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ABSTRACT

Estimation of the population mean in a finite and fixed population on the basis
of the conditional simple random sampling design dependent on order statistics
(quantiles) of an auxiliary variable is considered. Properties of the well-known
Horvitz-Thompson and ratio type estimators as well as the sample mean are taken
into account under the conditional simple random sampling designs. The consid-
ered examples of empirical analysis lead to the conclusion that under some addi-
tional conditions the proposed estimation strategies based on the conditional simple
random sample are usually more accurate than the mean from the simple random
sample drawn without replacement.
Key words: conditional sampling design, order statistic, concomitant, sample
quantile, auxiliary variable, Horvitz-Thompson statistic, inclusion probabilities,
sampling scheme, ratio estimator.

1. Introduction

Sampling designs dependent on an auxiliary variable are constructed in order to im-
prove accuracy of population parameters estimation. Application of auxiliary infor-
mation to construction of conditional versions of sampling designs are considered,
e.g. by Royall and Cumberland (1981), Tillé (1998, 2006) and Wywiał (2003).

The fixed population of size N denoted by U will be taken into account. The ob-
servation of a variable under study and an auxiliary variable are identifiable and
denoted by yi and xi, i = 1, . . . ,N, respectively. We assume that xi ≤ xi+1, i =
1, . . . ,N − 1. Our general purpose is estimation of the population average: ȳ =
1
N ∑k∈U yk where yi, i = 1, ...,N, are values of the variable under study.

The well-known simple random sampling design is defined as follows: P0(s) =(N
n

)−1
for all s ∈ S where S is the sample space of the samples s with fixed effective

size 1 < n < N.
Let s = {s1, i,s2} where s1 = {i1, ..., ir−1}, s2 = {ir+1, ..., in}, i j < i for j =

1, ...,r, ir = i and i j > i for j = r + 1, ...,n. Thus, xi is one of the possible obser-
vations of order statistic X(r) of rank r (r = 1, ...,n) from sample s. Let S(r, i) =
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{s : X(r) = xi} be the set of all samples whose r -th order statistic of the auxiliary
variable is equal to xi where r ≤ i≤ N−n+ r. Hence,

⋃N−n+r
i=r S(r, i) = S.

The size of the set S(r, i) is denoted by g(r, i) =Card(S(r, i)) and

g(r, i) =
(

i−1
r−1

)(
N− i
n− r

)
. (1)

The conditional version of the order statistic distribution is as follows:

P
(
X(r) = xi|xu ≤ X(r) ≤ xw

)
=

P
(
X(r) = xi

)
P
(
xu ≤ X(r) ≤ xw

) = g(r, i)
z(r,u,w)

(2)

where

P
(
X(r) = xi

)
=

g(r, i)(N
n

) , i = r, ...,N−n+ r. (3)

P
(
xu ≤ X(r) ≤ xw

)
=

z(r,u,w)(N
n

) , (4)

z(r,u,w) =
w

∑
t=u

g(r, t). (5)

Wywiał (2014) proposed the following conditional version of the simple ran-
dom sampling design:

P0 (s|r,u,w) = P0
(
s|xu ≤ X(r) ≤ xw

)
=

1
z(r,u,w)

. (6)

P0 (s|r,u,w) provide such the simple random samples that r-th order X(r) takes
a value from interval [xu; xw] where u ≤ r ≤ w. Let us note that in the particular
case when u = r and w = N−n+ r sampling design P0(s|r,u,w) becomes ordinary
simple random sample design P0(s).

Wywiał (2014) derived the first and second order inclusion probabilities for
the sampling design. Moreover, Wywiał proposed the following sampling scheme
implementing P0(s|r,u,w). Firstly, population elements are ordered according to the
increasing values of the auxiliary variable. Next, the i-th element of the population
where i = u,u+1, ...,w and r = [nα]+1, is drawn with probability:

P(X(r) = xi|xu ≤ X(r) ≤ xw) =
g(r, i)

∑
w
j=u g(r, j)

. (7)

Finally, two simple samples s1(i) and s2(i) are drawn without replacement from
subpopulations U1 = {1, ..., i−1} and U2 = {i+1, i+2, ...,N}, respectively. Sample
s1(i) is of size r−1 and sample s2(i) is of size n− r. The sampling designs of these
samples are independent and
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P0(s1(i)) =
(

i−1
r−1

)−1

, P0(s2(i)) =
(

N− i
n− r

)−1

. (8)

2. Strategies dependent on conditional simple random sample

2.1. The Horvitz-Thompson estimator

The well known Horvitz-Thompson (1952) estimator is given by:

ȳHT,s =
1
N ∑

k∈s

yk

πk
(9)

Estimation strategy (ȳHT,s,P(s)) is unbiased for ȳ if πk > 0 for k = 1, ...,N,
where πk is the inclusion probability of sampling design P(s). The variance of the
strategy is:

V0 (ȳHT,s,P(s)) =
1

N2

(
∑
k∈U

∑
l∈U

∆k,l
ykyl

πkπl

)
, ∆k,l = πk,l−πkπl. (10)

Particularly, under simple random sampling design P0(s) the strategy (tHT,s,P(s))
reduces to the simple random sample mean denoted by (ȳs,P0(s)), where

ȳs =
1
n ∑

k∈s
yk. (11)

It is the unbiased estimator of the population mean and its variance is:

V0(ȳs) =
N−n

Nn
v∗(y), v∗(y) =

1
N−1 ∑

k∈U
(yk− ȳ)2. (12)

Moreover, let us note that in the case of the unconditional simple random scheme
the Horvitz-Thompson strategy reduces to the simple random sample mean.

