an occasion to raise a question on teaching SAE methods, its 

understanding, demand for specialists and problems connected with its 

applications. Justification for such limitation can be sought in the growing interest 

in this field of research and its importance. The history of modern survey 

sampling dates back to the mid of the 20th century when it grew considerably due 

to scientific developments, among others, in the work of Jerzy Neyman, Sir 

Ronald Fisher and Karl Pearson. Over time the range of topics investigated using 

survey methods has broadened enormously. We are witnessing an increasing 

demand for estimates at a lower level of geographic division than broad regions or 

countries. This is due to the growing importance of detailed information in policy-

making, programs, allocation of government funds, in creating policy to ensure a 

balanced regional development. In response to this demand, in the mid-eighties of 

the last century, in May 1985 an international symposium was held in Ottawa. It 

was a joint initiative of Statistics Canada, The Laboratory for Research in 

Statistics and Probability of Carleton University and the Department of 

Mathematics and Statistics at the University of Montreal. This conference was 

certainly a very important event in the development of small area statistics. Many 

studies refer to it as a starting point towards the development of this field of 

statistical research. Small area estimation is particularly important for countries 

that undergo economic and social transition, in Central and Eastern European 

Countries, because of the decentralization process, development of free market 

economy, transfer of management to local authorities. 

It should be stressed that the philosophy of small area statistics reflects 

holistic transformation of statistical research observed recently. First of all, it is 

the use of information from a variety of sources, including administrative registers 

(Wallgren and Wallgren 2007, 2014, Zhang 2012), estimation based not only on 

sample data, frequentist and model-depended approach (Ghosh and Rao 1994, 

                                                           
3 This is a quote from the presidential address in 1951 of mathematical statistician Samuel S. Wilks 

to the American Statistical Association (JASA, Vol. 46, No. 253., pp. 1−18). Wilks was 

paraphrasing H. G. Wells from his book Mankind in the Making (full H.G. Wells quote is available 

at: http://osu.causeweb.org/cwis/SPT-FullRecord.php?P=FullRecord&ResourceId=1240). 
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Ghosh 2001, Rao 2003, Fuller 2009, Datta 2009, Burgard et al. 2014), model 

selection and checking (Datta at al. 2011, Pfefermann 2011), covariate selection, 

linear mixed models (Rao et al. 2014, Torabi 2015, Chambers et al. 2013), 

variance estimation (Maples, Bell and Huang  2009, Graf and Tillé 2014.), 

simulations, bootstrap (Burgard and Münnich 2014), calibration (Särndal 2007), 

benchmark (Hidiroglou and Smith 2005, Gosh at al. 2014), methods dealing with 

non-response (Särndal and Lundstrӧm. 2005, Longford 2005), data quality 

assessment (Wallgren and Wallgren, 2013) and many many others. 

In particular, the aim of this paper was to present experiences and needs for 

teaching Small Area Estimation. Experiences in education and challenges were 

analysed, from the academic side and from the side of official statistics (National 

Statistical Institutes - NSIs). The study was aimed at answering the following 

questions: 

 What is the experience in SAE methodology? 

 How strong is the interest and demand for SAE methods, application, and 

teaching? 

 What are the main problems in teaching SAE? 

 What kind of risk should be considered when applying SAE? 

 What are the most important sources of information on SAE developments? 

The analysis allowed presenting differences in perception of particular SAE 

problems from the perspective of different institutions. When possible, changes 

observed in time were presented by referring to the results of the research 

conducted within Eurostat ESSnet project on SAE in 2010 (European Statistical 

System - ESS functions as a network). Answering formulated questions defined 

the structure of this paper. It starts with presenting the data and experiences of the 

surveyed institutions in SAE. The forms of activity in SAE, theoretical research 

and applications in the NSIs and at universities are compared. In the next section 

interest in teaching SAE is discussed by presenting needs for education and forms 

of teaching. The most important problems regarding teaching SAE are the subject 

of the third section. Risks and challenges in teaching SAE are discussed. It is 

followed by fourth section presenting an analysis of issues that attract special 

attention in a more general perspective of the European Statistical System, 

European Statistical Training Programme (ESTP) or European Master in Official 

Statistics (EMOS) project. Opinions on subjects that require special training as 

well as sources of information on SAE methodology are shown. Finally we 

summarize the results and draw some conclusions. 

