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ABSTRACT

Nonresponse problem is a serious obstacle to the validity of estimates in a survey.
The estimates become biased due to the missing values in data. The problem is
how to deal with missing values, once they have been deemed impossible to re-
cover. One way of exploring a possible lack of representativity in missing data is
to estimate the response probabilities which are usually done by logistic regression
model. However, the drawback of the logit model is that this requires values of the
explanatory variables of the model to be known for all nonrespondents. Bethlehem
(2012) showed that the response probabilities can be estimated by some weight-
ing adjustment technique without having the individual data of the nonrespondents.
Here we consider the doubtful nature of nonresponse regarding possible existence
of relationship with any of the covariates. Moreover, instead of simple random
sampling, we consider general unequal probability sampling scheme for selecting
respondents. This paper presents the modification of Bethlehem (2012) proposal
for unequal probability sampling to obtain the unbiased estimators for population
total/average of a variable of interest and variance estimator and compares them
with the usual estimators through numerical simulations.
Key words: non-response, missing at random, missing completely at random, un-
equal probability sampling.

1. Introduction

Almost all large scale sample surveys suffer the problem with missing data. It
may occur even if an investigator tries to have all questions fully responded to in
a survey, or if the respondent is not available at home to answer the questionnaire.
One of the effects of nonresponse is that the sample size is smaller than expected.
This would lead to less accurate, but still valid estimates of population characteris-
tics, which can be taken care of by taking the initial sample size larger. A far more
serious effect of nonresponse is that estimates of population characteristics may be
biased. This situation occurs if, due to nonresponse, some groups in the popula-
tion are over- or under-represented, and these groups behave differently with respect
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to the characteristics to be investigated. Consequently, wrong conclusions will be
drawn from the survey data. The amount of bias created due to missing values often
increases with the rate of occurence of nonresponse. Above all, the large number of
missing values in the data set can also lead to computational difficulties.

Towards this problem, starting from the pioneered work by Hansen and Hurwitz
(1946), many methods of attempts to re-collect the missing values in sample surveys
are available in the literature. However, in most of the practical sample survey work,
it is not possible to recover the actual missing values. In such situations, the problem
is how to estimate the population parameters dealing with the missing values. The
method of response modeling and imputation are popular to survey statisticians in
this direction. Good details regarding this are given in Rubin (1987) and Särndal,
Swenson and Wretman (1992).

In general, obtaining the responses from the selected units is totally unknown
in advance. For this reason, the probabilistic models are assumed to describe the
unknown response distributions. Politz and Simmons (1949, 1950) obtained the
response probability of a respondent as the proportion of time staying at home. The
response probability may be directly related to the study variable and hence to the
auxiliary variable, which is highly related to the study variable. For example, in
the study of household income, the people with high income may respond with low
probability and may be under represented in the sample. Similarly, if tax return is
considered as an auxiliary variable, then the response probability of an individual
may be inversely proportional to the amount of tax return.

Regarding the possible relatioship of missingness with any of the covariates, Ru-
bin (1976) defined the concepts of missing at random (MAR) and missing completely
at random (MCAR). Missing completely at random (MCAR) means that the miss-
ing data is not related to the values of any variable, neither to the response variable
itself nor to other covariates, whether missing or observed; whereas missing at ran-
dom (MAR) means that the missing data is unrelated to the actual missing values
but is related either to observed covariates or to observed response variable itself or
to both. Among many contributors in this area, Folsom (1991), Fuller et al. (1994),
Kott (2006), Chang and Kott (2008) and Kott and Chang (2010) advocated the use of
calibration weighting to adjust for unit nonresponse. In this regard, for more detailed
clarification, interested researchers may see Heitzan and Basu (1996), Singh (2010).

In case the covariate relation is considered, the concept of the response propensity
is introduced in Little (1986). The response propensity is the probability of response
given the values of some auxiliary variables. The response propensities are also
unknown, so they need to be estimated. For this purpose, the logistic model is used
in practice. Of course, another model sometimes used is the probit model. Estimates
of the coefficients in both the logit and probit models are obtained by maximum
likelihood estimation. And the estimated response propensities in these two models
are always in the interval [0, 1]. However, the drawback of the logit and probit
models is that these require the values of the explanatory variables of the model to
be known for all nonrespondents. Bethlehem (2012) showed that this condition can
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be relaxed by computing response probabilities from weights that have been obtained
from some weighting adjustment technique. This technique produces weights that
correct for the lack of representativity of the survey response. Since the weights can
be seen as a kind of inverted response probabilities, they can be used to estimate
response probabilities. Weights are computed following those techniques without
having the individual data of the nonrespondents. We use this approach to estimate
the response propensities from correlated auxiliary variables.