Example 2.1. In the book by Särndal C. E., B. Swensson, J. Wretman (1992)
the data about Sweden municipalities are presented. The size of the population of
municipalities is N = 284. We take into account two variables. The first is revenues
from the 1985 municipal taxation (in millions of kronor) and it is treated as the
variable under study denoted by y. The second one is the 1975 population of mu-
nicipalities (in thousands) and it is treated as the auxiliary variable denoted by x.
Our purpose is the estimation of population mean ȳ. The mean of the auxiliary vari-
able is x̄ = 28.810. The population mean of the variable under study is estimated by
means of strategy (ȳHT,s,P0(|r,u,w)). The relative efficiency is denoted by:

de f f (r,u,w|n) =V (ȳHT,s,P0(s|r,u,w))/V0(ȳs)
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Particulary, we have de f f (3,260,270|3) = 0.045, de f f (11,270,280|15) = 0.14
and de f f (22,267,277|29) = 0.147. Thus, in all the considered cases the mean
from the conditional simple random sample is several times more accurate than the
simple random sample mean.

2.2. Conditional simple random sample mean

Let H and T be statistics dependent on observations of the variable under study and
the auxiliary variable observed in the sample s drawn according to sampling design
P0(s|r,u,w). The basic moments of statistics H and T are as follows:

E0(H|r,u,w) = ∑
s∈S(r,u,w)

hP0(s|r,u,w),

E0(HT |r,u,w) = ∑
s∈S(r,u,w)

htP0(s|r,u,w).

V0(H,T |r,u,w) = E0(HT |r,u,w)−E0(H|r,u,w)E0(T |r,u,w).

Now, let H and T be statistics dependent on order statistic X(r) or its concomitant
Y[r]. The basic moments of the statistics H and T are denoted as follows:

E(H|r,u,w) =
w

∑
i=u

hiP(X(r) = xi|xu ≤ X(r) ≤ xw),

E(HT |r,u,w) =
w

∑
i=u

hitiP(X(r) = xi|xu ≤ X(r) ≤ xw),

V (H,T |r,u,w)) = E(HT |r,u,w)−E(H|r,u,w)E(H|r,u,w),

V (H|r,u,w)) =V (H,H|r,u,w)).

Let random variable Ir have the following probability function:

P(Ir = i|u≤ r ≤ w) = P
(
X(r) = xi|xu ≤ X(r) ≤ xw

)
=

z(r,u,w)(N
n

) (13)

where i = u, ...,w and z(r,u,w) explains equation (5) and r≤ u < w≤ N−n+ r.
Let x̄(1, i− 1), i = u, ...,w, be the following population mean of the left-truncated
(in the point xi) distribution of the auxiliary variable:

x̄(1, i−1) =
1

i−1

i−1

∑
k=1

xk, 1 < r ≤ n. (14)
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Let us note that x̄(1, i− 1) is a value of the random variable denoted by
X̄(1, Ir−1) and

P(Ir = i|u≤ r ≤ w) = P
(
X(r) = xi|xu ≤ X(r) ≤ xw

)
. (15)

Similarly, we define the following random variables: X̄(Ir + 1,N), Ȳ [1, Ir− 1],
Ȳ [Ir + 1,N], XY [1, Ir− 1] and XY [Ir + 1,N], Vx,y[1, Ir− 1] and Vx,y[Ir + 1,N] which
take values equal to the following moments, respectively:

x̄(i+1,N) =
1

N− i

N

∑
k=i+1

xk, 1≤ r < n, i < N (16)

ȳ[1, i−1] =
1

i−1

i−1

∑
k=1

yk, 1 < r ≤ n, (17)

ȳ[i+1,N] =
1

N− i

N

∑
k=i+1

yk 1≤ r < n, i < N, (18)

xy[1, i−1] =
1

i−1

i−1

∑
k=1

xkyk, 1 < r ≤ n, (19)

xy[i+1,N] =
1

N− i

N

∑
k=i+1

xkyk, 1≤ r < n, i < N, (20)

vx,y[1, i−1] = xy[1, i−1]− x̄(1, i−1)ȳ[1, i−1], 1 < r ≤ n, (21)

vx,y[i+1,N] = xy[i+1,N]− x̄(i+1,N)ȳ[i+1,N], 1≤ r < n, i < N. (22)

Particularly, vx[1, i− 1] = vx,x[1, i− 1] and vy[i+ 1,N] = vy,y[i+ 1,N]. Param-
eters of sample means x̄s, ȳs under the conditional simple random sample design
are considered in the following theorem.

