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A MODIFIED TWO-PARAMETER ESTIMATOR  
IN LINEAR REGRESSION 

Ashok V. Dorugade1 

ABSTRACT 

In this article, a modified two-parameter estimator is introduced for the vector of 
parameters in the linear regression model when data exists with multicollinearity. 
The properties of the proposed estimator are discussed and the performance in 
terms of the matrix mean square error criterion over the ordinary least squares 
(OLS) estimator, a new two-parameter estimator (NTP), an almost unbiased two-
parameter estimator (AUTP) and other well known estimators reviewed in this 
article is investigated. A numerical example and simulation study are finally 
conducted to illustrate the superiority of the proposed estimator. 

Key words: liu estimator, multicollinearity, two-parameter estimator, mean 
squared error matrix. 

1. Introduction 

In practice, there can be strong or near to strong linear relationships among 
the explanatory variables. In that case the independent assumptions are no longer 
valid, which causes the problem of multicollinearity. In the presence of 
multicollinearity, it is impossible to estimate the unique effects of individual 
variables in the regression equation. Also, the OLS estimator yields regression 
coefficients whose absolute values are too large and whose signs can actually 
reverse with negligible changes in the data (see Buonaccorsi, 1996). Therefore, 
multicollinearity becomes one of the serious problems in the linear regression 
analysis. The method of ridge regression, proposed by Hoerl and Kennard (1970a) 
is a popular technique for estimating the regression parameter for the ill-
conditioned multiple linear regression models.  

Much of the discussion on ridge regression concerns the problem of finding 
better alternative to the OLS estimator. Some popular numerical techniques to 
deal with multicollinearity are the ridge regression due to Stein estimator (Stein, 
1956), contraction estimator (Mayer and Willke, 1973), modified ridge regression 
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(MRR) estimator (Swindel, 1976), Kadiyala (1984), Ohtani (1986), Singh and 
Chaubey (1987), Nomura (1988), and Gruber (1998) Sing et al. (1988), Liu 
(1993), Akdeniz and Kaciranlar (1995), Crouse et al. (1995), Ozkale and 
Kaciranlar (2007), Batah et al. (2008), Sakallioglu and Kaciranlar (2008), Yang 
and Chang (2010), Wu and Yang (2011), Dorugade and Kashid (2011) and others.     

In this paper we introduce a modified two-parameter estimator for the vector 
of parameters in the linear regression model when data exists with 
multicollinearity. The rest of the paper is organized as follows. The model and 
some well known estimators are reviewed in section 2. The modified two-
parameter estimator is introduced in section 3. Performances of the proposed 
estimator with respect to the scalar MSE criterion are discussed in section 4. In 
section 5, we give methods to choose the biasing parameters. A simulation study 
to justify the superiority of the suggested estimator is given in section 6. Some 
concluding remarks are given in section 7. 

2. Model and estimators 

Consider a widely used linear regression model      
                                        εβ += XY ,                                                    (1) 

where Y is an n×1 vector of observations on a response variable. β is a p×1 vector 
of unknown regression coefficients, X is a matrix of order (n × p) of observations 
on  ‘p’ predictor (or regressor) variables and  ε is an n × 1 vector of errors with  
E(ε) = 0 and V(ε) = 2σ In. For the sake of convenience, we assume that the matrix 
X and the response variable Y are standardized in such a way that XX '  is a non-
singular correlation matrix and YX '  is the correlation between X and Y. The 
paper is concerned with data exhibited with multicollinearity leading to a high 
MSE for β meaning that β̂  is an unreliable estimator of β. 

Let Λ  and T be the matrices of eigenvalues and eigenvectors of XX ' , 
respectively, satisfying XTXT ''  =  Λ  = diagonal ( 1λ , 2λ ,..., pλ ),    where iλ  

being the ith eigenvalue of XX '  and TT '  = 'TT  = Ip. We obtain the equivalent 
model  

              Y =  Zα +ε ,                                                   (2) 

where Z = XT. It implies that ZZ '  =Λ , and α = β'T    (see Montgomery et al., 
2006).                                                                                     

Then, the OLS estimator of α is given by 

                   YZZZ '1' )(ˆ −=α = 1−Λ YZ '                                            (3)  
Therefore, the OLS estimator of β is given by 

