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EFFECTIVE ROTATION PATTERNS FOR MEDIAN 
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ABSTRACT 

The present work deals with the problem of estimation of population median at 
current occasion in two-occasion successive sampling. Best linear unbiased 
estimators have been proposed by utilizing additional auxiliary information, 
readily available on both the occasions. Asymptotic variances of the proposed 
estimators are derived and the optimum replacement policies are discussed. The 
behaviours of the proposed estimators are analyzed on the basis of data from 
natural populations. Simulation studies have been carried out to measure the 
precision of the proposed estimators. 

Key words: population median, successive sampling, auxiliary information, 
optimum replacement policy. 

1. Introduction 

When the value of the study character of a finite population is subject to 
change (dynamically) over time, a survey carried out on a single occasion will 
provide information about the characteristics of the surveyed population for the 
given occasion only and will not give any information on the nature of change of 
the characteristic over different occasions and the average value of the 
characteristic over all occasions or the most recent occasion. To meet these 
requirements, sampling is done on successive occasions that provide a strong tool 
for generating the reliable estimates at different occasions. The problem of 
sampling on two successive occasions was first considered by Jessen (1942), and 
later this idea was extended by Patterson (1950), Narain (1953), Eckler (1955), 
Gordon (1983), Arnab and Okafor (1992), Feng and Zou (1997), Singh and Singh 
(2001), Singh and Priyanka (2008), Singh et al. (2012), Bandyopadhyay and 
Singh (2014), and many others. 
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All the abovestudies were concerned with the estimation of population mean 
or variance on two or more occasions.    

There are many problems of practical interest which involves variables with 
extreme values that strongly influence the value of the mean. In such situations 
the study variable is having highly skewed distributions. For example, the study 
of environmental issues, the study of social evil such as abortions, the study of 
income, expenditure, etc. In these situations, the mean may offer results which are 
not representative enough because the mean moves with the direction of the 
asymmetry. The median, on the other hand, is unaffected by extreme values. 

Most of the studies related to medians have been developed by assuming 
simple random sampling or its ramification in stratified random sampling (Gross 
(1980), Sedransk and Meyer (1978), Smith and Sedransk (1983) consider only the 
variable of interest without making explicit use of auxiliary variables. Some of the 
researchers, namely Chambers and Dunstan (1986), Kuk and Mak (1989), Rao et 
al. (1990), Rueda et al.(1998), Khoshnevisan  et al. (2002), Singh and Solanki 
(2013) etc., make use of auxiliary variables to estimate the population median). 

It is to be mentioned that a large number of estimators for estimating the 
population mean at current occasion have been proposed by various authors, 
however only a few efforts (namely Martinez-Miranda et al. (2005), Singh et al. 
(2007), Rueda et al. (2008) and Gupta et al. (2008)) have been made to estimate 
the population median on the current occasion in two occasions successive 
sampling. It is well known that the use of auxiliary information at the estimation 
stage can typically increase the precision of estimates of a parameter. To the best 
of our knowledge, no effort has been made to use additional auxiliary information 
readily available on both the occasions to estimate population median at current 
occasion in two-occasion successive sampling. 

Motivated with the above arguments and utilizing the information on an 
additional auxiliary variable, readily available on both the occasions, the best 
linear unbiased estimators for estimating the population median on current 
occasion in two-occasion successive sampling have been proposed. It has been 
assumed that the additional auxiliary variable is stable over the two-occasions. 

The paper is spread over ten sections. Sample structure and notations have 
been discussed in section 2. In section 3 the proposed estimator has been 
formulated. Properties of proposed estimators including variances are derived 
under section 4. Minimum variance of the proposed estimator is derived in section 
5. Practicability of the proposed estimator is also discussed. In section 6 optimum 
replacement policies are discussed. Section 7 contains comparison of the 
proposed estimator with the natural sample median estimator when there is no 
matching from the previous occasion and the estimator when no additional 
auxiliary information has been used. Practicability of the estimator ∆  is also 
discussed. In section 8 simulation studies have been carried out to investigate the 
performance of the proposed estimators. The results obtained as a result of 
empirical and simulation studies have been elaborated in section 9. Finally, the 
conclusion of the entire work has been presented in section 10. 
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2. Sample structures and notations  

Let U = (U1, U2, - - -, UN) be the finite population of N units, which has been 
sampled over two occasions. It is assumed that the size of the population remains 
unchanged but values of the unit change over two occasions. Let the character 
under study be denoted by x (y) on the first (second) occasion respectively. It is 
further assumed that information on an auxiliary variable z (with known 
population median) is available on both the occasions. A simple random sample 
(without replacement) of n units is taken on the first occasion. A random sub-
sample of m = n λ units is retained (matched) for use on the second occasion. 
Now, at the current occasion a simple random sample (without replacement) of 
u= (n - m) = nµ units is drawn afresh from the remaining (N - n) units of the 
population so that the sample size on the second occasion is also n. λ and  
µ, (λ+ µ =1) are the fractions of matched and fresh samples respectively at the 
second (current) occasion. The following notations are considered for further use: 

, ,x y zM M M : Population median of x, y and z, respectively. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  ,  ,  ,  ,  ,  x n x m y m y u z n z m z uM M M M M M M : Sample median of the 

respective variables of the sample sizes shown in suffices. 
,  ,  yx xz yzρ ρ ρ : The Correlation coefficient between the variables shown in 

suffices. 