Lemma 2.1. Under the sampling design defined by expression (6) the basic
parameters of x̄s, ȳs are as follows:

E0(x̄s|r,u,w)) =
r−1

n
E (X̄(1, Ir−1)|r,u,w)+ 1

n
E
(
X(r)|r,u,w

)
+

+
n− r

n
E (X̄(Ir +1,N)|r,u,w) (23)

where
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E (X̄(1, Ir−1)|r,u,w) =
w

∑
i=u

x̄(1, i−1)P
(
X(r) = xi|r,u,w

)
, (24)

E
(
X(r)|r,u,w

)
=

w

∑
i=u

xiP
(
X(r) = xi|r,u,w

)
, (25)

E (X̄(Ir +1,N)|r,u,w) =
w

∑
i=u

x̄(i+1,N)P
(
X(r) = xi|r,u,w

)
. (26)

E0(ȳs|r,u,w) =
r−1

n
E (Ȳ [1, Ir−1]|r,u,w)+

+
1
n

E
(
Y[r]|r,u,w

)
+

n− r
n

E (Ȳ [Ir +1,N]|r,u,w) (27)

where

E (Ȳ [1, Ir−1]|r,u,w) =
w

∑
i=u

ȳ[1, i−1]P
(
X(r) = xi|r,u,w

)
, (28)

E
(
Y[r]|r,u,w

)
=

w

∑
i=u

yiP
(
X(r) = xi|r,u,w

)
, (29)

E (Ȳ [Ir +1,N]|r,u,w) =
w

∑
i=u

ȳ[i+1,N]P
(
X(r) = xi|r,u,w

)
. (30)

V0(x̄s, ȳs|r,u,w) =

=
(r−1)2

n2 V0(x̄s1 , ȳs1 |r,u,w)+
r−1

n2 V0(x̄s1 ,Y[r]|r,u,w)+

+
(r−1)(n− r)

n2 V0(x̄s1 , ȳs2 |r,u,w)+
r−1

n2 V0(X(r), ȳs1 |r,u,w)+

+
1
n2V0(X(r),Y[r]|r,u,w)+

n− r
n2 V0(X(r), ȳs2 |r,u,w)+

+
(r−1)(n− r)

n2 V0(x̄s2 , ȳs1 |r,u,w)+
n− r

n2 V0(x̄s2 ,Y[r]|r,u,w)+

+
(n− r)2

n2 V0(x̄s2 , ȳs2 |r,u,w) (31)

where

V0(x̄s1 , ȳs1 |r,u,w) =
1

r−1
E
(

Ir− r
Ir−1

Vxy[1, Ir−1]|r,u,w
)
+

+V (X̄(1, Ir−1),Ȳ [1, Ir−1]|r,u,w), (32)
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V0(x̄s1 ,Y[r]|r,u,w) =V (Y[r], X̄(1, Ir−1)|r,u,w), (33)

V0(X(r), ȳs1 |r,u,w) =V (X(r),Ȳ [1, Ir−1]|r,u,w) =
= E(X(r)Ȳ [1, Ir−1]|r,u,w)−E(X(r)|r,u,w)E(Ȳ [1, Ir−1]|r,u,w), (34)

V0(x̄s1 , ȳs2 |r,u,w) =V (X̄(1, Ir−1),Ȳ [Ir +1,N]|r,u,w) =
= E (X̄(1, Ir−1)Ȳ [Ir +1,N]|r,u,w)+

−E (X̄(1, Ir−1)|r,u,w)E (Ȳ [Ir +1,N]|r,u,w) , (35)

V0(x̄s2 , ȳs1 |r,u,w) =V (X̄(Ir +1,N),Ȳ [1, Ir−1]|r,u,w) =
= E (X̄(Ir +1,N)Ȳ [1, Ir−1]|r,u,w)+

−E (X̄(Ir +1,N)|r,u,w)E (Ȳ [1, Ir−1]|r,u,w) , (36)

V (X(r),Y[r]|r,u,w) = E(X(r),Y[r]|r,u,w)−E(X(r)|r,u,w)E([r]|r,u,w), (37)

E(X(r),Y[r]|r,u,w) =
w

∑
i=u

xiyiP
(
X(r) = xi|r,u,w

)
,

V0(x̄s2 ,Y[r]|r,u,w) =V (Y[r], X̄(Ir +1,N)|r,u,w), (38)

V0(X(r), ȳs2 |r,u,w) =V (X(r),Ȳ [Ir +1,N]|r,u,w), (39)

V0(x̄s2 , ȳs2 |r,u,w) =
1

n− r
E
(

N−n+ r− Ir

N− Ir
Vxy[Ir +1,N]|r,u,w

)
+

+V (X̄(Ir +1,N),Ȳ (Ir +1,N)|r,u,w)). (40)