β̂ = Tα̂  
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2.1. Ordinary ridge estimator (ORR)  

A popular estimator for combating multicollinearity is the ridge estimator, 
originally introduced by Hoerl and Kennard (1970a) as 

                             Rβ̂ = T Rα̂ = T ( )[ ]α̂1−+Λ− kIkI                   (4) 
where k  is the ridge parameter (or biasing constant), and it normally lies between 
0 and 1. iα̂  is the ith

 element of α̂ ,   pi ,...,2,1=  and 2σ̂  is the OLS estimator of 
2σ i.e. 2σ̂ )1()ˆ( ''' −−−= pnYZYY α .                                        

The ridge regression method has been considered by various researchers.  The 
drawback of the ridge regression method is that it is a complicated function of k. 
To overcome this problem Liu (1993) proposed an estimator which combines the 
benefit of both the estimators given by Hoerl and Kennard (1970a) and Stein 
(1956), respectively. 
It is given as 

Liuα̂ = ( ) ( )α̂1 dII +Λ+Λ −             10 << d                         (5) 
Liu estimator has been considered by several researchers several times for 

different perspectives. Following Liu many researchers propose two-parameter 
ridge estimators. Ozkale and Kaciranlar (2007) obtained the two-parameter (TP) 
estimator given as  

TPα̂ = ( ) ( )α̂1 kdIkI +Λ+Λ −                                            (6) 

MSE of TPα̂  is given as 

( )TPMSE α̂
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Sakallioglu and Kaciranlar (2008) suggested the following two-parameter 
estimator: 

)3(ˆLTEα = ( ) ( ) ( ) YZkIIkdI '111 )( −−− +Λ++Λ+Λ .                  (8) 

MSE of )3(ˆ LTEα  is given as 
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since the ridge parameter ∑
=
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ipk
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22 ˆˆˆ ασ  given by Hoerl et al. (1975) performs 

fairly well and the well-known estimate of ‘ d ’proposed by Liu (1993) is given as    

∑∑
==

+++−=
p

i
iiii

p

i
iid

1

222

1

222 )1()ˆˆ()1()ˆˆ(ˆ λλαλσλσα  



26                                                               A. V. Dorugade: A modified two-parameter … 

 

 

The above calculated values of k̂  and d̂ are used in determination of 
estimators given in equations (6) and (8). 

On the other hand, Yang and Chang (2010) introduce a new two-parameter 
(NTP) estimator given as  

NTPα̂ = ( ) ( )( ) YZkIdII '11 −− +Λ+Λ+Λ ,                       (10) 

where ∑
=

=
p

i
ipk
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It includes the OLS, RR, and Liu estimators as special cases and provides an 
alternative method to overcome multicollinearity in linear regression.  
Also, MSE of  NTPα̂  is given as 

( )NTPMSE α̂ ∑
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Recently Wu and Yang (2011) introduced an almost unbiased two-parameter 
(AUTP) estimator alternative to the OLS estimator in the presence of 
multicollinearity. These estimators are given as  

AUTPα̂ = ( ) TPTP kIdk αα ˆ)1(ˆ 1−+Λ−+ ,                              (12) 

where 




 +−< 22 ˆˆˆmin1ˆ σαλσ iid       and     



 −+−= σσαλσλ ˆˆˆ)1(ˆˆ 22

iii dk  

Also, MSE of  AUTPα̂  is given as 

( )AUTPMSE α̂ [ ]
( )∑

= 











+

−++
=

p

i ii

ii

k
dkdk

1
4

22
2 )2()2(

λλ
λλ

σ +
( )∑

= 











+
−

p

i
i

i k
dk

1

2
4

44 )1( α
λ

         (13) 

Estimators given in equations (6), (8), (10) and (12) used for estimating α  are 
used in section 6. 