2. Experience in small area estimation of the surveyed institutions 

Apart from assessing the progress in the development of Small Area 

Estimation methodology, this study addresses the issue of experiences and needs 

for teaching SAE. It was not an easy task, as knowledge in this area is not 

systematic. So in order to fulfil the aim of the study, to answer the formulated 
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questions on SAE education, a special inquiry was conducted. Two questionnaires 

were prepared, one for institutions and the other for individuals. This distinction 

was introduced as not all questions were relevant to both institutes and researchers 

at universities (e.g. concerning the forms of teaching activities). But there were 

only small differences between both versions. Usually there were just slight 

changes in formulating questions. The questionnaires were sent via e-mails, but 

some of them were collected during the SAE 2014 conference in Poznan. The 

structure of the questionnaire responded to the objective of the study. It consisted 

of 11 questions regarding: experience in SAE, interest in teaching and demand for 

SAE methodology, problems and challenges for teaching and practical application 

as well as sources of information on SAE.  

To obtain information a mailing list of people and institutions involved in 

SAE research and projects was used. This was the list prepared to disseminate 

information on SAE 2014 conference organized in Poznan. The mailing list 

contained addresses of statistical institutes of the European countries, especially 

those participating in Eurostat Projects on SAE, but also from other countries that 

had been previously involved in cooperation on this subject (it was an updated 

database used in a survey conducted within ESSnet on SAE project in 2010). In 

addition, the mailing list included addresses of scientists and researchers whose 

field of study is indirect estimation, who published articles on this subject, 

participated in earlier conferences organized by EWORSAE Council (European 

Working Group on Small Area Estimation) or ISI satellite conferences (e.g. The 

First Asian ISI Satellite Meeting on Small Area Estimation in Bangkok, 

September 1-4, 2013).  

As a result of the survey 60 responses were obtained: 19 from statistical 

institutes and 41 from university researchers. Almost a half of the responses in the 

survey came from Poland (5 of statistical institutes and 22 from academics). In 

this way, the study reflects also perception of the role of SAE, as well as the 

possibility of its practical applications, and the demand for education in this field 

in Poland. It should be underlined that Poland is a country experiencing economic 

transformation and developing regional self-government, so there is a possibility 

of making comparisons with the results obtained for other countries. Thus, while 

discussing selected issues, they are accompanied by a reference to the situation 

observed in Poland. 

The study obtained information from statistical institutes of different countries 

around the world. It should be emphasized that these are the countries with 

different systems of official statistics and using different methodology in 

statistical surveys. Among the countries whose statistical institutes participated in 

the survey, one can specify: Albania, Austria, Canada, Hong Kong, Japan, 

Kosovo, Latvia, Lithuania, Moldova, Romania, Slovakia, Suriname, Ukraine, 

USA. A comment might be added on the participation of the Statistical Institute 

of the Russian Federation in the survey. In this case a response was received that 

Rosstat does not conduct research on small geographic areas and for this reason 

cannot fill in the attached questionnaire. 
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Analysing responses of individuals, it can be noted that among 41 scientists 

who responded to the survey, about a half were Poles (22 persons). The remaining 

19 participants of the study were researchers from countries like Australia, 

Canada, Finland, Italy, Japan, Norway, Spain, UK and USA. 

In any case, the study was of no sample survey character. Nevertheless, the 

results are not only interesting, but also can be helpful in assessing the needs as 

well as identifying areas of further research. Additionally, the answers obtained 

often satisfied the 'saturation' condition used as a criterion for the number of in-

depth interviews in sociological research. 

Assessing respondents experience in SAE, one should remember that the 

mailing list contained people and institutions that were earlier involved in some 

kind of research on this subject. Apart from unrepresentativeness of the sample, it 

is worth noting that participation in seminars and conferences was also one of the 

forms of experience, as outlined in the next question. Thus, it can be expected that 

in each case at least minimal experience would be indicated. Meanwhile, despite a 

significant increase in experience, 13% of respondents admitted a complete lack 

of experience, as compared to the survey conducted four years earlier. 
 