In this paper, we consider the situation where some of the respondents selected
using an unequal probability sampling scheme fail to respond and the nature of non-
response is uncertain as to whether it is MAR or MCAR. Moreover, instead of con-
sidering the simple random sampling, we consider any general unequal probability
sampling scheme even without replacement for selecting the respondents because
we believe that many of the practical cases of large-scale sample surveys require the
selection of respondents with probability proportional to size measures of some aux-
iliary variable related to study variable. Under the consideration of doubtful nature
of random nonresponse, we shall derive here unbiased estimators for population to-
tal/average of a variable of interest and variance estimators in unequal probability
sampling scheme. The derived estimators will be compared with usual estimators in
presence of random nonresponse through numerical simulations.

We organize our findings in the following sections.

2. Unbiased estimator of population mean and variance with missing data

Suppose in a finite survey population U = (1, . . . , i, . . . , N) a person labelled i
has the value yi defined on a variable y of interest and has value xi > 0 defined on
an auxiliary variable x closely related to the study variable y. The values of x are
all positive and known for all the population units in U . Our problem is to estimate

Ȳ =
1

N

N∑
i=1

yi on the basis of a sample s of size n, selected with probability p(s)

according to a sampling design p.
Let πi and πij be the first and second order inclusion probabilities of the units in

U . Let us define a random variable δi as

δi =

{
1 if ith unit responds,
0 otherwise. (1)

Let EP , VP denote the expectation and variance operators with respect to the sam-
pling design for selecting the respondents. Let ER, VR denote the expectation and
variance operators with respect to obtaining a response from the selected respondent,
and E, V denote the overall expectation and variance operators. In this setup, δi is
a Bernoulli random variable with probability of success as δ∗i , say, and it is known.
So, ER(δi) = Prob(δi = 1) = δ∗i , and VR(δi) = δ∗i (1 − δ∗i ). We first of all assume
that the value of response probability depends on some auxiliary variables which
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are well correlated with the study variable, but the exact relationship of the response
probability with the auxiliary variables is unknown to us. We can get possible re-
lationships based on some statistical testing whether the available data is MCAR or
MAR. For example, we can apply some variable selection method to see whether or
not the response propensity depends (or not) on a set of auxiliary variables. However,
a weighted sum of these two estimators (MCAR and MAR) would be an alternative
to choosing one over the other to balance their degree of bias. This type of estimator,
namely the ‘composite estimator’ is formed by compromising in between the MAR
estimator and MCAR estimator, with a compromising factor λ(0 < λ < 1).

The composite estimator of population total Y will be obtained as

Ŷcomp = λŶMCAR + (1− λ)ŶMAR,

where ŶMCAR and ŶMAR respectively denote the MCAR and MAR estimators for
Y . We may get the optimal compromising factor by minimmizing the MSE of the
composite estimator with respect toλ under the assumption that the covariance factor
of ŶMCAR and ŶMAR is too small relative to the MSE of ŶMAR and then it can be
negligible. In this situation, the optimal compromising factor λopt may be obtained
as

λopt =
MSE(ŶMAR)

MSE(ŶMCAR) +MSE(ŶMAR)
.

In practical situation, λopt can be estimated by substituting the estimates of
MSE(ŶMCAR) and of MSE(ŶMAR) based on the sample survey data in above
expression of λopt.

2.1. Unbiased estimator of population mean

Under the non-response setup, a homogeneous linear unbiased estimator for pop-
ulation mean is

ˆ̄Y =
1

N

∑
i∈s

yibsi

(
δi
δ∗i

)
=

1

N

∑
i∈s

uibsi, where ui = yi
δi
δ∗i

(2)

and bsi’s are free of yi’s and satisfy
∑

s3i p(s)bsi = 1, ∀ i ∈ U.
This happens because

ER(ui) =
yi
δ∗i
ER(δi) =

yi
δ∗i
δ∗i = yi, (3)

and

E
(

ˆ̄Y
)

= EPER

[
1

N

∑
i∈s

uibsi

]
= EP

[
1

N

∑
i∈s

bsiER(ui)

]

= EP

[
1

N

∑
i∈s

yibsi

]
= Ȳ . (4)
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2.2. Variance of the unbiased estimator of population mean

From the definition of ui, we have

VR(ui) =
y2i
δ∗2i

VR(δi) =
y2i (1− δ∗i )

δ∗i
. (5)

So, the variance of the estimator given in Eqn. (5) is

V
[

ˆ̄Y
]

= VPER

[
1

N

∑
i∈s

uibsi

]
+ EPVR

[
1

N

∑
i∈s

uibsi

]

= VP

[
1

N

∑
i∈s

yibsi

]
+ EP

[
1

N2

∑
i∈s

b2siVR(ui)

]

=
1

N2

 N∑
i=1

y2i ci +

N∑
i=1

N∑
j=1,j 6=i

yiyjcij + EP

(∑
i∈s

b2si
y2i
δ∗i

(1− δ∗i )

)

=
1

N2

 N∑
i=1

y2i ci +

N∑
i=1

N∑
j=1,j 6=i

yiyjcij +

(
N∑
i=1

y2i bsi
δ∗i

(1− δ∗i )

) , (6)

where ci = EP (b2siIsi) − 1 and cij = EP (bsibsjIsij) − 1 where Isi and Isij are
defined as

Isi =

{
1 if i ∈ s,
0 otherwise. (7)

and Isij = IsiIsj .