3. Proposed ridge estimator 

In this article we introduce a modified two-parameter estimator and it can be 
computed in two steps. Initially, following a similar method proposed by Liu 
(1993), Kaciranlar et al. (1999) and Yang and Chang (2010) we introduce two-
parameter estimator as 

*α̂ = ( ) YZIdk '1−+Λ                                            (14) 
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Then, following Kadiyala (1984), Ohtani (1986) and Wu and Yang (2011) the 
estimator defined in equation (14) can be rewritten as 

( ) *1* ˆ)1(ˆˆ ααα −+Λ−+= kdIdkMTP                                            (15) 
or 

[ ] [ ]αα ˆ)())(1(ˆ 11 −− +Λ−+Λ−+= kdIkdIkdIdkIMTP . 
It is termed as a modified two-parameter (MTP) estimator of  α . 
Thus, the coordinate wise estimators can be written as                

                  i
i

ii
iMTP kd
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where iα̂  are the individual components of α̂ . 
We can see that it is a general estimator which includes the OLS and RR 

estimators as special cases: 
at  ( )00 == dork  YZMTP

'1ˆ −Λ=α ,           the OLS estimator 

at  1=d                     ( ) YZIkMTP
'1ˆ −+Λ=α ,  the RR estimator 

Obviously,  
                  OLSiiMTP )ˆ(ˆ αα =           at  ( )00 == dork  
and            RiiMTP )ˆ(ˆ αα =          at  1=d  

3.1. Bias, variance and MSE of MTP estimator 

It is clear that MTPα̂ is a biased estimator, with the bias of the MTP estimator 
is given by:  
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( )MTPV α̂    = '12 VV −Λσ  

where [ ] [ ]11 )())(1( −− +Λ−+Λ−+= kdIkdIkdIdkIV          

                   ( )
( )∑

= 











+

+
=

p

i i

ii

kd
k

1
4

2
2

λ
λλσ                                           (18) 

The MSE of MTP estimator is  
( )MTPMSE α̂  = ( )MTPV α̂ + ( )[ ]MTPBias α̂ ( )[ ] 'ˆMTPBias α , 
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Setting 0=k or 0=d  in equation (19), we obtain 

                 ( )α̂MSE ∑
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Also, setting 1=d in equation (19), we obtain 

                 ( )RMSE α̂
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4. Performance of proposed estimator  

This section compares the performance of the MTPα̂  with the α̂ , AUTPα̂  and 
NTPα̂  using smaller MSE criteria. 

4.1. Comparison between MTPα̂ and α̂  

In order to compare MTPα̂ with α̂ in the MSE sense, using equations (19) and 
(20) we investigate the following difference: 
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From above equation it can be seen that ( ) ( )MTPOLS MSEMSE αα ˆˆ ≥  if and only 
if  
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4.2. Comparison between MTPα̂ and AUTPα̂   

Wu and Yang (2011) proposes the almost unbiased two-parameter estimator 
 ( AUTPα̂ ) given in equation (12). Also, they compare performance of their 
estimator with the OLS estimator and the two-parameter estimator given in 
equation (6). To compare MTPα̂ with AUTPα̂ in the MSE sense, using equations (19) 
and (13) we investigate the following difference: 
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From above equation it can be seen that ( ) ( )MTPAUTP MSEMSE αα ˆˆ ≥  if and only 

if 
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4.3. Comparison between MTPα̂ and NTPα̂   

Yang and Chang (2010) introduced a new two-parameter (NTP) estimator and 
studied superiority of their estimator over the OLS estimator, Liu estimator and 
the two-parameter estimator. In order to compare MTPα̂ with NTPα̂ in the MSE 
sense, using equations (19) and (11) we investigate the following difference: 
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From above equation it can be seen that ( ) ( )MTPNTP MSEMSE αα ˆˆ ≥  if and only 
if    
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5. Determination of ridge parameters k  and d   

In ridge regression the additional parameter, the ridge parameter k , plays a 
vital role to control the bias of the regression towards the mean of the response 
variable. Although these estimators result in a bias for certain value of k they 
yield minimum mean squared error (MSE) compared to the OLS estimator (see 
Hoerl and Kennard, 1970a). Similarly, d  is another ridge parameter which serves 
the same role as k  used in determination of two-parameter estimators (see Liu, 
1993).  