 

Figure 1. Experience in Small Area Estimation in surveyed institutions (%) 

Source:  Survey on teaching, use and/or development of SAE methods, July 2014, 

M. Szymkowiak, Report on the analysis of questionnaires used in WP 2, ESSnet 

on Small Area Estimation, 2010. 
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In 2010, the most of NSIs participating in the ESSnet survey admitted to have 

little experience when it comes to small area – 56% (see fig. 1). Four years later, 

the majority (64%) of the surveyed NSIs declared moderate (53%) or even 

extensive (11%) experience in SAE. Nevertheless, still 37% of them admitted to 

have little or no experience. There is no information to determine a similar trend 

among individual researchers at universities. Note, however, that among those 

surveyed, more than a half (54%) declared very extensive, with a further 44% of 

moderate experience in SAE. A result suggesting nearly 100% interest in the 

subject should not be surprising since the survey covered statisticians involved in 

this area of research and their opinion is the subject of analysis below. 

It is interesting to compare forms of experience of the NSIs and universities 

(see tab.1). Statistical Institutes pointed primarily to practical applications as a 

basic form of activity in SAE (37%). However, among the academics scientific 

work and participation in seminars and conferences was the dominant form of 

experience (to the same extent, 51% of responses).  

Table 1. Experience in Small Area Estimation by form of activity (%) 

Form of experience in SAE NSIs  
Univer

sities 
Total 

Theoretical (e.g. scientific research, literature studies) 16 39 32 

Scientific research including: 16 51 40 

Experimental research (e.g. simulations carried out on 

unreal data) 

5 32 23 

Development research (e.g. comparative analyses 

conducted on real data, assessing quality of the estimates, 

testing different estimators, models, etc.) 

16 49 38 

Practical applications (published estimates) 37 41 40 

Scientific conferences, seminars and discussions 21 51 42 

Teaching  16 27 23 

Participation of NSI/your institution employees in lectures, 

seminars, courses  

16 34 28 

Joint projects (Eurostat etc.) 11 32 25 

None 0 2 2 

Notice:  Percentage of the number of indications among a specified  group of respondents.  

There was a possibility of choosing more than one issue and therefore the 

percentages do not sum to 100%. 

Source: Survey on teaching, use and/or development of SAE methods, July 2014. 

For statisticians from NSIs, the attendance in conferences and seminars was 

the second most common form of experience (21%). Other types of activity may 

be divided into two groups. The first is theoretical, scientific, and development 

research (16%). The second group is associated with teaching SAE: organizing 

and conducting courses, as well as participation in training and lectures (16%).  
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On the other hand, as for the experience indicated by academic teachers, 

development (49%) and theoretical (39%) research as well as practical 

applications (41%) should be emphasized, in addition to the already mentioned 

scientific work. Participation in lectures and joint research projects (e.g. Eurostat) 

could also be mentioned among important forms of SAE activities (34-32%). It is 

worth noting that teaching SAE (27%) was not the most common form of activity 

among academics.  

Summarizing the results obtained for all the respondents, seminars and 

conferences (42%), as a forum for exchange of knowledge and experiences, are 

the most common form of activity as concerns SAE. In terms of frequency, the 

second and certainly no less important form is scientific research and practical 

applications (40%). 

3. Interest in teaching and demand for sae methodology 

The purpose of the study was, inter alia, a practical review feedback on the 

training needs of SAE. Among statisticians, there is a common belief in the need 

for education of SAE. This seems understandable among people who are engaged 

in this field of statistical research. The need for practical research is raised in 

almost in every study on this subject (see Platek et al.1987, Rao 2003). Clearly 

due to this belief the need for training seems to be understandable. However, it is 

also noted that statisticians and researchers who do not deal with indirect 

estimation often express their willingness to treat it as a cure-all for any 

shortcomings on the availability of data and estimation problems. 

The results from the survey show that researchers who were themselves 

involved in SAE considered the need for NSI staff with methodological 

knowledge on indirect estimation as great (42%) and moderate (41%, see fig. 2). 

None of respondents participating in the survey considered education in this field 

as unnecessary. Comparing the opinions expressed in this regard by NSIs and 

Universities, we note that the frequency of indicating very big demand was twice 

as high for the official statistics (26%), compared to 13% among academics. This 

resulted in more often expressed moderate opinions on the educational needs 

among academics than official statisticians.  

The results presented above seem to be very reasonable. They reflect strong 

demand for small domain estimates, articulated by official statistics and other 

recipients of their products. On the other hand, the results obtained for academics, 

confirm the importance of and the need for training, but keep a greater distance. 
 

http://pl.pons.com/tłumaczenie/angielski-polski/it
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Figure 2.  Need for education of NSI staff in SAE methodology in the opinion of 

NSI and Universities (%) 

Notice:  Percentage of the number of indications among a specified group of respondents.  