3. Formulation of estimator 

To estimate the population median yM on the current (second) occasion, the 

minimum variance linear unbiased estimator of yM  under SRSWOR sampling 
scheme have been proposed and is given as 

( ) ( ){ } ( ) ( ){ } ( ) ( ) ( ){ }1 2 3 4 5 6 7 8
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

zy u y m x m x n z u z m z nT M M M M M M M Mα α α α α α α α= + + + + + + +

 (1) 

where ( )1,  2,  ,  8i iα = − −− are constants to be determined so that  

(i) The estimator T becomes unbiased for yM  and 
(ii) The variance of T attains a minimum 

For unbiasedness, the following conditions must hold: 
( )1 2 1α α+ = , ( )3 4 0α α+ =  and ( )5 6 7 8 0α α α α+ + + = . 
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Substituting ( )1 1 3 1 8 5 6 7,  and α φ α β α α α α= = = − + + in equation (1), the 
estimator T takes the following form: 

 ( ) ( )  ( ){ }  ( )  ( ){ }  ( )( ){1 1 5    1 -     -     -  y u y m x m x n z u zT M M M M M Mφ φ β α= + + +

 ( )( ) ( )( )}6 7
ˆ ˆ -   -  Z Zz m z nM M M Mα α+ +  

( ) ( )( ){ } ( ) ( ) ( ) ( )( ){1 1 1 2
ˆ ˆ ˆ ˆ ˆ    -    1 -   -   Zy u z u y m x m x nM k M M M k M Mφ φ= + + + +

( )( ) ( )( )}3 4
ˆ ˆ-    -  Z Zz m z nk M M k M M+  

( )1 1 1 2  1-  T T Tφ φ= +          (2) 

where ( ) ( )( )1 1
ˆ ˆ Zy u z uT M k M M= + −  is based on the sample of size u drawn 

afresh at current occasion and the estimator  

     ( ) ( ) ( )( ) ( )( ) ( )( ){ }2 2 3 4
ˆ ˆ ˆ ˆ ˆ -    Z Zy m x m x n z m z nT M k M M k M M k M M= + + − + −  

is based on the sample of size m matched form previous occasion. 

5
1

1

k α
φ

= , 1
2

11-
k β

φ
= ,  6

3
11-

k α
φ

= , 7
4

11-
k α

φ
=  and 1φ are the unknown 

constants to be determined so as to minimize the variance of estimator T. 

Remark 3.1. For estimating the median on each occasion, the estimator 
1T  is suitable, which implies that more belief on 1T  could be shown by choosing 

1φ as 1 (or close to 1), while for estimating the change from one occasion to the 
next, the estimator T2 could be more useful so 1φ  be chosen as 0 (or close to 0). 
For asserting both the problems simultaneously, the suitable (optimum) choice of  

1φ is required. 

4. Properties of the estimator T 

The properties of the proposed estimator T are derived under the following 
assumptions: 

 (i) Population size is sufficiently large (i.e. N→∞), therefore finite population 
corrections are ignored. 

(ii) As N→∞, the distribution of bivariate variable (a, b) where a and b
{ },  ,  x y z∈ and a ≠ b approaches a continuous distribution with marginal 
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densities ( )af ⋅  and ( )bf ⋅  for a and b respectively, see Kuk and Mak 
(1989). 

(iii) The marginal densities ( )xf ⋅ , ( )yf ⋅  and ( )zf ⋅  are positive. 

(iv) The sample medians ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  ,  ,  ,  ,   and  x n x m y m y u z n z m z uM M M M M M M  

are consistent and asymptotically normal (see Gross (1980)). 

  (v) Following Kuk and Mak (1989), let abP be the proportion of elements in the 

population such that aa M≤ and bb M≤ where a and b { },  ,  x y z∈ and 
a ≠ b. 

 (vi) The following large sample approximations are assumed: 

( ) ( )0
ˆ 1yy uM M e= + , ( ) ( )1

ˆ 1yy mM M e= + , ( ) ( )2
ˆ 1xx mM M e= + , ( ) ( )3

ˆ 1xx nM M e= + , 

( ) ( )4
ˆ 1zz uM M e= + , ( ) ( )5

ˆ 1zz mM M e= +  and ( ) ( )6
ˆ 1zz nM M e= +  such that ie < 1

∀ i = 0, 1, 2, 3, 4, 5, 6. 

The values of various related expectations can be seen in Allen et al. (2002) 
and Singh (2003). Under the above transformations, the estimators 1 2 and T T  take 
the following forms: 

 ( )1 0 1 41  y zT M e k M e= + +         (3) 

( ) ( ) ( )2 1 2 2 3 3 5 4 61  y x zT M e k M e e M k e k e= + + − + +      (4) 

Thus we have the following theorems: 

Theorem 4.1. T is unbiased estimator of yM . 

Proof: Since 1 2 and T T are difference and difference-type estimators, 
respectively, they are unbiased for yM . The combined estimator T is a convex 

linear combination of 1 2 and T T , hence it is also an unbiased estimator of yM . 

Theorem 4.2. Ignoring the finite population corrections, the variance of T is 
         ( ) ( ) ( ) ( )22

1 1 1 2     1 -  V T V T V Tφ φ= +       (5) 

where             ( )1 1
1V T
u
ξ=           (6) 

and             ( )2 2 3 4
1 1 1 1  V T
m m n n
ξ ξ ξ = + − + 

 
      (7) 
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2
1 1 1 2 1 3  2A k A k Aξ = + + , 2

2 1 3 2 3 3  2A k A k Aξ = + + , 
2

3 2 4 2 5 2 3 6 2  2k A k A k k Aξ = + + , 2
4 4 2 4 3 3 4 2 2  2k A k A k k Aξ = + + ,

( ){ } 2

1
1
4 y yA f M

−
= , ( ){ } 2

2
1
4 z zA f M

−
= ,

( ) ( ){ } ( ){ }1 1
3 0 25yz y y z zA P f M f M

− −
= − ⋅ , ( ){ } 2

4
1
4 x xA f M

−
= , 

( ) ( ){ } ( ){ }1 1
5 0 25yx y y x xA P f M f M

− −
= − ⋅  and 

( ) ( ){ } ( ){ }1 1
6 0 25xz x x z zA P f M f M

− −
= − ⋅ . 