In order to determine and evaluate the performance of our proposed estimator 
MTPα̂  as compared to the OLS estimator and others, we will find the optimal 

values of k  and d . Let k  be fixed and determined using one of the available 
methods for choosing the ridge parameter value. Some of the well known 
methods are listed below.  
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Then, the optimal value of d  can be considered to be the d  that minimize 
( )MTPMSE α̂ .  
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Then, by differentiating ),( dkg w.r.t. d  and equating to 0, we have 
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Unfortunately, d depends on the unknown 2σ and iα . For practical purposes 
we replace them with their unbiased estimator 2σ̂ and iα̂  , and obtain 
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6. Comparative study 

6.1. Numerical illustration 

In this section we demonstrate the performance of the proposed estimator by 
considering a numerical example; we use Hald cement data (see Montgomery et 
al., 2006). We use the ridge parameters given in equations (22) to (24) and d
given in equation (26) to compute our modified two-parameter (MTP) estimator. 
Also, OLSα̂ , TPα̂ , )3(ˆ LTEα , NTPα̂ , AUTPα̂  estimators are computed and their 
estimated MSE values are obtained by replacing all unknown model parameters 
respectively with their OLS estimators in the corresponding expressions, and the 
values are reported in Table 1. 

Table 1. Values of estimates and MSE 

Estimator OLSα̂  TPα̂  )3(ˆ LTEα  NTPα̂  AUTPα̂  MTPα̂  
at 1k  

MTPα̂  
at 2k  

MTPα̂  
at 3k  

MSE 1.3709 0.1485 1.2605 0.1484 1.3662 0.1492 0.1487 0.1490 
 

From Table 1 we can see that the estimated MSE value of the modified two-
parameter estimator is always smaller than the one of the OLS, AUTP and LTE(3) 
estimators. However, we also find that the estimated MSE value of the modified 
two-parameter estimator for each choice of the ridge parameter is approximately 
equal to those of the TP and NTP estimators. The results agree with our 
theoretical findings in section 4. 

6.2. Simulation study 

Here, we examine the performance of the modified two-parameter estimator 
( )MTPα̂  over different estimators OLSα̂ , TPα̂ , )3(ˆ LTEα , NTPα̂ , AUTPα̂ . We examine 
the average MSE (AMSE) ratio of the MTPα̂  and other estimators over the OLS 
estimator. We will discuss the simulation study that compares the performance of 
different estimators under several degrees of multicollinearity. We consider the 
true model as εβ += XY . Here, ε follows a normal distribution ),0( 2

nIN σ and the 
explanatory variables are generated (see Batah et al., 2008) from  

pjniuux ipijij ,...,2,1,...,2,1,)1( 2/12 ==+−= ρρ  
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where iju  are independent standard normal random numbers and 2ρ  is the 
correlation between ijx  and  jix ′  for j , 'j < p and j ≠ 'j . j , 'j = 1, 2,…, p. 
When j or 'j = p, the correlation is be ‘ ρ ’. Here, we consider predictor variables 
p = 4 and ρ = 0.9, 0.95. These variables are standardized such that XX '  is in the 
correlation matrix form and it is used for the generation of Y with β  = ')5,4,1,2(
. We have simulated the data with sample sizes n = 20, 50 and 100. The variance 
of the error terms is taken as 2σ  = 1, 5, 10 and 25. Estimators OLSα̂ , TPα̂ , )3(ˆ LTEα , 

NTPα̂ , AUTPα̂  are computed. The modified two-parameter estimator ( MTPα̂ ) is 
computed for different choices of ridge parameters given in equations (22) to (24) 
and d given in equation (26). The experiment is repeated 1500 times and obtains 
the average MSE (AMSE) of estimators using the following expression: 

 )ˆ(αAMSE  = ∑ ∑
= =

−
4

1

1500

1

2)ˆ(
1500

1

i j
iij αα  

where ijα̂  denotes the estimator of the ith parameter in the jth replication and iα , 
i=1,2,3, 4 are the true parameter values. 

Firstly, we have computed the AMSE ratios ( )ˆ()ˆ( αα AMSEAMSE OLS ) of 
the OLS estimator over different estimators for various values of triplet ( ρ , n, 2σ ) 
and reported them in Table 2. We consider the method that leads to the maximum 
AMSE ratio to be the best from the MSE point of view.  