There was a possibility of choosing more than one issue and therefore the 

percentages do not sum to 100%. 

Source: Survey on teaching, use and/or development of SAE methods, July 2014. 

The results of the study do not allow us to say with certainty what is the 

demand for experts in SAE. Analysing the opinions expressed in the survey, it 

should be noted that the majority (58%) of respondents from  NSIs agreed with 

the statement that SAE is one of the most desirable  area of study. Additionally, 

almost all NSIs  stressed that they do not employ specialists in SAE. 

Analysing the demand for statisticians, specialists in specific methods of 

research, a question about the most important issues that require increased 

knowledge of NSI's staff, was included in the questionnaire. It was addressed to 

both statisticians from universities and from statistical institutes, allowing a 

choice of several of the listed options. The results obtained fully meet the 

requirements of the era of Modern Information and Communication Technology 

(ICT). The majority of respondents (65%) indicated training in statistical software 

as the most important issue: 745% of statisticians working in NSIs and 61% from 

universities (fig. 3). 

It is also worth noting that in the students' opinion (e.g. of those who study 

Computer Science and Econometrics at the Poznan University of Economics, see 

PKA, 2014), modules for teaching specialized software are of special interest. 

Therefore, in order to attract a specific field of study, an educational offer often 

found objects taking into account that demand (e.g. Practical Data Science with R, 

Data Mining with SAS Enterprise Miner, The statistical analysis of market 

research with IBM SPSS Visualization and reporting of statistical data R / SAS). 
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An increasingly common practice is also to offer students a choice of training 

modules that allow them to obtain additional certificates honoured in the labour 

market (e.g. SAS Global Certification program, SPSS certificate of Expert 

Technology, SAP certificate). 

Table 2. Most important issues that require increased knowledge of NSI’s staff in 

the opinion of NSIs and Universities 

Methodological issue NSIs Universities Total 

Sampling 9 14 23 

Calibration 8 8 16 

Spatial analysis, e.g. GIS 13 19 32 

Big Data 8 13 21 

Software (SAS, R, SPSS, etc. ) 14 25 39 

The choice should be left to individuals to be 

compatible with their interests 

5 10 15 

There is no need for NSI staff to train in any 

area 

0 0 0 

Other, what? 0 2 2 

Number of Respondents 19 41 60 

Source: Survey on teaching, use and/or development of SAE methods, July 2014.  

Coming back to the most important problems that need to broaden the scope 

of teaching, the second most common group, as in the opinion of the NSIs (68%) 

and academics (46%), are methods of spatial analysis (53% of all respondents, see 

fig.3 and tab. 2). These are very important issues that are becoming more and 

more popular, among other things, due to the development of Geographical 

Information Systems (GIS). But it is worth noting also a direct relationship of 

spatial analysis methods to SAE, which is also reflected by the most common use 

of indirect estimation. This is also visible in the most commonly used term for 

this area of research: Small Area Estimation instead of Small Domain Estimation. 

Sampling is only third in the 'ranking’ of the most desirable skills. The survey 

does not mention explicitly SAE as an important problem that requires a broader 

education. However, respondents had the opportunity of individual declarations. 

Only two out of 60 surveyed took advantage of this opportunity. Among these 

were indications of modelling, especially for large, complex data sets and 

statistical inference. None of the respondents pointed directly at SAE. Perhaps 

this is a result of a mature approach, indicating particular problems that are of 

great importance in improving the quality of indirect estimation, or simply SAE is 

considered as an integral part of the sampling methodology. 
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Figure 3.  Most important issues that require increased knowledge of NSI’s staff in the 

opinion of NSIs and Universities (%) 

Notice:  Percentage of the number of indications among a specified group of respondents.  

There was a possibility of choosing more than one issue and therefore the 

percentages do not sum to 100%. 

Source: Survey on teaching, use and/or development of SAE methods, July 2014. 