Proof: The variance of T is given by  

        ( ) ( )2

yV T E T M= − ( ) ( )( ) 2

1 1 1 2 -    1-  -  y yE T M T Mφ φ = +   

  ( ) ( ) ( ) ( ) ( )22
1 1 1 2 1 1 1 2   1 -    1 -   cov ,V T V T T Tφ φ φ φ= + +    (8) 

where ( ) ( )2

1 1 yV T E T M= − and ( ) ( )2

2 2 yV T E T M= − . 

As 1 2 and T T are based on two independent samples of sizes u and 
m respectively, hence ( )1 2cov  , 0T T = . 

Now, substituting the expressions of 1 2 and T T  from equations (3) and (4) in 
equation (8), taking expectations and ignoring finite population corrections, we 
have the expression for variance of T as in equation (5). 

5. Minimum variance of the estimator T  

Since the variance of the estimator T in equation (5) is the function of 
unknown constants 1 2 3 4 1,  ,  ,   and  k k k k φ , therefore it is minimized with respect 

to 1 2 3 4,  ,  ,  k k k k  1 and  φ and subsequently the optimum values of 

1 2 3 4 1,  ,  ,   and  k k k k φ  are obtained as 

3
1

2

Ak
A

∗ −
=              (9) 

( )
* 3 4 6 2 4 5
2 2

4 2 4 6

-  
-  

A A A A A Ak
A A A A

=                             (10) 

( )
3 4 5 6

3 2
2 4 6

-  A A A Ak
A A A

∗ +
=

−
                  (11) 
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( )
2

3 6 2 5 6
4 2

2 2 4 6

A A A A Ak
A A A A

∗ −
=

−
                          (12) 

( )
( ) ( )

2
1

1 2  opt

V T
V T V T

φ ⋅ = +
                 (13) 

Using the optimum values of ( )'  1,  2,  3,  4ik s i = in equation (6) and (7), 

we get the optimum variances of  1 2 and T T  as  

( )1 7
1

opt
V T A

u⋅
=                            (14) 

                 ( )2 8 9 10.

1 1 1 1    -    
opt

V T A A A
m m n n

 = + + 
 

   (15) 

where            
2

7 1 1 2 1 3  2A A k A k A∗ ∗= + + , 
2

8 1 3 2 3 3   2A A k A k A∗ ∗= + +  

 
2

9 2 4 2 5 2 3 6  2   2A k A k A k k A∗ ∗ ∗ ∗= + +    and      
2

10 4 2 4 3 3 4 2  2   2A k A k A k k A∗ ∗ ∗ ∗= + + . 

Further, substituting the values of  ( )1 opt
V T

⋅
 and ( )2 opt

V T
⋅
from equations 

(14) and (15) in equation (13), we get the optimum values of  1optφ ⋅  with respect to 

( )'  1,  2,  3,  4ik s i∗ =  as 

( )
( ) ( )

2
1

1 2  
opt

opt
opt opt

V T

V T V T
φ ⋅∗

⋅

⋅ ⋅

=
+

             (16) 

Again substituting the value of  1optφ∗
⋅  from equation (16) in equation (5), we 

get the optimum variance of T as 

 ( )
( ) ( )
( ) ( )

1 2opt opt
opt

1 2opt opt

V T V T
V T

V T +  V T
⋅ ⋅

⋅
⋅ ⋅

=                           (17) 

Further, substituting the value from (14) and (15) in equation (16) and (17), 
we get the simplified values of 1optφ∗

⋅  and   ( )opt
V T

⋅
 as 

 
( )11 12

1 2 2
12 13 7

 
  opt

A A
A A A
µ µ

φ
µ µ

∗
⋅

+
=

+ +
                 (18) 

 ( ) ( )
( )

7 11 12
2

12 13 7

 1
  opt

A A A
V T

n A A A
µ

µ µ⋅

+
=

+ +
                          (19) 

where 11 8 10 A A A= + , 12 9 10-  A A A= , 13 11 7-   and A A A µ=  is the fraction of 
fresh sample at current occasion for the estimator T. 
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5.1. Estimator T in practice 

The main difficulty in using the proposed estimator T defined in equation (2) 
is the availability of 'ik s  ( )i 1, 2, 3, 4=  as the optimum values of 'ik s   

( )i 1, 2, 3, 4=  depend on the population parameters ( ) ( ),  ,  ,  ,  yx yz xz y y x xP P P f M f M  
and ( )z zf M . If these parameters are known, the proposed estimator can be easily 
implemented. Otherwise, which is the most often situation in practice, the 
unknown population parameters are replaced by their respective sample estimates. 
The population proportions ,   and  yx yz xzP P P  are replaced by the sample 
estimates ˆ ˆ ˆ,   and  yx yz xzP P P  respectively, and the marginal densities ( ) ( ),  y y x xf M f M

( ) and  z zf M  can be substituted by their kernel estimator or nearest neighbour 
density estimator or generalized nearest neighbour density estimator related to the 
kernel estimator (Silverman (1986)). Here, the marginal densities 

( ) ( ),   y y x xf M f M  ( )and  z zf M  are replaced by 
( )( ) ( )( ) ( )( )ˆ ˆ ˆˆ ˆ ˆ,    and  y x zy m x n z nf M f M f M  

respectively, which are obtained by the method of generalized nearest neighbour 
density estimation related to the kernel estimator. 

Remark 5.1.1. To estimate ( )x xf M  by the generalized nearest neighbour density 
estimator related to the kernel estimator, the following procedure has been 
adopted: 

Choose an integer 
1

2h n≈ and define the distance ( )1 2,  d x x  between two 

points on the line to be 1 2x x− . 

For ( )
ˆ

x nM  define ( )( ) ( )( ) ( )( )1 2
ˆ ˆ ˆ

nx n x n x nd M d M d M≤ ≤ − − − ≤  to be the 

distances, arranged in ascending order, from ( )
ˆ

x nM to the points of the sample. 
The generalized nearest neighbour density estimate is defined by 

 ( )( )
( )( )

( )

( )( )1

ˆ1ˆ ˆ
ˆ ˆ

n
ix n

x n
ih hx n x n

M x
f M K

nd M d M=

 − =
 
 

∑                (20) 

where the kernel function K, satisfies the condition ( )  1K x dx
∞

−∞

=∫ . 