The proof is presented in the Appendix.Let vxy =
1

N−1 ∑
N
i=1(xi− x̄)(yi− ȳ) and

vx = vxx, vy = vyy.
Theorem 2.1. When yk ≈ ȳ+ a(xk− x̄) for all k = 1, ...,N where a =

vxy
vx

and
E0(x̄s|r,u,w) = x̄ where E0(x̄s|r,u,w) is expressed by (23), then strategy
(ȳs,P0(|r,u,w)) is approximately unbiased for ȳ.
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The expressions (31)-(41) of Lemma 4.1 determine approximate variance:

V (ȳs|r,u,w) =

=
1
n2

{
(r−1)E

(
Ir− r
Ir−1

Vy[1, Ir−1]|r,u,w
)
+(r−1)2V (Ȳ [1, Ir−1]|r,u,w)+

+2(r−1)V (Y[r],Ȳ (1, Ir−1)|r,u,w)+
+2(r−1)(n− r)V (Ȳ (1, Ir−1),Ȳ [Ir +1,N]|r,u,w)+V (Y[r]|r,u,w)+

+2(n− r)V (Y[r],Ȳ (Ir +1,N)|r,u,w)+(n− r)2V (Ȳ (Ir +1,N)|r,u,w))+

+(n− r)E
(

N−n+ r− I
N− I

Vy[Ir +1,N]|r,u,w
)}

. (41)

The proof is presented in the Appendix. Hence, if sample size n and param-
eters u and w are fixed then parameter r has to be determined in such a way that
|E0(x̄s|r,u,w)− x̄|= minimum.

Example 2.2. Let us consider the same data as those taken into account in Ex-
ample 2.1. Our purpose is estimation population mean ȳ by means of (ȳs,P0(s|r,u,w)).
The relative bias of the strategy is denoted by:

δ (r,u,w|n) = b(ȳs,P0(s|r,u,w))/
√

V (ȳs,P0(s|r,u,w))

where b(r,u,w) = ȳs− ȳ is the bias of (ȳs,P0(s|r,u,w)). The relative efficiency is
denoted by

de f f (r,u,w|n) = MSE(ȳs,P0(s|r,u,w))/V0(ȳs)

where
MSE(ȳs,P0(s|r,u,w)) =V (ȳs,P0(s|r,u,w))+b2(r,u,w)

and V0(ȳs) is the variance of the mean from the simple random sample drawn with-
out replacement. After some computations we have:
δ (3,195,205|3) =−0.915, de f f (3,195,205|3) = 0.372,
δ (11,170,230|15) =−0.022, de f f (11,170,230|15) = 3.458,
δ (22,203,212|29) =−0.124, de f f (22,203,212|29) = 5.74.
Hence, only in the case of the small sample size n = 3 the mean from the conditional
simple sample is more accurate than the simple sample mean.

David and Nagaraja (2003), p. 145 show that

E(Y[r]) = ȳ+
vxy

vx
(E(X(r))− x̄), r = 1, ...,n (42)

This let us consider concomitant Y[r] as the estimator of the population mean.
Equation (42) straightforwardly leads to the following theorem.
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Theorem 2.2. Under the sampling design defined by expression (6), concomitant
Y[r] is unbiased estimator of the population mean when

E(X(r)) = x̄ and V (Y[r]) =
N−n+r

∑
i=r

(yi− ȳ)2P(X(r) = xi). (43)

Example 2.3. Let us consider the same data as those taken into account in
Example 2.1. Our purpose is estimation ȳ. The relationship between the variable
under study and the auxiliary one is strict because their correlation coefficient is
equal to 0.967. The population mean of the variable under study we estimate by
means of (Y[r],P0(s)). The range of Y[r] is the same as the range of X(r) where range
r minimizes quantity |E(X(r))− x̄|.

The relative efficiency of the strategy is determined according the following ex-
pression: de f f (r|n) =V (Y[r],P0(s))/V0(ȳs) After appropriate calculation, we have
de f f (2|3) = 0.235, de f f (11|15) = 0.370, de f f (22|29) = 0.430 . Thus, in all the
considered cases the mean from the conditional simple sample is more accurate
than the simple sample mean.

Example 2.4. We still consider the problem formulated in Example 2.3. Now
the population mean of municipal taxation is estimated on the basis of strategy
(Y[r],P0(s|r,u,w)). The relative bias of the strategy is denoted by δ (r,u,w|n) =
b(ȳs,P0(s|r,u,w))/

√
V (ȳs,P0(s|r,u,w)) where b(r,u,w) is the bias of (ȳs,P0(s|r,u,w)).

The relative efficiency is defined as de f f (r,u,w|n) =MSE(Y[r],P0(s|r,u,w))/V0(ȳs).
After some calculations we have:
δ (3,213,222|3) =−0.796, de f f (3,213,222|3) = 0.009,
δ (11,213,222|15) =−0.777, de f f (11,213,222|15) = 0.05,
δ (22,200,210|29) =−1.604, de f f (22,200,210|29) = 0.092.
Thus, in all the considered cases the mean from the conditional simple sample is
more accurate than the simple random sample mean.