2.3. Unbiased variance estimator for population mean

First of all, we find an unbiased estimator for VR(ui). We note that δ2i = δi and
so,

ER(u2i ) = ER

[
y2i δ

2
i

δ∗2i

]
= ER

[
y2i δi
δ∗2i

]
=

y2i
δ∗2i

ER[δi] =
y2i
δ∗i
,

and so
ER[u2i δ

∗
i ] = y2i . (8)

Now,

VR(ui) = ER(u2i )− (ER(ui))
2 = ER(u2i )− y2i

= ER(u2i )− ER[u2i δ
∗
i ] = ER[u2i (1− δ∗i )] (9)
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implies that
vR(ui) = V̂R(ui) = u2i (1− δ∗i ). (10)

Let csi and csij be such that EP (csiIsi) = ci and EP (csijIsij) = cij .
We define

v1 =
1

N2

∑
i∈s

u2i csi +
∑
i∈s

∑
j∈s,j 6=i

uiujcsij +
∑
i∈s

vR(ui)(b
2
si − csi)

 , (11)

and

v2 =
1

N2

∑
i∈s

u2i csi +
∑
i∈s

∑
j∈s,j 6=i

uiujcsij +
∑
i∈s

vR(ui)bsi

 . (12)

Following Raj (1966), we haveEPER(v1) = V ( ˆ̄Y ) = EPER(v2), and so v1 and
v2 are two unbiased estimators for V ( ˆ̄Y ).

3. Estimation of response probability

The true response probability δ∗i as discussed in Section 2 is practically unknown
in advance. So, we need to use an estimator for this.

If no covariate relation is considered, the missing data is considered as missing
completely at random (MCAR), then the probability of response (assuming same
for all units) is estimated by r

n , where n is the sample size and r is the number of
responses obtained out of n persons sampled.

If the covariate relation is considered, the concept of the response propensity is
introduced in Little (1986). He has defined the response propensity of element i as

δ∗i (X) = P (δi = 1|Xi), (13)

where Xi = (Xi1, Xi2, . . . , Xip)
′ is a vector of values of, say, p auxiliary variables.

So, the response propensity is the probability of response given the values of some
auxiliary variables. The response propensities are also unknown, so they need to be
estimated.

3.1. Traditional models

The most frequently used model to estimate the response propensities is the logis-
tic regression model. It assumes the relationship between response propensity and
auxiliary variables as

logit(δ∗i (X)) = log

(
δ∗i (X)

1− δ∗i (X)

)
=

p∑
j=1

Xijβj , (14)

where β = (β1, β2, . . . , βp)
′ is a vector of p regression coefficients.
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Of course, another model, the probit model can also be used. It assumes the
relationship between response propensity and auxiliary variables as

probit(δ∗i (X)) = Φ−1 (δ∗i (X)) =

p∑
j=1

Xijβj , (15)

where Φ−1 is the inverse of the N(0, 1) distribution function.
Estimates of the coefficients in both the logit and probit models can be obtained by

maximum likelihood estimation. And the estimated response propensities in these
two models are always in the interval [0, 1].

However, the drawback of the logit and probit models is that these require the
values of the explanatory variables of the model to be known for all nonrespondents.
But this is not the situation in many cases. To overcome this drawback, we follow
Bethlehem (2012) model to estimate the response propensities and this is described
below.

3.2. Bethlehem Model

Bethlehem (2012) showed how to estimate the response probabilities from weights
that have been obtained from some weighting adjustment technique without having
the individual data of the nonrespondents. The basic idea is to assign weights to re-
sponding elements in such a way that over-represented groups get a weight smaller
than 1 and under-represented groups get a weight larger than 1. There is a relation-
ship between response probabilities and weights: large weights correspond to small
response probabilities, and vice versa. Therefore, it should be possible to transform
weights into estimates for response probabilities.

There are several types of weighting techniques. The most frequently used ones
are post-stratification, generalized regression estimation and raking ratio estimation.
Weighting is based on the use of auxiliary information. Auxiliary information is
defined here as a set of variables that have been measured in the survey, and for
which the distribution in the population, or in the complete sample, is available. The
individual values of the auxiliary variables are not required for the nonresponding
elements. Among several weighting techniques, we adopt here the generalized re-
gression estimation technique for simplicity. The generalized regression estimator is
based on a linear model that attempts to explain a target variable of the survey from
one or more auxiliary variables. The weights resulting from generalized regression
estimation make the response representative with respect to the auxiliary variables
in the model (Särndal, 2011).