Here, the kernel function is chosen as Gaussian Kernel given by 

( )
21

21
2

x
K x e

π

 − 
 = . 

Similarly, the estimate of ( ) ( ) and y y z zf M f M can be obtained. 
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Remark 5.1.2. For estimating ( ) ,   and y y yz yxf M P P  we have two independent 
samples of sizes u and m respectively at current occasion. So, either of the two 
can be used, but in general for good sampling design in successive sampling
u m≤ . So, in the present work ( ) ,   and y y yz yxf M P P are estimated from the 
sample of size m, matched from the first occasion. 

Therefore, under the above substitutions of the unknown population 
parameters by their respective sample estimates, the estimator T takes the 
following form: 

                ( )1 1 1 2   1 -   T T Tψ ψ∗ ∗ ∗= +                  (21) 

where                       ( ) ( )( )* **
1 1

ˆ ˆ  -  Zy u z uT M k M M= +                  (22) 

 and 

( ) ( ) ( )( ) ( )( ) ( )( ){ }* ** ** **
2 2 3 4

ˆ ˆ ˆ ˆ ˆ -   -   -  Z Zy m x m x n z m z nT M k M M k M M k M M= + + +     
(23) 

( )
* * * * * *

** 3 4 6 2 4 5
2 2* * * *

4 2 4 6

 -  ,
 -  

A A A A A Ak
A A A A

=
( )

* * * *
** 3 4 5 6
3 2* * *

2 4 6

-   ,
 -  

A A A Ak
A A A

+
=  

( )
2* * * * *

** 3 6 2 5 6
4 2* * * *

2 2 4 6

-  ,
 -  

A A A A Ak
A A A A

= ( )( ){ } 2

1
1 ˆ ˆ 
4 y y mA f M

−
∗ = ,        ( )( ){ } 2

2
1 ˆ ˆ 
4 z z nA f M

−
∗ = ,

( ) ( )( ){ } ( )( ){ }1 1

3
ˆ ˆˆ ˆ ˆ 0 25   yz y zy m z nA P f M f M

− −
∗ = − ⋅ ,          ( )( ){ } 2

4
1 ˆ ˆ 
4 x x nA f M

−
∗ = ,

( ) ( )( ){ } ( )( ){ }1 1

5
ˆ ˆˆ ˆ ˆ 0 25   yx y xy m x nA P f M f M

− −
∗ = − ⋅ and 

( ) ( )( ){ } ( )( ){ }1 1

6
ˆ ˆˆ ˆ ˆ 0 25   xz x zx n z nA P f M f M

− −
∗ = − ⋅ . 

1ψ is an unknown constant  to be determined so as to minimize the mean square 
error of the estimator T ∗ ⋅  

Remark 5.1.3. The proposed estimator T is a difference-type estimator therefore 
after replacing the unknown population parameters by their respective sample 
estimates it becomes a regression-type estimator. Hence, up to the first order of 
approximations the estimatorT ∗ will be equally precise to that of the estimator T 
(see Singh and Priyanka (2008)). Therefore, similar conclusions are applicable for 

*T as that of T. 

3
1

2

,Ak
A

∗
∗∗

∗

−
=
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6. Optimum replacement policy     

To determine the optimum value of µ (fraction of a sample to be taken afresh 
at second occasion) so that yM  may be estimated with maximum precision, we 

minimize ( )opt
V T

⋅ .in equation (19) with respect to µ and hence we get the 

optimum value of µ as  

 *

2
2 2 1 3

0.
1

-    -  
opt

S S S S
S

µ µ
±

= =
 
(say)               (24) 

where 2
1 12S A= , 2 11 12S A A=  and 3 11 13 7 12 -  S A A A A= . 

From equation (24) it is obvious that the real value of optµ ⋅  exists if 
2
2 1 3 0S S S− ≥ . For certain situation, there might be two values of optµ ⋅  satisfying 

the above condition, hence to choose a value of optµ ⋅ , it should be remembered 

that 0 1optµ ⋅≤ ≤ . All other values of optµ ⋅  are inadmissible. In case both the 

values of optµ ⋅  are admissible, we choose the minimum of these two as 0µ . 

Substituting the value of optµ ⋅  from equation (24) in (19) we have 

 ( ) ( )
( )

7 11 0 12
2
0 12 0 13 7

 1
  opt

A A A
V T

n A A A
µ

µ µ
∗⋅

+
=

+ +
                         (25) 

where ( )opt
V T ∗⋅

 is the optimum value of T with respect μ. 

7. Efficiency comparison 

To study the performance of the estimator T, the percent relative efficiencies 
of T with respect to (i) ( )

ˆ
y nM , the natural estimator of yM , when there is no 

matching, and (ii) the estimator Δ, when no additional auxiliary information is 
used at any occasion,  have been computed for two natural population data. The 
estimator Δ is defined under the same circumstances as the estimator T, but in the 
absence of information on additional auxiliary variable z on both the occasions is 
proposed as 

 ( ) ( ){ } ( ) ( ){ }1 2 3 4
ˆ ˆ ˆ ˆΔ       y u y m x m x nM M M Mδ δ δ δ= + + +     (26) 

where ( )1,  2,  3,  4i iδ = are constants to be determined so that  

(i) The estimator Δ becomes unbiased for yM  and 
(ii) The variance of Δ attains the minimum. 
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For unbiasedness, the following conditions must hold: 
( )1 2 1δ δ+ =  and ( )3 4 0δ δ+ = . 