2.3. Conditional ratio strategy

Let us consider the following ratio-type estimator:

ŷr,u,w,s = ȳs
E0(x̄s|r,u,w)

x̄s
(44)

where E0(x̄s|r,u,w) is explained by (23)-(26).
Lemma 2.2. Under the sampling design defined by (6):

E0(ŷr,u,w,s|r,u,w)≈ E0(ȳs|r,u,w), (45)

and
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V0(ŷr,u,w,s|r,u,w)≈V0(ȳs|r,u,w)−2h(r,u,w)V0(x̄s, ȳs|r,u,w)+
+h2(r,u,w)V0(x̄s|r,u,w) (46)

where

h(r,u,w) =
E0(ȳs|r,u,w)
E0(x̄s|r,u,w)

, (47)

Expected values E0(ȳs|r,u,w) and E0(x̄s|r,u,w) are explained by (23)-(30).
Expressions (31)-(41) of Lemma 2.1. let approximate variances V0(x̄s|r,u,w),
V0(ȳs|r,u,w) and covariance V0(x̄s, ȳs|r,u,w). The proof is in the Appendix.

Theorem 2.3. If E0(x̄s|r,u,w) = x̄, then (ŷr,u,w,s,P0(s|r,u,w)) is approximately
unbiased for my. Hence: E0(ŷr,u,w,s|r,u,w)≈ my. The proof is similar to the proof
of Theorem 2.1 presented in Appendix.

Example 2.5. We continue the problem formulated in the previous examples.
Now the population mean of municipal taxation is estimated on the basis of ratio
strategy (ŷr,u,w,s,P0(s|r,u,w)). Some calculations lead to
δ (3,243,252|3) =−1.354, de f f (3,243,252|3) = 0.010,
δ (11,203,212|15) = 0.119, de f f (11,203,212|15) = 0.111,
δ (22,203,212|29) =−0.338, de f f (22,203,212|29) = 0.115.
In the considered cases the ratio estimator from the conditional simple sample is
more accurate than the simple random sample mean. The simpler version of ŷr,u,w,s

is as follows:

ỹr,u,w,s = Y[r]
E(X(r)|r,u,w))

X(r)
, (48)

where E(X(r)|r,u,w) is given by (25).
Corollary 2.1. Under the sampling design defined by expression (6) strategy

(ỹr,u,w,s,P0(s|r,u,w)) is approximately unbiased for my and

V0(ỹr,u,w,s|r,u,w)≈V (Y[r]|r,u,w)−2hV (X(r),Y[r]|r,u,w)+
+h2V (X(r)|r,u,w) (49)

where

h = h(r,u,w) =
E(Y[r]|r,u,w)
E(X(r)|r,u,w)

and V (X(r),Y[r]|r,u,w) are explained by (25), (29) (37). The proof is almost the
same as the proof of Theorem 2.1. Strategy (ỹr,u,w,s,P0(s|r,u,w)) does not depend
on the shortest or largest values of the auxiliary variable. Hence, the strategy is e.g.
useful when there are right or left censored observations of the auxiliary variable.
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Example 2.6. Now the population mean of municipal taxation is estimated on the
basis of the strategy (ỹr,u,w,s,P0(s|r,u,w)). After appropriate calculations, we have:
δ (3,200,210|3) =−1.560, de f f (3,200,210|3) = 0.009,
δ (11,213,223|15) =−0.628, de f f (11,213,223|15) = 0.047,
δ (22,220,230|29) = 0.209, de f f (22,220,230|29) = 0.086.
In the considered cases ratio estimator ỹr,u,w,s from the conditional simple sample is
more accurate than the simple random sample mean.

3. Conclusions

Let Ms be the sample median of the auxiliary variable. Thus, when we assume that
the distribution of the auxiliary variable is symmetric then x̄ = Me, where Me is
the population median of the auxiliary variable. When we assume that the distri-
bution of the sample median is an approximation of the distribution of the sample
mean x̄s then P0(s|xu ≤Ms ≤ xw) can be treated as an approximation of the condi-
tional simple random sampling design denoted by P0(s|xu ≤ x̄s ≤ xw), considered
by Royall and Cumberland (1981). This consideration can be generalized to the
case when the distribution of the auxiliary variable is not necessary symmetric. It is
possible to find such rank r that |E(X(r))− x̄| = minimum. Thus, when we assume
that the distribution of x̄s is sufficiently approximated by the distribution of X(r) then
P0(s|xu ≤ x̄s ≤ xw) can be approximated by P0(s|xu ≤ X(r) ≤ xw). We can expect that
the sampling design can be useful in the case when there are censored observations
of the auxiliary variable as well as when outliers exist.
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APPENDICES