The same procedure for another choice of p = 3 and ')5,2,1(=β is performed 
and AMSE ratios are computed and reported in Table 3.  
Table 2. Ratio of AMSE of OLS over various two-parameter estimators  
               (p = 4 and ')5,4,1,2(=β ) 

ρ  = 0.90 

n 20 50 100 
2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.185 1.2908 1.3352 1.472 1.228 1.2809 1.3539 1.478 1.235 1.2563 1.3283 1.484 

)3(ˆLTEα  1 1.0009 1.0023 1.004 1 1.0003 1.0007 1.001 1 1.0002 1.0008 1.001 

NTPα̂  1.359 1.5054 1.5857 1.978 1.473 1.5372 1.6313 2.067 1.496 1.4705 1.576 2.089 

AUTPα̂  0.997 0.9903 0.9758 1.002 0.999 0.9946 1.032 0.989 1.003 0.9959 0.9883 0.983 

MTPα̂  

at 1k  
1.369 1.5169 1.6342 2.094 1.477 1.5402 1.6379 2.195 1.497 1.4848 1.607 2.164 

MTPα̂  

at 2k  
1.368 1.5069 1.6059 2.044 1.471 1.5367 1.6325 2.110 1.498 1.4835 1.605 2.172 

MTPα̂  

at 3k  
1.369 1.5167 1.6344 2.097 1.470 1.5401 1.638 2.141 1.497 1.4848 1.6071 2.165 
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Table 2. Ratio of AMSE of OLS over various two-parameter estimators  
               (p = 4 and ')5,4,1,2(=β )  (cont.) 

ρ  = 0.95 
n 20 50 100 

2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.214 1.2792 1.4212 1.554 1.211 1.256 1.3406 1.495 1.222 1.2798 1.3456 1.502 

)3(ˆLTEα  1 1.0002 1.0006 1.001 1 1.0003 1.0006 1.001 1 1.0003 1.001 1.002 

NTPα̂  1.448 1.5177 1.8593 2.434 1.438 1.4786 1.6337 2.128 1.46 1.5168 1.6237 2.12 

AUTPα̂  1 0.9974 0.9929 1.005 0.998 1.001 1.002 0.987 0.999 0.9947 0.9954 0.983 

MTPα̂  
at 1k  

1.447 1.5282 1.8693 2.485 1.442 1.5075 1.6492 2.172 1.468 1.5207 1.6325 2.182 

MTPα̂  
at 2k  

1.447 1.5271 1.872 2.499 1.443 1.5053 1.6367 2.176 1.467 1.5186 1.6458 2.175 

MTPα̂  
at 3k  

1.447 1.5281 1.8697 2.486 1.442 1.5074 1.6493 2.174 1.468 1.5206 1.6227 2.183 

ρ  = 0.99 

n 20 50 100 
2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.2819 1.3621 1.397 1.552 1.2745 1.3373 1.466 1.563 1.2615 1.37 1.457 1.565 

)3(ˆLTEα  1.0011 1.0021 1.003 1.004 1.0007 1.0023 1.004 1.004 1.0009 1.0026 1.004 1.005 

NTPα̂  1.4962 1.6641 1.798 2.355 1.4737 1.5729 1.939 2.37 1.4394 1.6433 1.9 2.382 

AUTPα̂  0.9847 1.0003 1.003 0.963 0.9923 0.9761 0.963 1.003 0.9929 0.9782 1.002 0.958 

MTPα̂  
at 1k  

1.5321 1.7232 1.909 2.55 1.4708 1.6249 2.071 2.617 1.4374 1.6832 2.004 2.621 

MTPα̂  
at 2k  

1.5293 1.7102 1.918 2.592 1.479 1.6116 2.081 2.544 1.4319 1.6666 2.030 2.671 

MTPα̂  
at 3k  

1.532 1.7237 1.911 2.555 1.47 1.6253 2.073 2.622 1.4376 1.6835 2.006 2.627 

 
Table 3. Ratio of AMSE of OLS over various two-parameter estimators 
               (p = 3 and ')5,2,1(=β ) 

ρ  = 0.90 
n 20 50 100 

2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.1772 1.3769 1.554 1.637 1.1193 1.3248 1.511 1.58 1.113 1.3425 1.539 1.671 

)3(ˆLTEα  1.0047 1.0063 1.01 1.01 1.0007 1.0017 1.002 1.002 1.0012 1.0016 1.003 1.002 

NTPα̂  1.1245 1.5709 2.098 2.572 1.0138 1.4679 2.218 2.588 1.0059 1.493 2.247 2.905 

AUTPα̂  1.003 0.9369 0.92 0.93 0.9882 1.0002 0.975 0.978 1.002 0.9788 0.975 1.003 
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Table 3. Ratio of AMSE of OLS over various two-parameter estimators 
               (p = 3 and ')5,2,1(=β )   (cont.) 