Substituting 1 2 3 2 and  δ φ δ β= = in equation (26), the estimator Δ takes the 
following form: 
     ( ) ( ) ( ){ } ( ) ( )( )2 2 2

ˆ ˆ ˆ ˆ  1 -     -  y u y m x m x nM M M Mφ φ β∆ = + +  

    ( ) ( ) ( ) ( ) ( )( ){ }2 2 5
ˆ ˆ ˆ ˆ  1 -    -  y u y m x m x nM M k M Mφ φ= + +  

( )2 1 2 2  1 -  φ φ∆ = ∆ + ∆                      (27) 

where the estimator ( )1
ˆ

y uM∆ = is based on the fresh sample of size u and the 

estimator  ( ) ( ) ( )( ){ }2 5
ˆ ˆ ˆΔ y m x m x nM k M M= + −  is based on the matched sample of 

size m, 
( )

2
5

21
k β

φ
=

−
 and 2φ are the unknown constants to be determined so as to 

minimize the variance of estimator Δ. Following the methods discussed in 
Sections 4, 5 and 6, the optimum value of 5k , 1optµ ⋅ (optimum value of fraction of 

the fresh sample for the estimator Δ), variance of  ( )
ˆ

y nM and optimum variance 
of Δ ignoring the finite population corrections are given by 

 5
5

4

Ak
A

∗ −
=                    (28)   

 ( ) ( )*
1 1 1 14 *

1 .
14

-    
 

opt

A A A A
say

A
µ µ

± +
= =                          (29)   

 ( )( ) 1
1ˆ

y nV M A
n

=                             (30)   

 ( ) ( )
( )
1 1 14

2
14 1

  1

  
opt

A A A
V

n A A

µ

µ
∗

∗

⋅ ∗

+
∆ =

+
                          (31)   

where 
2
5

14
4

AA
A
−

= . 

The optimum values of  µ , 1µ and percent relative efficiencies 1 2 and E E  of 

the estimator T with respect to the estimator ( )
ˆ

y nM and Δ are computed for two 
natural populations and results are  shown in Tabe-2, where 

( )( )
( )1

ˆ
100y n

opt

V M
E

V T ∗ ⋅

= ×
 
and ( )

( )2 100opt

opt

V
E

V T
∗

∗

⋅

⋅

∆
= ×  
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7.1. Estimator Δ in practice  

The main difficulty in using the proposed estimator Δ defined in equation (27) 

is the availability of 5k , as the optimum values of 5k  depends on the population  

parameters  ( ) ( ),   and  yx y y x xP f M f M
. If these parameters are known, the 

estimator Δ can easily be implemented, otherwise the unknown population 
parameters are replaced by their respective sample estimates as discussed in 
subsection 5.1. Hence, in this scenario the estimator Δ takes the following form: 

( )2 1 2 2 1 -  ψ ψ∗ ∗∆ = ∆ + ∆                            (32)   

where ( ) ( ) ( )( ){ }2 5
ˆ ˆ ˆ y m x m x nM k M M∗ ∗∗∆ = + − , 

5
5

4

Ak
A

∗
∗∗

∗

−
= and 2ψ is the unknown 

constants to be determined so as to minimize the mean square error of the 
estimator ∗Δ . 

Remark 7.1.1. Since ∗Δ  is a regression-type estimator corresponding to the 
difference-type estimator Δ, hence up to the first order of approximations similar 
conclusions are applicable to *Δ as that of Δ (See Singh and Priyanka (2008)). 

Remark 7.1.2. For simulation study the proposed estimators *T  and *Δ  are 
considered instead of the proposed estimators T and Δ, respectively. 

8. Monte Carlo Simulation  

Empirical validation can be carried out by Monte Carlo Simulation. Real life 
situations of completely known two finite populations have been considered.  

Population Source: [Free access to data by Statistical Abstracts of the United 
States] 

The first population comprise N = 51 states of the United States. Let iy
represent the number of abortions during 2007 in the thi  state of the US, ix be the 

number of abortions during 2005 in the thi  state of the U,S and iz denote the 

number of abortions during 2004 in the thi state of  the US. The data are presented 
in Figure 1. 
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Figure 1. Number of abortions during 2004, 2005 and 2007 versus different  
                states of the US 

Similarly, the second population consists of  N=41 corn producing states of 
the United States. We assume iy  the production of corn (in million bushels) 

during 2009 in the thi state of the US, ix be the production of corn (in million 

bushels) during 2008 in the thi  state of the US and iz denote the production of 

corn (in million bushels) during 2007 in the thi state of the US. The data are 
represented by means of graph in Figure 2. 
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Figure 2. Production of corn during 2007, 2008 and 2009 versus different states 
                of the US  
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The graphs in Figure1 and Figure 2 show that the number of abortions and the 
production of corn in different states are skewed towards right. One reason of 
skewness for the population-I may be the distribution of population in different 
states, that is the states having larger population are expected to have larger 
number of abortion cases. Similarly, for population-II the states having larger area 
for farming are expected to have larger production of corn.  Thus, skewness of 
data indicates that the use of median may be a better measure of central location 
than mean in these situations. 

For performing the Monte Carlo Simulation in the considered population-I, 
5000 samples of n=20 states were selected using simple random sampling without 
replacement in the year 2005. The sample medians ( )

ˆ
x n kM and ( )

ˆ
z n kM ,  

k =1, 2,---,5000 were computed and the parameters ( )x xf M , ( )z zf M and xzP
were estimated by the method given in Remark 5.1.1. From each one of the 
selected samples, m=17 states were retained and new u=3 states were selected out 
of  N – n =51 – 20 = 31 states using simple random sampling without 
replacement in the year 2007. From the m units retained in the sample at the 
current occasion, the sample medians ( )

ˆ
x m kM , ( )

ˆ
y m kM

 
and ( )

ˆ
z m kM , 

 k  = 1, 2,- - -,5000 were computed and the parameters ( )y yf M , yzP  and xzP
were estimated. From the new unmatched units selected on the current occasion 

the sample medians ( )
ˆ

y u kM
 
and  ( )

ˆ
z u kM , k  = 1, 2,- - -,5000 were computed. The 

parameters 1 2 and ψ ψ are selected between 0.1 and 0.9 with a step of 0.1. 
The percent relative efficiencies of the proposed estimator *T  with respect to 

 ( )y nM  and *∆ are respectively given by: 
 

( )

5000 50002 2

1 1
1 25000 50002 2

1 1

ˆ
100   and   100

y k yy n k
k k

sim sim

k y k y
k k

M M M
E E

T M T M

∗

= =

∗ ∗

= =

   − ∆ −  
= × = ×

   − −   

∑ ∑

∑ ∑  

 
For better analysis, this simulation experiments were repeated for different 

choices of μ.  
 