In principle, the auxiliary variables in the linear model have to be continuous
variables, i.e. they measure a size, value or duration. However, it is also possible
to use categorical variables. The trick is to replace a categorical variable by a set
of dummy variables, where each dummy variable represents a category, i.e. it in-
dicates whether or not a person belongs to a specific category. Suppose there are p
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(continuous) auxiliary variables available. The p-vector of values of these variables
for element i is Xi.

Let Y be the N -vector of all values in the population of the target variable, and
let X be the N × p-matrix of all values of the auxiliary variables. The vector of
population means of the p auxiliary variables is defined by

X̄ = (X̄1, X̄2, . . . , X̄p)
′.

We assume that this vector representing the population information is available,
based on some expert guess or on the result of some prior survey. If the auxiliary
variables are correlated with the target variable, then for a suitably chosen vector
B = (B1, B2, . . . , Bp)

′ of regression coefficients for a best fit of Y on X, the resid-
uals E = (E1, E2, . . . , EN )′, defined by E = Y − XB will vary less than the
values of the target variable itself. The population regression coefficient B obtained
by applying ordinary least squares technique is

B = (X′X)−1X′Y =

(
N∑
i=1

XiX
′
i

)−1( N∑
i=1

XiYi

)
. (16)

The vector B can be estimated by

b =

(∑
i∈s

π−1i xix
′
iδi

)−1(∑
i∈s

π−1i xiyiδi

)
, (17)

where πi is the first order inclusion probability of unit i in sample s.
Let Xs, Ys be n× p and n× 1 versions of X and Y for the units i ∈ s where n

is the sample size. Let Ws be the n×n diagonal matrix with the weights wi for the
units i ∈ s on the diagonal. The Horvitz-Thompson (1952) weights are wi = 1/πi.
Also let δs be the n × n diagonal matrix with values δi for the units i ∈ s on the
diagonal. The vector b can then be written in matrix form as

b = (X′sWsδsXs)
−1(X′sWsδsYs). (18)

The generalized regression estimator is now defined by

ȳGR =
1

N

[∑
i∈s

yiδi
πi

+ (X−
∑
i∈s

π−1i xiδi)
′b

]
. (19)

Following Bethlehem and Keller (1987), the generalized regression estimator can
be rewritten in the form of the weighted estimator as

ȳGR =
∑
i∈s

wiyiδi, (20)

where the weights are

wi = X̄

∑
j∈s

π−1j x′jxjδj

−1 π−1i x′i, (21)
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where xj is the k-dimensional vector of control variables, X̄ is the row vector of
population totals of the control variables, the first element of xj is always one, and
the first element of X̄ is one.

Following Bethlehem (2012), we get the adjusted weight wi for observed element
i for unequal probability sampling, as equal to wi = ν ′Xi, where ν is a vector of
weight coefficients defined by

ν = (
∑
i∈s

π−1i δi)

∑
j∈s

π−1j xjx
′
jδj

−1 X̄. (22)

So, it is clear that computation of the weight does not require the individual values
of the nonresponding elements. It is sufficient to have the population means of the
auxiliary variables.

As an illustration, the case of one auxiliary variable with C categories is consid-
ered. Then C dummy variablesX(1),X(2), ...,X(C) are defined. For an observation
in a category H , the corresponding dummy variable is assigned the value 1, and all
other dummy variables are set to 0. Consequently, the vector of population means
of these dummy variables is equal to

X̄ =

(
N1

N
,
N2

N
, ...,

NC

N

)
, (23)

where Nj is the number of elements in category j (in the population), for j =
1, 2, ..., C. The vector ν of weight coefficients is equal to

ν =

∑
i∈s π

−1
i δi

N

(
N1∑

i∈s π
−1
i δiX(1)

,
N2∑

i∈s π
−1
i δiX(2)

, ...,
NC∑

i∈s π
−1
i δiX(C)

,

)′
.

(24)
Now we see how the weights computed by means of generalized regression es-

timation can be transformed into response propensities. Let there be p categorical
auxiliary variables. The continuous variables can also be transformed into categor-
ical variables by forming several meaningful groups. The values of these variables
for unit i are denoted by the vector

Xi = (X
(1)
i , X

(2)
i , ..., X

(p)
i )′.

The number of categories of variable X(j) is denoted by Cj , say, for j = 1, 2, ..., p.
So, for variable X(j), the categories are numbered as 1, 2, ..., Cj .