Let S1(r, i) = S(U1(i),s1(i)) and S2(r, i) = S(U2(i),s2(i)) be the sample spaces of
the samples s1(i) and s2(i) selected from the sets U1(i) = {1, ..., i−1} and U2(i) =
{i + 1, ...,N}, respectively. The samples s(i), s1(i) and s2(i), are of size n, r−
1 and n− r, respectively, where s(i) = s1(i)∪{i}∪ s2(i) and the index i is fixed,
i = r, ...,N − n+ r. Sample s = s1 ∪ {i} ∪ s2 where index i is not fixed although
i = r, ...,N−n+ r.
Thus, S(r, i) = S({1, ..., i−1},s1(i))×{i}×S({i+1, ...,N},s2(i))
or S(r, i) = S1(r, i))×{i}×S2(r, i))
and S(r;u,w) = S(r,u)×S(r,u+1)× ...×S(r, i)× ...×S(r,w)
where S(r, i) was defined in Introduction.

Proof of Lemma 2.1

Let us make the following derivation

E0(x̄s|r,u,w) = E0

(
r−1

n
x̄s1 +

1
n

X(r)+
n− r

n
x̄s2 |r,u,w

)
=

=
r−1

n
E0 (x̄s1 |r,u,w)+

1
n

E0
(
X(r)|r,u,w

)
+

n− r
n

E0 (x̄s2 |r,u,w) ,

On the basis of Definition 2.1 we have:

E0 (x̄s1 |r,u,w) = ∑
s∈S(r;u,w)

x̄s1P0(s|r,u,w) =
1

z(r,u,w)

w

∑
i=u

∑
s∈S(r,i)

x̄s1(i) =

=
1

(r−1)z(r,u,w)

w

∑
i=u

∑
s(i)∈S1(r,i)×{i}×S2(r,i)

∑
k∈s1(i)

xk =

=
1

(r−1)z(r,u,w)

w

∑
i=u

∑
s1(i)∈S1(r,i)

∑
k∈s1(i)

xk =
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=
1

(r−1)z(r,u,w)

w

∑
i=u

i−1

∑
k=1

(
i−2
r−2

)(
N− i
n− r

)
xk =

=
1

(r−1)z(r,u,w)

w

∑
i=u

(
i−1
r−1

)(
N− i
n− r

)
r−1
i−1

i−1

∑
k=1

xk =

=
1

z(r,u,w)

w

∑
i=u

(
i−1
r−1

)(
N− i
n− r

)
x̄(1, i−1) =

=
w

∑
i=u

x̄(1, i−1)P
(
X(r) = xi|r,u,w

)
= E (X̄(1, Ir−1)|r,u,w) . (50)

The next derivation is:

E0
(
X(r)|r,u,w

)
=

1
z(r,u,w)

w

∑
i=u

∑
s∈S(r,i)

xi =

=
1

z(r,u,w)

w

∑
i=u

∑
s(i)∈S1(r,i)×{i}×S2(r,i)

xi =

=
1

z(r,u,w)

w

∑
i=u

(
i−1
r−1

)(
N− i
n− r

)
xi =

=
w

∑
i=u

xiP
(
X(r) = xi|r,u,w

)
= E

(
X(r)|r,u,w

)
(51)

Similar derivation of the parameter E0 (x̄s2 |r,u,w) and expressions (50), (51) lead to
(23).

V0(x̄s, ȳs|r,u,w) =

= E0

((
r−1

n
(x̄s1−E0(x̄s1 |r,u,w))+

1
n
(X(r)−E0(X(r)|r,u,w))+

+
n− r

n
(x̄s2−E0(x̄s2 |r,u,w))

)(
r−1

n
(ȳs1−E0(ȳs1 |r,u,w))+

+
1
n
(Y[r]−E0(Y[r]|r,u,w))+

n− r
n

(ȳs2−E0(ȳs2 |r,u,w))
)
|r,u,w

)
=

=
(r−1)2

n2 V0(x̄s1 , ȳs1 |r,u,w)+
r−1

n2 V0(x̄s1 ,Y[r]|r,u,w)+
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+
(r−1)(n− r)

n2 V0(x̄s1 , ȳs2 |r,u,w)+
r−1

n2 V0(X(r), ȳs1 |r,u,w)+

+
1
n2V0(X(r),Y[r]|P0(r,u,w))+

n− r
n2 V0(X(r), ȳs2 |r,u,w)+

+
(r−1)(n− r)

n2 V0(x̄s2 , ȳs1 |r,u,w)+
n− r

n2 V0(x̄s2 ,Y[r]|r,u,w)+

+
(n− r)2

n2 V0(x̄s2 , ȳs2 |r,u,w) (52)

V0(x̄s1 , ȳs1 |r,u,w) =

=
1

z(r,u,w) ∑
s∈S(r;u,w)

(x̄s1−E0(x̄s1 |r,u,w))(ȳs1−E0(ȳs1 |r,u,w)) =

=
1

z(r,u,w)

w

∑
i=u

∑
s∈S(r,i)

(x̄s1(i)−E0(x̄s1 |r,u,w))(ȳs1(i)−E0(ȳs1 |r,u,w)).