Similar steps are also followed for Population-II. The simulation results in 

Table 3, Table 4 and Table 5 show the comparison of the proposed estimator *T
with respect to the estimators ( )

ˆ
y nM  and ∗Δ , respectively. For convenience the 
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different choices of μ are considered as different sets for the considered 
Population-I and Population-II, which are shown below: 
 

Sets Population-I Population-II 

I n =20; μ = 0.15 (m =17, u =3) n=15; μ = 0.13 (m =13, u =2) 

II n =20; μ = 0.25 (m = 15, u =5) n=15; μ = 0.20  (m =12, u =3) 

III n =20; μ = 0.35 (m = 13, u =7) n=15; μ = 0.30 (m = 10, u =5) 

IV n =20; μ = 0.50 (m = 10, u =10) n=15; μ = 0.40 (m = 9, u =6) 

 
Table 1. Descriptive statistics for Population-I and Population-II 
 Population-I Population-II 

Abortions 
2004 
(z) 

Abortions 
2005 
(x) 

Abortions 
2007 
(y) 

Production 
of Corn in 

2007 
(z) 

Production 
of Corn in 

2008 
(x) 

Production  
of Corn in 

2009 
(y) 

Mean 
Median 

Standard 
Deviation 
Kurtosis 

Skewness 
Minimum 
Maximum 

Count 

23963.14 
11010.00 

 
38894.81 
12.02669 
3.275197 

80 
208180 

51 

23651.76 
10410.00 

 
38487.71 
12.39229 
3.310767 

70 
208430 

51 

23697.65 
9600.00 

 
39354.65 
14.42803 
3.527683 

90 
223180 

51 

317997 
83740 

 
565641.6 
6.838888 
2.638611 

2997 
2376900 

41 

294918.2 
66650 

 
530483.7 
6.492807 
2.595704 

2475 
2188800 

41 

319313.7 
79730 

 
563103.3 
6.036604 
2.499771 

2635 
2420600 

41 
 
Table 2. Comparison of the proposed estimator T (at optimal conditions) with 
respect to the estimators ( )

ˆ
y nM and Δ (at optimal conditions) 

 
 
 
 
 
 
 
 

 Population - I Population-II 

0µ  0.5411 0.6669 

µ∗  0.6800 0.7642 

1E  1407.5 1401.3 

2E  1034.9 916.80 
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Table 3. Monte Carlo Simulation results when the proposed estimator *T  
               is compared to ( )

ˆ
y nM  for Population-I and Population-II 

 

 

                              

 Set I
 Set II
 Set III
 Set IV

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
100
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180

200

220

240

260

280

300

320

340

360

 
 

Figure 3. PRE of the estimator T ∗ with respect to ( )
ˆ

y nM
 
 for Population-I 

 

 Population-I Population-II 
Set I II III IV I II III IV 

1ψ ↓  1simE  1simE  1simE  1simE  1simE  1simE  1simE  1simE  

0.1 338.42 285.75 294.74 191.46 762.21 747.03 127.19 321.48 

0.2 330.71 291.82 320.22 238.4 860.29 644.25 140.93 364.51 

0.3 315.85 288.81 333.44 254.30 971.34 536.15 154.84 397.27 

0.4 282.71 288.70 326.08 276.75 1097.6 427.33 166.51 420.99 

0.5 248.64 268.90 322.70 295.47 1219.7 340.46 172.53 413.40 

0.6 210.41 249.90 299.55 301.46 1377.0 262.76 175.98 413.49 

0.7 178.81 220.94 269.87 304.12 1529.3 206.40 172.93 398.24 

0.8 152.05 194.11 245.61 297.46 1707.7 166.72 166.51 369.96 

0.9 127.19 168.82 216.58 289.94 1855.9 136.86 161.50 336.32 
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Table 4. Monte Carlo Simulation results for Population-I when the proposed  
               estimator *T  is compared to *Δ  

