
STATISTICS IN TRANSITION new series, Summer 2014 

 

341 

STATISTICS IN TRANSITION new series, Summer 2014 
Vol. 15, No. 3, pp. 341–368 

GENERATING SYNTHETIC MICRODATA TO 
ESTIMATE SMALL AREA STATISTICS IN THE 

AMERICAN COMMUNITY SURVEY 

Joseph W. Sakshaug1, Trivellore E. Raghunathan2 

ABSTRACT 

Small area estimates provide a critical source of information used to study local 
populations. Statistical agencies regularly collect data from small areas but are 
prevented from releasing detailed geographical identifiers in public-use data sets 
due to disclosure concerns. Alternative data dissemination methods used in 
practice include releasing summary/aggregate tables, suppressing detailed 
geographic information in public-use data sets, and accessing restricted data via 
Research Data Centers. This research examines an alternative method for 
disseminating microdata that contains more geographical details than are 
currently being released in public-use data files. Specifically, the method replaces 
the observed survey values with imputed, or synthetic, values simulated from a 
hierarchical Bayesian model. Confidentiality protection is enhanced because no 
actual values are released. The method is demonstrated using restricted data from 
the 2005-2009 American Community Survey. The analytic validity of the 
synthetic data is assessed by comparing small area estimates obtained from the 
synthetic data with those obtained from the observed data.  

Key words: counties, microdata, multiple imputation, data confidentiality. 

1. Introduction 

Demand for small area estimates is growing rapidly among a variety of 
stakeholders who use these data to advance the study of issues affecting local 
communities and the lives of their residents (Tranmer et al., 2005). Statistical 
agencies regularly collect data from small geographic areas and are therefore in a 
unique position to meet some of this demand. However, they are often prevented 
from releasing microdata for such areas because releasing detailed geographical 
identifiers for small areas may increase the risk of respondent re-identification 
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and inadvertent disclosure of confidential information (Mackie and Bradburn, 
2000).  

In order to minimize the risk of disclosure, statistical agencies commonly 
adopt one or more of the following data dissemination methods: 1) release 
summary tables that contain aggregate data for specific geographic areas (e.g., 
counties, census tracts, block groups); 2) suppress geographical details in public-
use microdata sets for areas that fail to meet a predefined population threshold 
(e.g., 100,000) and; 3) release the unmasked confidential data set to data users via 
a secure data enclave or Research Data Center (RDC). Although these approaches 
are useful in many situations, each has limitations that preclude its ability to meet 
the growing demand for small area data that is being fuelled by researchers, 
analysts, policy-makers, and community planners. 

For example, summary tables are useful tools for describing basic profiles of 
housing- and/or person-level characteristics for a wide variety of geographical 
areas, but their utility is limited to addressing complex scientific hypotheses that 
require customizable analytic approaches that are not feasible using existing 
aggregate data products. Releasing public-use microdata mitigates this issue by 
enabling users to perform customized analyses that go beyond the capabilities of 
published summary tables, but the suppression of identifiers for the smallest 
geographic areas limits their use for studying small area phenomenon. Releasing 
restricted microdata via a Research Data Center overcomes the limitations of the 
previous two by permitting users access to the full unmasked microdata, including 
all small area identifiers. In order to access data within an RDC, one must submit 
a research proposal, apply for special sworn status, pay a data usage fee, and 
travel to the nearest RDC facility. Unfortunately, these requirements are too 
restrictive for many analysts. 

1.1. Synthetic data for small geographic areas 

This article investigates a fourth approach that may permit statistical agencies 
to release more detailed geographical information in public-use data sets without 
compromising on data confidentiality. The approach extends the idea, originally 
proposed by Rubin (1993), of replacing the observed data values with multiply-
imputed, or synthetic, values. The general idea is to treat the unobserved portion 
of the population as missing data to be multiply imputed using a predictive model 
fitted using the observed data. A random sample of arbitrary size is then drawn 
from each synthetic population which comprises the public-use data sets. Valid 
inferences are obtained by analyzing each synthetic data set separately and 
combining the point estimates and standard errors using combining rules 
developed by Raghunathan, Reiter, and Rubin (2003).  

The synthetic data literature focuses on preserving statistics about the entire 
sample, but preserving small area statistics is usually ignored. Statistics about 
small areas can be extremely valuable to data users, but detailed geospatial 
information is almost always suppressed in public-use survey data.  Research on 
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model-based small area estimation has led to a greater understanding of how 
small area data can be summarized by statistical models (Platek et al., 1987; Rao, 
2003), and such models could potentially be used for simulating small area 
microdata. 