In order to simplify the notation let

E(H|r,u,w) = E(H), V (H,T |r,u,w) =V (H,T ),

pi = P(X(i) = xi|r,u,w) =
1

z(r,u,w)

(
i−1
r−1

)(
N− i
n− r

)
.

Let

ek = xk−E0(x̄s1 |r,u,w) = xk−E(X̄(1, Ir−1)|r,u,w) = xk−E(X̄(1, Ir−1)), (53)

dk = yk−E0(ȳs1) = yk−E(Ȳ [1, Ir−1]), (54)

ēs1(i) =
1

r−1 ∑
k∈s1(i)

ek = x̄s1(i)−E(X̄(1, Ir−1)), (55)

d̄s1(i) =
1

r−1 ∑
k∈s1(i)

dk = ȳs1(i)−E(Ȳ [1, Ir−1]). (56)

Thus,
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V0(x̄s1 , ȳs1 |r,u,w) =
1

z(r,u,w)

w

∑
i=u

∑
s1(i)∈S1(r,i)

ēs1(i)d̄s1(i) =

=
1

(r−1)2z(r,u,w)

w

∑
i=u

∑
s1(i)∈S1(r,i)

∑
k∈s1(i)

ek ∑
h∈s1(i)

dh =

=
1

(r−1)2z(r,u,w)

w

∑
i=u

∑
s1(i)∈S1(r,i)

(
∑

k∈s1(i)
ekdk + ∑

k∈s1(i)
∑

h∈s1(i),h6=k
ekdh

)
=

=
1

(r−1)2z(r,u,w)

w

∑
i=u

∑
s1(i)∈S1(r,i)

∑
k∈s1(i)

ekdk+

+
1

(r−1)2z(r,u,w)

w

∑
i=u

∑
s1(i)∈S1(r,i)

∑
k∈s1(i)

∑
h∈s1(i),h6=k

ekdh =

=
1

(r−1)2z(r,u,w)

w

∑
i=u

(
i−2
r−2

)(
N− i
n− r

)
∑

k∈U1(i)
ekdk+

+
1

(r−1)2z(r,u,w)

w

∑
i=u

(
i−3
r−3

)(
N− i
n− r

)
∑

k∈U1(i)
∑

h∈U1(i),h6=k
ekdh =

=
r−1

(r−1)2z(r,u,w)

w

∑
i=u

(
i−1
r−1

)(
N− i
n− r

)
1

i−1 ∑
k∈U1(i)

ekdk+

+
(r−1)(r−2)

(r−1)2z(r,u,w)

w

∑
i=u

(
i−1
r−1

)(
N− i
n− r

)
1

(i−1)(i−2) ∑
k∈U1(i)

∑
h∈U1(i),h6=k

ekdk. (57)

Let

ak(i) = xk− x̄(1, i−1), bk(i) = yk− ȳ[1, i−1]. (58)

Thus, ∑k∈U1 ak(i) = ∑k∈U1 bk(i) = 0 and

ek = ak(i)+ x̄(1, i−1)−E(X̄(1, Ir−1)), dk = bk(i)+ ȳ[1, i−1]−E(Ȳ [1, Ir−1]).
(59)
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V0(x̄s1 , ȳs1 |r,u,w) =

=
1

r−1

w

∑
i=u

pi
1

i−1 ∑
k∈U1(i)

(ak(i)+ x̄(1, i−1)−E(X̄(1, Ir−1)))

(bk(i)+ ȳ[1, i−1]−E(Ȳ [1, Ir−1]|r,u,w))+

+
r−2
r−1

w

∑
i=u

pi

(i−1)(i−2) ∑
k∈U1(i)

∑
h∈U1(i),h6=k

(ak(i)+ x̄(1, i−1)−E(X̄(1, Ir−1)))(bh(i)+ ȳ[1, i−1]−E(Ȳ [1, Ir−1]) =

=
1

r−1

w

∑
i=u

pi

i−1 ∑
k∈U1(i)

ak(i)bk(i)+
1

r−1

w

∑
i=u

pi

i−1

∑
k∈U1(i)

(x̄(1, i−1)−E(X̄(1, Ir−1)))(ȳ[1, i−1]−E(Ȳ [1, Ir−1]))+

+
r−2
r−1

w

∑
i=u

pi

(i−1)(i−2) ∑
k∈U1(i)

∑
h∈U1(i),h6=k

ak(i)bh(i)+

+
r−2
r−1

w

∑
i=u

(ȳ[1, i−1]−E(Ȳ [1, Ir−1]))pi

(i−1)(i−2) ∑
k∈U1(i)

∑
h∈U1(i),h6=k

ak(i)+

+
r−2
r−1

w

∑
i=u

(x̄(1, i−1)−E(X̄(1, Ir−1))pi

(i−1)(i−2) ∑
k∈U1(i)