1ψ ↓  2ψ →  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 2simE  

I 
II 
III 
IV 

329.1 
269.4 
285.6 
205.2 

470.4 
272.6 
233.2 
188.5 

707.2 
291.4 
273.0 
168.7 

1017.2 
424.8 
320.1 
168.4 

1590.3 
681.0 
430.9 
198.1 

2211.0 
752.7 
624.4 
230.3 

2869.2 
1023.3 
770.1 
318.0 

4255.0 
1511.8 
1126.7 
419.5 

5490.3 
1790.9 
1353.6 
559.2 

0.2 2simE  

I 
II 
III 
IV 

340.3 
285.8 
295.9 
242.3 

456.3 
282.7 
251.1 
199.2 

714.2 
312.6 
279.7 
177.2 

1078.2 
461.3 
344.3 
182.9 

1685.3 
678.1 
457.5 
222.9 

2268.1 
824.9 
636.8 
269.7 

3064.6 
1150.8 
831.4 
351.5 

4227.3 
1600.8 
1126.8 
483.4 

5437.1 
2034.9 
1428.8 
631.6 

0.3 2simE  

I 
II 
III 
IV 

325.9 
288.6 
298.7 
261.4 

440.9 
285.4 
264.8 
216.4 

688.6 
336.3 
287.5 
192.2 

1071.6 
475.3 
358.9 
198.1 

1547.1 
677.2 
456.2 
247.3 

2158.4 
839.5 
642.1 
294.9 

2979.3 
1187.6 
852.9 
391.5 

4060.1 
1643.4 
1159.3 
529.6 

5145.1 
1983.4 
1466.2 
681.6 

0.4 2simE  

I 
II 
III 
IV 

298.2 
284.9 
289.6 
279.6 

411.3 
282.3 
265.6 
231.6 

624.7 
329.8 
284.4 
204.9 

967.3 
454.1 
341.2 
212.9 

1430.2 
659.4 
460.3 
263.5 

1975.9 
842.4 
635.6 
314.2 

2648.7 
1152.1 
857.8 
419.5 

3594.8 
1600.3 
1142.6 
559.7 

4721.6 
1946.5 
1440.9 
739.3 

0.5 2simE  

I 
II 
III 
IV 

262.6 
266.7 
274.8 
296.9 

358.2 
263.7 
251.4 
246.8 

548.2 
312.7 
270.1 
219.2 

883.8 
430.3 
327.9 
222.8 

1247.1 
620.7 
442.0 
273.9 

1709.9 
789.8 
616.1 
331.8 

2238.4 
1072.8 
820.8 
440.8 

3128.2 
1468.6 
1111.1 
586.7 

4213.1 
1775.0 
1404.6 
765.7 

0.6 2simE  

I 
II 
III 
IV 

230.1 
248.8 
249.3 
303.9 

310.8 
244.8 
238.5 
256.0 

463.6 
283.3 
253.4 
226.1 

754.2 
403.9 
314.6 
231.7 

1078.0 
565.8 
412.2 
283.7 

1509.3 
730.9 
574.3 
343.1 

2016.2 
1004.8 
775.3 
456.8 

2669.3 
1336.5 
1016.9 
600.3 

3583.8 
1673.8 
1336.2 
783.1 

0.7 2simE  

I 
II 
III 
IV 

194.5 
226.0 
226.1 
305.8 

257.1 
216.7 
214.6 
258.3 

396.7 
252.9 
226.1 
227.1 

625.2 
352.7 
285.9 
235.5 

920.4 
512.4 
382.3 
284.2 

1275.6 
656.3 
532.1 
346.9 

1753.0 
907.6 
706.8 
459.8 

2249.7 
1182.0 
898.9 
599.8 

2955.3 
1473.9 
1208.2 
788.4 

0.8 2simE  

I 
II 
III 
IV 

159.8 
193.4 
201.6 
299.9 

221.7 
190.9 
194.7 
256.9 

341.1 
228.7 
205.2 
223.5 

523.4 
320.2 
265.1 
233.7 

757.4 
438.1 
347.7 
283.7 

1095.9 
580.6 
481.8 
341.6 

1515.0 
825.6 
628.9 
453.7 

1960.0 
1037.5 
800.2 
589.5 

2478.9 
1328.2 
1082.0 
772.5 

0.9 2simE  

I 
II 
III 
IV 

136.5 
172.9 
182.2 
293.8 

186.4 
165.9 
167.1 
245.8 

289.7 
202.6 
185.0 
216.8 

440.6 
288.7 
234.8 
225.3 

635.9 
373.1 
309.8 
272.8 

939.3 
514.3 
418.6 
329.7 

1269.8 
709.8 
552.9 
438.3 

1663.2 
894.3 
722.3 
574.2 

2125.0 
1160.4 
930.8 
742.7 
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Table 5. Monte Carlo Simulation results for Population-II when the proposed  
               estimator *T is compared to *Δ  

 