ρ  = 0.90 
n 20 50 100 

2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

MTPα̂  

at 1k  
1.1551 1.6875 2.429 3.004 1.0116 1.4822 2.347 2.712 1.0033 1.5099 2.343 3.081 

MTPα̂  

at 2k  
1.1336 1.5861 2.52 3.12 1.0017 1.4733 2.326 2.754 1.003 1.5067 2.268 2.972 

MTPα̂  

at 3k  
1.1545 1.6884 2.437 3.016 1.0112 1.4823 2.349 2.715 1.0029 1.51 2.346 3.085 

ρ  = 0.95 
n 20 50 100 

2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.217 1.2942 1.4217 1.543 1.147 1.214 1.2792 1.4212 1.209 1.299 1.4227 1.559 

)3(ˆLTEα  1 1.0001 1.0006 1.001 1 1 1.0002 1.0006 1 1.0003 1.0007 1.001 

NTPα̂  1.457 1.5275 1.8817 2.38 1.314 1.448 1.5177 1.8593 1.434 1.5311 1.834 2.445 

AUTPα̂  1 0.9971 0.9921 1.002 1 1 0.9974 0.9929 1.020 0.9968 1.003 0.99 

MTPα̂  

at 1k  
1.454 1.5328 1.9085 2.391 1.31 1.447 1.5282 1.8693 1.435 1.5322 1.845 2.508 

MTPα̂  

at 2k  
1.454 1.5322 1.9105 2.398 1.32 1.457 1.5271 1.872 1.439 1.5394 1.8461 2.45 

MTPα̂  

at 3k  
1.454 1.5327 1.9089 2.392 1.31 1.457 1.5281 1.8697 1.441 1.5322 1.8454 2.509 

ρ  = 0.99 
n 20 50 100 

2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.3596 1.534 1.624 1.65 1.2018 1.3461 1.561 1.654 1.1787 1.3767 1.577 1.575 

)3(ˆLTEα  1.0053 1.006 1.008 1.01 1.0033 1.005 1.008 1.008 1.004 1.0065 1.008 1.009 

NTPα̂  1.5565 2.09 2.489 2.66 1.1904 1.5099 2.133 2.555 1.1288 1.5669 2.173 2.31 

AUTPα̂  1.001 1.002 0.933 0.93 0.9607 0.9514 1.002 0.933 0.9541 1.003 0.927 0.927 

MTPα̂  

at 1k  
1.6313 2.376 2.972 3.24 1.2261 1.592 2.394 2.949 1.1592 1.638 2.499 2.843 

MTPα̂  

at 2k  
1.6133 2.379 2.989 3.42 1.2051 1.5716 2.41 3.062 1.1312 1.6141 2.564 2.658 

MTPα̂  

at 3k  
1.6317 2.381 2.984 3.26 1.2255 1.5926 2.399 2.957 1.1585 1.6385 2.506 2.854 
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From Tables 2 and 3 we observe that the performance of our proposed 
modified two-parameter estimator MTPα̂  is better than OLSα̂ , TPα̂ , )3(ˆ LTEα , and 

AUTPα̂  . At the same time MTPα̂  perform equivalently and is slightly better than 
NTPα̂   for all combinations of correlation between predictors ( ρ ), the numbers of 

explanatory variables (p), the sample size (n), the choice of the ridge parameter  
( k ) and the variance of the error term ( 2σ ) used in this simulation study.  

7. Conclusion 

 In this article a modified two-parameter estimator alternative to the OLS 
estimator is proposed for estimating the regression parameter in the presence of 
multicollinearity. The performance of the proposed estimator is evaluated in terms 
of scalar mean-squared error criterion. Through the simulation study the 
performance of the proposed estimator is evaluated, for different combinations of 
ρ , p, n, k  and 2σ over the OLS and other two-parameter estimators reviewed in 
this article. Finally, it is found that the performance of the proposed estimator is 
satisfactory over the other estimators in the presence of multicollinearity. 
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