The above considerations should be complemented by another comment. The 

survey results indicated a much greater demand for skills in calibration reported 

by NSI staff (42% of responses) compared to 20% of such opinion among 

academics. It is understood that the demand for the ability to calibrate is much 

more appreciated by statistical institutes than among academics. One might be 

surprised by 10 percentage points difference in the number of indications of the 

importance of education in the area of Big Data. It was observed that 42% of 

responses on the significance of this issue was among statisticians from NSIs 

compared to 32% among academics. Big Data still raises lively discussion, many 

doubts and controversies. 

4. Experience in teaching SAE, problems and challenges  

Information on SAE education was obtained from surveyed statisticians who 

worked at universities. Academics were asked if their universities were teaching 

SAE. It turned out that SAE teaching experience was not large. Among surveyed 

respondents about 44% declared teaching SAE at their universities. But SAE 
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education was rather not a part of regular lectures. Regular SAE courses are 

taught only at few universities, these are University of Southampton, Pisa, Trier, 

Helsinki, and University of Maryland and University of Michigan (Lehtonen 

2014). Often basic information about SAE methodology was presented during 

other modules and lectures. In most cases these were seminars during master or 

post-doctoral studies.  

Trainings and workshops organized in connection with scientific conferences 

were another often practiced forms of education in SAE. A similar form was 

taken by SAE dissemination among the employees of the institutions concerned. 

Trainings and workshops organized for special needs of other institutions, such as 

statistical offices were also listed among other forms of SAE education. 

Trainings were one of the most common forms of education in SAE. They 

were organized both by universities, as well as NSIs. There were at least a few 

centres offering trainings and courses on SAE. The following list is not complete, 

but one could mention here University in Southampton with a 10 year long 

tradition of Southampton Statistical Sciences Research Institute, Universities 

in  Helsinki, Pisa, Trier, Pompeu Fabra University in Barcelona,  Statistics 

Finland and Istat (Italian National Institute for Statistics). Particularly noteworthy 

is the  European Statistical Training Programme (ESTP) offered by European 

Statistical System (ESS). ESS is the partnership between Eurostat (with a leading 

role) and NSIs that are responsible for the development, production and 

dissemination of statistics. The purpose of the ESTP is to provide the opportunity 

to participate in international training courses at postgraduate level and other 

learning opportunities.  

Another important ESS initiative was the establishment of the European 

Master in Official Statistics (EMOS) project. EMOS is an infrastructure project 

aimed at developing a programme for training and education in official statistics  

within existing master programmes at European universities. Increasing demand 

for quality information is widely recognized implying a strong investment in 

training of statistics. Programs like EMOS can be a part of the answer to these 

needs (Sorvillo, 2014).  EMOS is planned to provide certified training in 

methodologies, statistical surveys, statistical production, analysis and statistical 

law and should be offered by a network of NSIs and Universities. Among others, 

Survey methodology and Small Area Estimation are in the list of elective courses.  

Statistical software used in SAE was already discussed, but it still certain 

focus. ICT and software used in indirect estimation, modelling, simulations, 

bootstrap, etc. is of significant importance to the development of SAE. Therefore, 

compatibility of software used in NSIs and at universities for educational 

purposes might be desirable.  

In the SAE2014 survey, 13 out of 19 NSIs expected knowledge of special 

statistical software, pointing SAS as the most preferable. However, the most 

popular software used in SAE, both in teaching and scientific research, was R. It 

was indicated almost twice as often as SAS (51% of respondents versus 28%, see 

fig.4). SAS software was used mostly in the NSIs, but becomes less popular 
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among academics. Other software, like Bugs, WinBugs or SAS were rarely 

indicated. There were also institutions, like, e.g. Statistics Canada, which declared 

to develop their own, very flexible software for SAE. 
 

 

Figure 4. Software used in Small Area Estimation (%) 

Source:  Survey on teaching, use and/or development of SAE methods, July 2014, 

M. Szymkowiak, Report on the analysis of questionnaires used in WP 2, ESSnet 

on Small Area Estimation, 2010. 

Comparing trends observed in time, once again a huge increase in popularity 

of R should be stressed. A good illustration would be the fact that in 2014 80% of 

all responses were indicating R, while in 2010 it was 21%. In this sense, the 

implementation of SAS is also gaining popularity, as in 2010 its score was 29% of 

responses in comparison to 44% in 2014. The increasing use of R and SAS 

program was associated with a clear reduction of interest in other software. 