We note from the above adjusted regression weight formula that all respond-
ing units with the same set of values for the auxiliary variables will be assigned
the same weight. Suppose a unit is in category number k1 of the first variable,
category k2 of the second variable,..., and category kp of the pth variable. Let
w(k1, k2, ..., kp) denote the corresponding weight. Furthermore, we assume that
there are r(k1, k2, ..., kp) respondents in this group. The number of sample units
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n(k1, k2, ..., kp) in the group can now be estimated by

n̂(k1, k2, ..., kp) =

∑
i∈s π

−1
i∑

i∈s π
−1
i δi

× w(k1, k2, ..., kp)× r(k1, k2, ..., kp). (25)

The response propensity for all elements in the group can be estimated by

ρ̂(k1, k2, ..., kp) =
r(k1, k2, ..., kp)

n̂(k1, k2, ..., kp)
=

∑
i∈s π

−1
i δi∑

i∈s π
−1
i

× 1

w(k1, k2, ..., kp)
. (26)

So, it is clear that the response propensities are inversely proportional to the weights.
We note that the response propensities can only be estimated for respondents and not
for nonrespondents.

Following Chaudhuri (2010), we can now obtain several competitive estimators
and variance estimators for population mean of a variable of interest by replacing the
response probabilities δ∗i with their estimates δ̂∗i obtained by whatever means using
MCAR or the logit/probit models or the ρ̂(k1, k2, ..., kp)s of Bethlehem model in the
respective equations shown in Section 2.

4. Illustrative simulation based findings

In this section, we present the results of numerical comparison of our different
estimators based on sample drawn using unequal probability sampling scheme. To
perform the comparison simulation, we use the data of a real population. The popu-
lation considered is the Labor Force Population obtained from the September 1976
Current Population Survey (CPS) conducted in the United States and this data set
was studied by Valliant et al. (2000). This population data contains information on
demographic and economic variables from the persons chosen in that labor force
survey. This is basically a clustered population of individuals, where the clusters
are compact geographic areas used as one of the stages of sampling in the CPS and
are typically composed of about four nearby households. The units within clusters
for this illustrative population are individual persons. For our numerical illustration,
we use all of the observations of one stratum containing information of N = 210
persons. This data set contains information of persons about their usual number of
hours of working per week, usual amount of their weekly wages along with their de-
mographic and social charateristics like their age, sex, race (non-black, black). We
consider the usual amount of their weekly wages as the main variable y of interest
and the usual number of hours of working per week as the size measure variable
x for drawing sample of persons. Our objective is to estimate the average weekly
wage taking into account the doubtful missing information obtained from the se-
lected respondents chosen by varying probability sampling scheme and to study
the performance behaviour of alternative estimators. We use the logistic model as
φ(xi) = 1

1+e(−1.65+.5×racei+.08×sexi+0.05×agei)
to generate the true probabilities δ∗i s.
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4.1. Application in two specific unequal probability sampling schemes

For illustration in practical sample survey situation, we consider two different
unequal probability sampling schemes. The first one is Midzuno’s (1952) scheme
and the second one is a modification of Brewer’s (1963) scheme. The choice of
these two different types of sampling schemes is based on the knowledge of having
a constant effective sample size and uniformly non-negative variance estimator for
Midzuno’s scheme and the knowledge of having varying effective sample size and
uniformly non-negative variance estimator for the modified Brewer’s scheme. We
now describe briefly these two sampling schemes.

4.1.1. Midzuno’s scheme

Midzuno (1952) suggested this scheme first by drawing one unit by probability
proportional to the size measure of an auxiliary variable with known xi > 0, for
i = 1, 2, . . . , N . Then, keeping the selected unit aside, the remaining (n− 1) units
should be chosen by simple random sampling without replacement (SRSWOR) out

of (N − 1) units. Let X =
N∑
i=1

xi. Then, under this scheme,

πi =
xi
X

+
X − xi
X

(
N−2
n−2
)(

N−1
n−1
) =

xi
X

N − n
N − 1

+
n− 1

N − 1
∀i = 1, 2, . . . , N, (27)

and

πij =
xi
X

(
N−2
n−2
)(

N−1
n−1
) +

xj
X

(
N−2
n−2
)(

N−1
n−1
) +

X − xi − xj
X

(
N−3
n−3
)(

N−1
n−1
)

=
xi + xj
X

(N − n)(n− 1)

(N − 1)(N − 2)
+

(n− 1)(n− 2)

(N − 1)(N − 2)
, (28)

∀i 6= j ∈ U . For this scheme, πiπj > πij∀i 6= j ∈ U , and so for the Horvitz and
Thompson (1952)’s estimator

∑
i∈s

yi
πi

for population total Y of y variable, the Yates

and Grundy (1953) form of variance estimator

VY G =
∑
i∈s

∑
j∈s,j>i

πiπj − πij
πij

(
yi
πi
− yj
πj

)2

is always non-negative.