1ψ ↓  2ψ →  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 2simE  

I 
II 
III 
IV 

1126.40 
961.19 
274.83 
448.87 

2860.5 
1757.9 
264.72 
445.82 

5849.0 
3077.6 
298.76 
537.81 

9978.9 
5323.8 
362.76 
641.19 

14402.0 
7930.8 
515.77 
1000.5 

22607.0 
11637.0 

742.68 
1320.8 

30230.0 
14805.0 

1006.7 
1757.2 

40853.0 
20847.0 

1174.6 
2256.2 

46469.0 
26905.0 

1320.8 
3038.8 

0.2 2simE  

I 
II 
III 
IV 

873.59 
831.99 
302.79 
495.59 

2198.3 
1472.2 
284.98 
481.24 

4489.6 
2545.2 
314.11 
567.79 

7729.9 
4305.6 
406.01 
708.65 

11800.0 
6678.7 
562.11 
1010.5 

17466.0 
9960.1 
821.52 
1426.0 

22954.0 
13156.0 

995.42 
1852.1 

31590.0 
17250.0 

1259.0 
2354.0 

3644.3 
23024.0 

1522.1 
3098.0 

0.3 2simE  

I 
II 
III 
IV 

621.89 
682.77 
328.74 
528.81 

1594.20 
1169.0 
312.90 
521.64 

3184.1 
2044.1 
338.97 
667.01 

5627.4 
3405.3 
448.28 
761.28 

8573.0 
5386.4 
617.43 
1069.9 

12582.0 
7770.3 
89.51 

1502.1 

16513.0 
10373.0 

1079.6 
1953.7 

22385.0 
13378.0 

1333.3 
2645.4 

27277.0 
17978.0 

1719.8 
3251.4 

0.4 2simE  

I 
II 
III 
IV 

441.33 
540.36 
349.27 
557.80 

1136.90 
905.32 
334.32 
535.90 

2342.9 
1585.1 
366.96 
625.09 

4039.8 
2637.0 
469.80 
792.63 

6230.6 
4066.8 
658.16 
1111.7 

8970.8 
5938.0 
909.27 
1534.2 

11971.0 
8098.8 
1131.5 
2022.3 

16010.0 
10354.0 

1455.1 
2703.7 

20221.0 
13708.0 

1817.1 
3360.2 

0.5 2simE  

I 
II 
III 
IV 

325.32 
423.09 
358.42 
552.30 

829.35 
685.55 
347.77 
537.56 

1693.8 
1205.1 
382.11 
627.89 

2954.8 
2062.0 
498.04 
796.60 

4550.0 
3128.3 
683.40 
1104.7 

6503.2 
4491.7 
938.99 
1536.0 

8647.7 
6008.1 
1172.6 

2036.20 

11725.0 
7843.8 
1524.7 
2690.1 

14875.0 
10477.0 

1908.0 
3371.6 

0.6 2simE  

I 
II 
III 
IV 

247.94 
326.45 
369.80 
545.08 

628.85 
531.46 
356.29 
519.34 

1282.4 
954.37 
390.36 
607.57 

2233.8 
1614.8 
507.65 
778.51 

3406.2 
2416.2 
697.08 
1081.1 

4921.7 
3449.1 
953.09 
1486.7 

6612.4 
4720.8 
1193.9 
1976.3 

8869.5 
6152.4 
1553.5 
2607.6 

11284.0 
8021.9 
1966.7 
3256.7 

0.7 2simE  

I 
II 
III 
IV 

191.82 
256.24 
368.09 
523.74 

481.70 
421.16 
357.34 
448.94 

989.78 
747.44 
391.04 
569.41 

1738.2 
1246.6 
507.07 
738.38 

2659.8 
1864.4 
692.18 
1020.9 

3832.4 
2796.1 
943.99 
1405.1 

5161.5 
3789.1 
1198.0 
1886.9 

6844.7 
4836.2 
1548.7 
2452.8 

8705.7 
6404.1 
1972.1 
3067.3 

0.8 2simE  

I 
II 
III 
IV 

154.29 
206.36 
361.45 
488.89 

383.89 
335.56 
347.49 
463.14 

790.48 
604.62 
391.04 
526.20 

1385.5 
1004.1 
490.64 
689.27 

2112.4 
1507.5 
667.61 
941.81 

3041.20 
2283.7 
915.93 
1304.0 

4114.9 
3062.3 
1161.0 
1735.1 

5376.9 
3868.2 
1510.2 
2254.4 

6949.5 
5119.9 
1915.8 
2837.2 

0.9 2simE  

I 
II 
III 
IV 

124.89 
169.07 
346.69 
445.87 

310.43 
271.88 
330.68 
413.45 

635.21 
498.12 
379.63 
477.73 

1100.2 
826.69 
469.72 
615.16 

1714.1 
1245.4 
629.28 
848.82 

2458.4 
1855.6 
869.77 
1179.9 

3302.5 
2493.5 
1114.2 
1569.1 

4362.3 
3169.4 
1438.0 
2032.7 

5601.2 
4211.6 
1843.1 
2622.9 
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Figure 4. PRE of estimator *T with respect to *Δ  for set-I  for Population-I 
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 Figure 5. PRE of estimator *T with respect to 1ψ  for set-II  for Population-I 
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Figure 6. PRE of estimator *T with respect to 1ψ  for set-III  for Population-I 
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Figure 7. PRE of estimator *T with respect to 1ψ  for set-IV  for Population-I 
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9. Analysis of empirical and simulation results  

1. From table 2 it is visible that the optimum values of μ (fraction of a fresh 
sample to be drawn at current occasion) exist and this value for the estimator T is 
less than that of the estimator Δ for both the considered populations. This 
indicates that the use of additional auxiliary information at both the occasion 
reduces the cost of the survey. 

2. Appreciable gain is observed in terms of precision indicating the proposed 
estimator T (at optimal condition) preferable over the estimators ( )

ˆ
y nM and Δ (at 

optimal condition). This result justifies the use of additional auxiliary information 
at both the occasions in two-occasion successive sampling. 

3. The following conclusion may be observed from Table 3 and Figure 3: 
  (i) For Set-I of Population-I, the value of 1simE decreases as the value of 1ψ  

increases. This result is expected as for Set-I the value of μ is very low, 
however for Set-I of Population-II 1simE  increases with the increasing 
value of 1ψ . 

 (ii) For Set-II, III and IV of the Population-I, the value of 1simE first increases 
and then starts decreasing with the increasing value of 1ψ , however no 
specific pattern is observed for set II, III and IV of Population-II.  

(iii) For all the considered combinations appreciable gain in precision is 
observed when the proposed estimator is compared with the sample 
median estimator. Hence, the use of additional auxiliary information at 
both the occasions is highly justified. 

4. The following points may be noted from Table 4, Table 5 and Figures 4, 5, 6 
and 7: 

  (i) For fixed value of 1 2 and ,ψ ψ the value of 2simE decreases with the 
increasing value of μ, except for few combinations of 1 2 and ψ ψ  for 
Population-I, however no specific pattern is observed for Population-II.    

 (ii) For fixed value of 1  and  ψ µ and increasing value of 2 ,ψ the value of 

2simE  also increases, except for few combinations. 

(iii)  For fixed value of 2 ,ψ  and lower value of μ, the value of 2simE decreases 
with increasing value of 1ψ , however for higher value of μ, the value of 

2simE increases with the increasing value of , except for few 
combinations. 

(iv) Tremendous gain in precision is obtained for all the considered cases. 

1ψ
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10. Conclusion 

From the analysis of empirical and simulation results it can be concluded 
that the proposed estimator T compares favourably in terms of efficiency with the 
standard sample median estimator, where there is no matching from previous 
occasion. The estimator T also proves to be much better than the estimator Δ, 
when no additional auxiliary information is used at any occasion. Therefore, the 
use of additional auxiliary information at both the occasions in two occasion 
successive sampling for estimating population median at current occasion is 
highly rewarding in terms of precision and reducing the total cost of survey. 
Hence, the proposed estimators may be recommended for further use by survey 
practitioners. 
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