In the discussion so far the need for teaching of statistics was underlined, in 

particular small area statistics. But the results obtained show relatively little 

interest, with a very small number of universities, where SAE teaching programs 

were implemented. Recognizing these difficulties, a request to identify problems 

and challenges in teaching SAE was formulated. Subsequently a question about 

problems and risk in applying SAE was asked. 

At first, the problems in teaching SAE will be discussed. The question on 

problems was of an open form. Answers collected here were divided into four 
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preparation of students. The second one consisted of indications showing low 

awareness of not only the demand for specialists in SAE, but of ignorance of the 

existence of such a field of statistical research in general. In the third group 

demands on improving the attractiveness of classes of small area statistics were 

placed. The last group included suggestions to use the uniqueness of SAE for the 

dissemination of knowledge. It seemed to be worth listing to some of the opinions 

expressed in the survey, as it was thought of as a tool to share different views on 

the problem and how to cope with it. 

1. Inadequate preparation among students 

 Students are not sufficiently prepared 

 Made it more understandable for students 

 Lack of sufficient knowledge of mathematical statistics 

 Problem with understanding basic methods in survey sampling, not only 

SAE 

 Some potential students may not be very familiar with statistical modelling 

or Bayesian inference 

 Lack of knowledge of statistical software  

2. Low awareness of SAE as the field of statistical research 

  Low awareness of the need for knowledge and the development of SAE 

methods 

  Little popularity of the field 

  Small number of experts 

  Lack of textbooks in Polish 

  Use basic sampling course  to generate interest of students in SAE  

  Reluctance of students to quantitative subjects  

  Recognition of the purpose of SAE 

3. The attractiveness of classes 

  Careful preparation of teaching materials which allows full interaction 

between participants and the lecturer 

  Case studies based on actual research and applications 

  Incorporation of recent deliverables in teaching  

  More extensive use of multivariate data analysis in SAE, especially in the 

selection of auxiliary variables 

  Teaching students to build appropriate statistical models for use in SAE 

  Linking SAE and GIS 

4. Unique challenges 

  Process approach to teach small area statistics - use of different methods 

and data sources 

  Understanding the capabilities and limitations of SAE 

  Teaching students to realise the difference between practical and theoretical 

approaches to SAE 
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  Make people understand the differences between the different approaches 

for inference (design-based, model-assisted, model-based). 

The question about problems with teaching SAE somehow forces the question 

of problems and risks associated with the use of SAE methods. If they were 

commonly known and used in the majority of research and analysis, it can be 

assumed that they would be more familiar. Knowledge of these methods would 

identify the demand for specialists and experts in the field. So, it is worth to 

consider problems and risks arising from the use of SAE methodology. In 

addition, SAE methods require highly advanced knowledge, it is rather 

impossible to teach them at primary level. They are difficult and, as pointed 

above, student's knowledge is often insufficient to pass a basic course in survey 

sampling. 

The respondents participating in the survey emphasized mainly bias of 

indirect estimators (62% of respondents, see tab. 3) and model-based approach 

(50%)  as primary risks of practical application of SAE methods. More often the 

bias problem was pointed by academics than statisticians from the NSIs. 

Statisticians in official statistics institutions most frequently emphasized difficulty 

in variance estimation (53%), what in comparison to opinion of academics and all 

respondents was in fourth place. This relationship may seem a bit surprising, as 

NSIs put great emphasis on quality of the estimates (including not only accuracy 

but also unbiasedness). 

Table 3. Problems and risks of applying SAE in official statistics (%) 

Problems and risks NSIs Universities Total 

Small sample size 42 39 40 

Bias of indirect estimators 47 68 62 

Model dependent approach 42 54 50 

Difficulty in estimating the variance 53 32 38 

There are no risks 5 2 3 

Other 11 2 5 

Notice:  Percentage of the number of indications among a specified group of respondents.  

There was a possibility of choosing more than one issue and therefore the 

percentages do not sum to 100%. 

Source: Survey on teaching, use and/or development of SAE methods, July 2014. 

 

Among statisticians from universities, a small sample size (39%) and the 

difficulty in estimating variance (32%) were mentioned as less important. 

The frequency distribution indicating importance of such problems as sample 

size, bias, model dependent approach and variance estimation, was more uniform 

among statisticians from NSIs. 11% of responses from NSIs indicated “Other” 

issues, not specified in the study of problems in application of SAE. These results 
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clearly show the difference between NSIs and universities. This is probably 

associated with the difference of the statutory tasks of both institutions: providing 

estimates and education, while the development of science is the common 

denominator. 
 