Now, keeping in mind that all the yi’s may not be available for all i ∈ s, so with
respect to the response probabilities δ∗i , an unbiased estimator for population mean
is

eM =
1

N

∑
i∈s

yi
πi

(
δi
δ∗i

)
=

1

N

∑
i∈s

ui
πi
, where ui = yi

δi
δ∗i
, (29)

since ER(ui) = yi and EPER(eM ) = EP ( 1
N

∑
i∈s

yi
πi

) = Ȳ .
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The variance of eM is obtained as

V (eM ) = VPER(eM )+EPVR(eM ) =
1

N2

[
VP

(∑
i∈s

yi
πi

)
+ EP

(∑
i∈s

1
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 . (30)

Following Chaudhuri, Adhikary and Dihidar (2000), an unbiased estimator of the
variance of eM is :

v(eM ) =
1

N2

∑
i∈s

∑
j∈s,j>i

πiπj − πij
πij

(
ui
πi
− uj
πj

)2

+
∑
i∈s

vR(ui)

πi

 . (31)

Next, as δ∗i is unknown to us, so following Chaudhuri (2010), we can have the re-
quired estimators and variance estimators of the population mean as êM = eM |{δ∗i =

δ̂∗i } and v(eM )|{δ∗i = δ̂∗i }, i.e. replacing δ∗i in eM and v(eM ) throughout by its es-
timate δ̂∗i obtained by any means as discussed earlier.

4.1.2. Modified Brewer’s scheme

We consider the following scheme of Brewer (1963), modified by Seth (1966) and
further modified by Chaudhuri and Pal (2002). Let us call the normed size measues
of auxiliary variable as pi = xi

X ’s for i = 1, 2, . . . , N . In this scheme, on the first

draw, the unit i is chosen with a probability proportional to qi =
pi(1− pi)
1− 2pi

and

leaving aside the unit i so chosen, a second unit j(6= i) is chosen in the second draw

from the remaining units with the probability
pj

1− pi
. Writing D =

N∑
i=1

pi
1− 2pi

,

from Brewer (1963) it is known that the inclusion probability of i and that of the pair
(i, j), i 6= j in the sample of 2 draws are respectively

πi(2) = 2pi, and πij(2) =

[
2pipj
1 +D

](
1

1− 2pi
+

1

1− 2pj

)
. (32)

It is further known that

∆ij(2) = πi(2)πj(2)− πij(2) ≥ 0 ∀i, j(i 6= j) ∈ U. (33)

We use ‘2’ within parenthesis to emphasize that this scheme uses 2 draws. Let the
sample chosen as above be augmented by adding to the 2 distinct units so drawn as
above, (r−2) further distinct units from the remaining (N−2) units of U by simple
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random sampling without replacement (SRSWOR). For such a scheme introduced
by Seth (1966) admitting r distinct units in each sample, the inclusion probabilities
πi(r) for i and πij(r) for (i, j)(i 6= j), involving r draws, are respectively

πi(r) =
1

N − 2
[(r − 2) + (N − r)πi(2)] , (34)

πij(r) = πij(2) +

(
r − 2

N − 2

)
(πi(2) + πj(2)− 2πij(2))

+

(
r − 2

N − 2

)(
r − 3

N − 3

)
(1− πi(2)− πj(2) + πij(2)) . (35)

Chaudhuri and Pal (2002) modified this sampling scheme of Seth (1966) by allow-
ing (r − 2) to be (1) a number (n− 2) to be chosen with a pre-assigned probability
w(0 < w < 1) and (2) a number (n − 1) to be chosen with the complementary
probability (1 − w). Then, a sample s so drawn will have a size n with probability
w and (n + 1) with probability (1 − w). So, the effective sample size is either n
or (n+ 1). So for this modified sampling scheme if π∗i and π∗ij denote the first and
second order inclusion probabilities, then

π∗i = wπi(n) + (1− w)πi(n+ 1), (36)
and

π∗ij = wπij(n) + (1− w)πij(n+ 1). (37)
Chaudhuri and Pal (2002) also showed that π∗i π∗j ≥ π∗ij , ∀i, j ∈ U(i 6= j).
Under this scheme, for the Horvitz and Thompson (1952) estimator

∑
i∈s

yi
π∗i

for

population total Y of y variable, the variance estimator is given by Chaudhuri and
Pal (2002)

vCP =
∑
i∈s

∑
j∈s,j>i

π∗i π
∗
j − π∗ij
π∗ij

(
yi
π∗i
− yj
π∗j

)2

+
∑
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αiy
2
i

π∗2i
, (38)

whereαi = 1 +
1

π∗i

N∑
j=1,j 6=i

π∗ij −
N∑
i=1

π∗i . They also showed thatαi > 0 for all i ∈ U

and so vCP is always non-negative.
Now, keeping in mind that all the yi’s may not be available for all i ∈ s, so with

respect to the response probability δ∗i , an unbiased estimator for population mean is

eB =
1

N

∑
i∈s

yi
π∗i

(
δi
δ∗i

)
=

1

N

∑
i∈s

ui
π∗i
, where ui = yi

δi
δ∗i
, (39)

since ER(ui) = yi and EPER(eB) = EP ( 1
N

∑
i∈s

yi
π∗
i
) = Ȳ .