∑
h∈U1(i),h6=k

bh(i)+

+
r−2
r−1

w

∑
i=u

(x̄(1, i−1)−E(X̄(1, Ir−1)))(ȳ[1, i−1]−E(Ȳ [1, Ir−1]))pi

(i−1)(i−2)

∑
k∈U1(i)

∑
h∈U1(i),h6=k

1 =

=
1

r−1

w

∑
i=u

i−2
i−1

vxy(1, i−1)pi +
1

r−1

w

∑
i=u

pi(x̄(1, i−1)−E(X̄(1, Ir−1))

(ȳ[1, i−1]−E(Ȳ [1, Ir−1]))
1

i−1 ∑
k∈U1(i)

1+
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+
r−2
r−1

w

∑
i=u

pi

(i−1)(i−2)

(
∑

k∈U1(i)
ak(i) ∑

h∈U1(i)
bh(i)− ∑

k∈U1(i)
ak(i)bk(i)

)
+

+
r−2
r−1

w

∑
i=u

ȳ[1, i−1]−E(Ȳ [1, Ir−1]|r,u,w)
(i−1)(i−2)

pi ∑
k∈U1(i)

ak(i) ∑
h∈U1(i),h6=k

1+

+
r−2
r−1

w

∑
i=u

x̄(1, i−1)−E(X̄(1, Ir−1)|r,u,w)
(i−1)(i−2)

pi ∑
h∈U1(i)

bh(i) ∑
k∈U1(i),k 6=h

1+

+
r−2
r−1

w

∑
i=u

(x̄(1, i−1)−E(X̄(1, Ir−1)))(ȳ[1, i−1]−E(Ȳ [1, Ir−1]))pi =

=
1

r−1

w

∑
i=u

i−2
i−1

vxy(1, i−1)pi+

+
1

r−1

w

∑
i=u

(x̄(1, i−1)−E(X̄(1, Ir−1)))(ȳ[1, i−1]−E(Ȳ [1, Ir−1]))pi+

+
r−2
r−1

(
V (X̄(1, Ir−1),Ȳ [1, Ir−1])−

w

∑
i=u

∑k∈U1(i) ak(i)bk(i)
(i−1)(i−2)

pi

)
=

=
1

r−1

w

∑
i=u

i− r
i−1

vxy(1, i−1)pi +V (X̄(1, Ir−1),Ȳ (1, Ir−1)|r,u,w) =

=
1

r−1
E
(

I− r
I−1

Vxy(1, Ir−1)
)
+V (X̄(1, Ir−1),Ȳ (1, Ir−1)|r,u,w).

Derivations of other expression of Lemma 4.1 are similar to the above ones.

Proof of Theorem 2.1

E0(ȳs|r,u,w) =

=
w

∑
i=u

(
r−1

n
ȳ[1, i−1]+

yi

n
+

n− r
n

ȳ[i+1,N]

)
P
(
X(r) = xi|r,u,w

)
=

=
w

∑
i=u

(
r−1

n(i−1)

i−1

∑
k=1

yk +
yi

n
+

n− r
n(N− i)

N

∑
k=i+1

yk

)
P
(
X(r) = xi|r,u,w

)
≈

≈
w

∑
i=u

(
r−1

n(i−1)

i−1

∑
k=1

(ȳ+a(xk− x̄))+
ȳ+a(xi− x̄)

n
+
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+
n− r

n(N− i)

N

∑
k=i+1

(ȳ+a(xk− x̄))
)

P
(
X(r) = xi|r,u,w

)
=

= ȳ−ax̄+a
w

∑
i=u

(
r−1

n(i−1)

i−1

∑
k=1

xk +
xi

n
+

n− r
n(N− i)

N

∑
k=i+1

xk

)
P
(
X(r) = xi|r,u,w

)
=

= ȳ−ax̄+a
w

∑
i=u

(
r−1

n
x̄(1, i−1)+

xi

n
+

n− r
n

x̄(i+1,N)

)
P
(
X(r) = xi|r,u,w

)
=

= ȳ+a(E0(x̄s|r,u,w)− x̄) .

Thus, the proof is completed.

Proof of Lemma 2.2

Estimator ŷr,u,w,s = ȳs
E0(x̄s|r,u,w)

x̄s
can be treated as the function of statistics x̄s and ȳs

denoted by f (x̄s, ȳs). The first derivative of f (x̄s, ȳs) in points x̄s = E0(x̄s|r,u,w) and
ȳs = E0(ȳs|r,u,w) are as follows: fx =

∂ f
∂ x̄s

=−h where h= E0(ȳs|r,u,w)
E0(x̄s|r,u,w) and fy =

∂ f
∂ ȳs

=
1, respectively. This let us write the following Taylor’s linearisation of ŷr,u,w,s:

ŷr,u,w,s−E0(ȳs|r,u,w)≈ (ȳs−E0(ȳs|r,u,w))−h(x̄s−E0(x̄s|r,u,w))

This leads to the derivation of expressions (45) - (47).