 

Figure 5. Main sources of information on SAE methodology and applications (%)  

Source: Survey on teaching, use and/or development of SAE methods, July 2014. 

Development of SAE methodology needs deepening and dissemination of 

knowledge and information about proposals of new methods, results of the 

research conducted and simulation. Statistical literature is very extensive. As 

regards SAE the most specialized scientific journals are: Survey Methodology 

(62%), Journal of the American Statistical Association (43%), Journal of Official 

Statistics (38%), Statistics in Transition (38%), Canadian Journal of Statistics 

(35%), Journal of the Royal Statistical Society (35%), Biometrika (27%) (see Fig. 

5). 

SAE is a relatively new area of statistical research. People dealing with these 

topics mostly know each other (if not personally, then through papers and via 

Internet). R. Lehtonen (2014) defines this as SAE "ecosystem". Its important part 

includes conferences and seminars organised by international organisations like 

International Statistical Institute or International Association of Survey 

Statisticians. Important contributions were made by conferences in Jyväskylä, 

Pisa, Elche, Trier, organized within the framework of the European platform 

called EWORSAE, that is European Working Group on Small Area Estimation 

which was founded in 2007 in Pisa. 

Other components of SAE “ecosystem” mentioned by R. Lehtonen are those 

of  U.S. SAIPE Program: Small Area Income and Poverty Estimates (Kalton and 

Citro 2001). On the European side there are European Union Framework 

Programmes for Research and Technological Development (FP) research projects 
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conducted by Universities and NSIs. Several projects could be mentioned here: 

EURAREA, AMELI, SAMPLE. Their output is huge, not only through the 

development of knowledge, but also its dissemination and the introduction of 

specific forms of cooperation between the different centres. European Statistical 

System initiated also another program aimed at development of a framework for 

the production of small area estimates for ESS social survey. Essential elements 

of SAE “ecosystem” are of course books (Rao, 2003, Longford 2005, Fuller 

2009), manuals, scientific and working papers, presentations and research reports. 

5. Conclusion 

The results of the survey on teaching, use and development of SAE methods, 

other available information from previous studies and the Internet allow for 

concluding that there is a growing awareness of SAE methodology. More than a 

half of the surveyed NSIs declared to have moderate experience in SAE.  

However, this experience in SAE was mainly participation in seminars and 

conferences, but also scientific research was often mentioned. Therefore, great 

needs for education of NSI staff in SAE methodology was expressed by over 60%  

of NSIs. But it was not SAE methodology that was indicated as the field that 

requires increased knowledge of NSI staff. In view of the survey, the most 

important issues that need to broaden the scope of teaching were statistical 

software (SAS, R, SPSS, etc.) and methods of spatial analysis (GIS). As regards 

the software used in Small Area Estimation, R was the most popular in scientific 

research and SAS was the software most often used in the NSIs. 

Referring to the main problems and challenges in teaching SAE, many 

opinions were expressed on poor preparation of students for advanced topics. Low 

awareness of SAE as the field of statistical research was also underlined. 

Suggestions could be found to use basic sampling course to generate interest of 

students in SAE. It was proposed to increase attractiveness of classes by 

introducing case studies based on actual research, practical implementation and 

incorporation of recent deliverables in the teaching process. Among unique 

challenges of SAE applications, the importance of understanding the capabilities 

and limitations was recognized as essential. 

Problems in teaching are not independent form problems of SAE application. 

An analysis in this field pointed out first of all to bias of indirect estimators. 

However, for statisticians from NSIs, the main problem was difficulty in variance 

estimation. But they also stressed many other problems unspecified directly in the 

study. The main source of information on SAE methodology and applications is 

undoubtedly Survey Methodology. Among other scientific journals one should 

emphasize the importance of Statistics in Transition, particularly as a journal with 

a large audience among statisticians in Central and Eastern Europe. 

Being aware of the limitations of the analysed survey, it is our hope that the 

results presented will help to bring together opinions of scientists from 
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universities and practitioners working in National Statistical Offices and other 

institutions. And allow to confront and compare they own ideas and experiences 

with those expressed by colleagues representing the academic community, official 

statistics, research centres as well as other institutions involved in developing and 

applying small area estimation methods. 
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