The variance of eB is obtained as
V (eB) = VPER(eB) + EPVR(eB)
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Following Chaudhuri, Adhikary and Dihidar (2000), an unbiased estimator of the
variance of eB is:

v(eB) =
1

N2
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(41)

Next, as δ∗i is unknown to us, so following Chaudhuri (2010), we can have the re-
quired estimators and variance estimators of the population mean as êB = eB|{δ∗i =

δ̂∗i } and v(eB)|{δ∗i = δ̂∗i } i.e. replacing δ∗i in eB and v(eB) throughout by its esti-
mate δ̂∗i obtained by any means as discussed earlier.

4.2. Efficiency comparison

To get some ideas about the estimates and the measure of errors obtained in a
practical sample survey situation, we perform the simulation by drawing samples
of size equal to 15% of the population size by each of above mentioned sampling
schemes taking the usual number of hours of working per week (x) as the size mea-
sure. Let us denote the estimators based on the two sampling designs by êM and
êB , the subscripts M and B being for Midzuno’s and Modified Brewer’s sampling
schemes respectively. The notations used for different competitive estimators for
population mean concerned are described as below.

(1) êM (1) and êB(1): Based on the estimate of δ∗i as δ̂∗i1 = r
n , the traditional

MCAR estimator.
(2) êM (2) and êB(2): Based on the estimate of δ∗i as δ̂∗i2 obtained from usual

logit model.
(3) êM (3) and êB(3): Based on the estimate of δ∗i as δ̂∗i3 obtained from Bethle-

hem (2012) model.
(4) êM (4, λ = ...) and êB(4, λ = ...): Based on compromising in between

traditional MCAR and Bethlehem (2012) model.
We compare the estimators using measures based on confidence intervals for the

parameters they are meant to estimate. For each sampling scheme, the sampling is
replicated a large number of times, say, 10000 times and the corresponding estimator
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is computed for each such sample. The standardized pivotal, namely, τ = θ̂−θ√
v(θ̂)

is
assumed to be a standard normal deviate. Then,(

θ̂ − 1.96

√
v(θ̂), θ̂ + 1.96

√
v(θ̂)

)
is used as a 95% confidence interval for θ based on the estimator θ̂.

Two measures based on this confidence interval are often used to compare the
performance of the alternative estimators. One is the ACP, i.e., the Average Coverage
Percentage, which is the percent of the replicated samples for which θ is covered by
the above confidence interval. The second measure is the AL, i.e., the average length,
which is the length of the confidence interval ( =2× 1.96

√
v(θ̂) ) averaged over all

the replicates.
We consider another measure, namely the simulation coefficient of variation (or

in short SimCV, say) defined by

SimCV (θ̂) = 100×

√
1
L

∑L
l=1

(
θ̂l −

(
1
L

∑L
l=1 θ̂l

))2
|θ|

,

where
L = the number of replications in the simulation study,
θ̂l = the value of the estimator in the lth iteration (l = 1, 2, . . . , L),
θ = the value of the population parameter computed based on the whole population

dataset.
As the simulation CV is not sufficient to compare the accuracies of the estimators,

additionally some more values are computed. These are defined below.
(i) Simulation relative biases of the estimators given by:

rB(θ̂) = 100×
1
L

∑L
l=1 θ̂l − θ
|θ|

,

(ii) Simulation relative Root Mean Squared Errors given by:

rRMSE(θ̂) = 100×
1
L

∑L
l=1

(
θ̂l − θ

)2
|θ|

,

(iii) Simulation relative biases of variance estimators given by:

rB(D̂2(θ̂)) = 100×
1
L

∑L
l=1 D̂

2(θ̂l)− D̂2(θ̂)

D̂2(θ̂)
,

where
D̂2(θ̂l) = the value of the variance estimator in the lth iteration (l = 1, 2, . . . , L),

and
D̂2(θ̂) = 1

L

∑L
l=1

(
θ̂l −

(
1
L

∑L
l=1 θ̂l

))2
.
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A good estimator is the one with a high value of ACP; the closer this value is to
95%, the better the estimator. Again, with respect to AL, a good estimator should
have a small value of AL. Similarly, the small values for the criteria SimCV, Simula-
tion relative biases of the estimators, Simulation relative Root Mean Squared Errors,
Simulation relative biases of variance estimators are also desirable for a good estima-
tor. We present the results of these comparison criteria in Tables 1 to 4. Almost all
the above stated criteria show good performances. More specifically, it is interesting
to note that all values of the biases of the estimators are negative, and they are quite
small, and the only exception is for the biases of the variance estimators. It is im-
portant to note that they are not so quite small, and this inspires us to investigate for
other variance estimators in the future research. However, the overall results show
that the estimator based on Bethlehem (2012) model used in unequal probability
sampling scheme is a good competitor of the traditional estimators. Moreover, the
compromised estimators based on the MCAR and Bethlehem (2012) model may also
be tried with several compromising factors in order to achieve further improvement.

Table 1. Simulation results for alternative estimators (Midzuno’s scheme)

Estimator ACP (θ̂) AL(θ̂) SimCV (θ̂) rB(θ̂) rRMSE(θ̂) rB(D̂2(θ̂))
(%) (%)

MCAR(êM (1)) 95.8 195.7 14.38 -2.37 14.55 131.99
Logistic(êM (2)) 97.0 240.1 14.83 -1.82 14.92 136.56
Bethlehem(êM (3)) 96.3 220.8 13.13 -6.53 14.65 195.54

Table 2. Simulation results for compromised estimators (Midzuno’s scheme)

Estimator ACP (θ̂) AL(θ̂) SimCV (θ̂) rB(θ̂) rRMSE(θ̂) rB(D̂2(θ̂))
(%) (%)

êM (4, λ = 0.1) 95.7 196.5 13.87 -4.31 14.50 134.78
êM (4, λ = 0.2) 95.2 190.7 13.45 -5.83 14.64 142.56
êM (4, λ = 0.3) 94.9 190.8 13.11 -7.00 14.84 150.96
êM (4, λ = 0.4) 95.7 189.2 12.82 -7.86 15.02 159.28
êM (4, λ = 0.5) 94.8 196.4 12.58 -8.44 15.13 168.10
êM (4, λ = 0.6) 94.7 199.7 12.40 -8.74 15.16 177.06
êM (4, λ = 0.7) 95.1 203.2 12.29 -8.76 15.08 185.81
êM (4, λ = 0.8) 95.4 206.7 12.28 -8.46 14.90 193.31
êM (4, λ = 0.9) 96.0 219.5 12.46 -7.77 14.67 197.93
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Table 3. Simulation results for alternative estimators (Modified Brewer’s scheme)

Estimator ACP (θ̂) AL(θ̂) SimCV (θ̂) rB(θ̂) rRMSE(θ̂) rB(D̂2(θ̂))
(%) (%)

MCAR(êB(1)) 96.3 245.23 14.49 -3.14 14.81 137.28
Logistic(êB(2)) 96.8 263.70 15.43 -1.60 15.50 182.50
Bethlehem(êB(3)) 98.3 262.08 13.72 -6.46 15.15 219.12

Table 4. Simulation results for compromised estimators (Modified Brewer’s scheme)

Estimator ACP (θ̂) AL(θ̂) (%) rB(θ̂) rRMSE(θ̂) rB(D̂2(θ̂))
(%) (%)

êB(4, λ = 0.1) 97.60 239.21 14.05 -4.82 14.84 145.24
êB(4, λ = 0.2) 97.40 237.26 13.71 -6.12 15.00 153.24
êB(4, λ = 0.3) 97.00 236.40 13.43 -7.11 15.19 161.64
êB(4, λ = 0.4) 98.40 236.53 13.22 -7.82 15.35 170.53
êB(4, λ = 0.5) 98.00 237.61 13.06 -8.27 15.45 179.91
êB(4, λ = 0.6) 98.20 239.70 12.96 -8.48 15.48 189.63
êB(4, λ = 0.7) 98.20 242.89 12.93 -8.43 15.43 199.41
êB(4, λ = 0.8) 98.20 247.39 13.00 -8.11 15.32 208.66
êB(4, λ = 0.9) 97.80 253.55 13.22 -7.48 15.18 216.20

5. Concluding remarks

This paper presents a general framework to estimate the population mean in the
presence of auxiliary variables and non-response under the unequal probability sam-
pling scheme. It is shown that the good competitive estimators can be obtained by
estimating the response probabilities postulating good models keeping in mind that
the values of the possible correlated variables may also not be available for the non-
respondents. Finally, the doubtful missing data can also be profitably handled with
the use of compromised estimator. Moreover, we need to examine the performance
of the suggested estimators with some other estimators like Kott and Chang (2010),
Chang and Kott (2008). Our research is in progress to see if the results of the pro-
posed estimators in this paper show better performance in comparison with Kott and
Chang (2010), Chang and Kott (2008) estimators.
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