1.2. Fully synthetic versus partially synthetic data 

There are two general synthetic data approaches: full synthesis and partial 
synthesis.  Under a fully synthetic design all survey variables are synthesized and 
no real data is released. This approach provides the highest level of privacy and 
confidentiality protection (Drechsler, Bender, and Raessler, 2008), but the 
analytic validity of inferences drawn from the synthetic data may be poor if 
important relationships are omitted or mis-specified in the imputation model. 
Partial synthesis involves synthesizing a subset of variables or records that are 
pre-identified as being the most vulnerable to disclosure (Little, 1993; Kennickell, 
1997; Liu and Little, 2002; Reiter, 2003). If implemented properly, this approach 
yields high analytic validity as inferences are less sensitive to misspecification of 
the imputation model. However, because the observed sample units and the 
majority of their data values are released to the public, it does not provide the 
same level of disclosure protection as full synthesis (Drechsler et al., 2008).  

At the present time, the creation of partially synthetic data files is the most 
common application of synthetic data in large databases (Abowd, Stinson, and 
Benedetto, 2006; Rodriguez, 2007; Kinney et al., 2011). There are worthwhile 
reasons why fully synthetic data may be more appropriate for small area 
applications. Perhaps, the most important reason is that complete synthesis can 
offer stronger levels of disclosure protection than partial synthesis. Data 
disseminators are obligated by law to prevent data disclosures and may face 
serious penalties if they fail to do so. Maintaining high levels privacy protection 
should take precedence over maintaining high levels of analytic validity. This 
point is particularly important for small geographic areas, which may contain 
sparse subpopulations and higher proportions of unique cases that are especially 
susceptible to re-identification. A secondary benefit of fully synthetic data is that 
arbitrarily large sample sizes may be drawn from the synthetic populations, 
facilitating analysis for data users who would otherwise be forced to exclude areas 
with insufficient sample sizes, or apply complex indirect estimation procedures to 
compensate for the lack of sampled cases.  

1.3. Organization of article 

This article investigates an extension to Rubin’s synthetic data method for the 
purpose of creating fully synthetic, public-use microdata sets for small geographic 
areas. A hierarchical Bayesian model is used that accounts for multiple levels of 
geography and “borrows strength” across related areas. A sequential multivariate 
regression procedure is used to approximate the joint distribution of the observed 
data, which is then used to simulate synthetic values from the posterior predictive 
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distribution (Raghunathan et al., 2001). How statistical agencies may generate 
fully synthetic data for small geographic areas is demonstrated using a subset of 
restricted data from the American Community Survey. Synthetic data is generated 
for several commonly used household- and person-level variables and their 
analytic validity is assessed by comparing inferences obtained from the synthetic 
data with those obtained from the actual data. The disclosure risk properties of the 
synthetic data methodology are not assessed here and are left to future work. 
Limitations of the app roach and possible extensions are discussed in the final 
section. 

2. Review of fully synthetic data 

2.1. Creation of fully synthetic data sets 

The general framework for creating and analyzing fully synthetic data sets is 
described in Raghunathan et al. (2003) and Reiter (2005). Suppose a sample of 
size 𝑛 is drawn from a finite population Ω = (𝑋,𝑌) of size 𝑁, with 𝑋 =
(𝑋𝑖; 𝑖 = 1,2, … ,𝑁) representing design, geographical, or other auxiliary 
information available for all 𝑁 units in the population, and 𝑌 = (𝑌𝑖; 𝑖 =
1,2, … ,𝑁) representing the survey variables of interest. It is assumed that there is 
no confidentiality concern over releasing information about 𝑋 and synthesis of 
these auxiliary variables is not needed, but the method can be extended to 
synthesize these variables if necessary. Let 𝑌𝑜𝑏𝑠 = (𝑌𝑖; 𝑖 = 1,2, … ,𝑛) be the 
observed portion of 𝑌 corresponding to sampled units and 𝑌𝑛𝑜𝑏𝑠 = (𝑌𝑖; 𝑖 = 𝑛 +
1,𝑛 + 2, … ,𝑁) be the unobserved portion of 𝑌 corresponding to the nonsampled 
units. The observed data set is 𝐷 = (𝑋,𝑌𝑜𝑏𝑠). For simplicity, assume there are no 
item missing data in the observed data, but methods exist for handling this 
situation (Reiter, 2004). 

Fully synthetic data sets are constructed in two steps. First, 𝑀 synthetic 
populations 𝑃(𝑙) = ��𝑋,𝑌(𝑙)�; 𝑙 = 1,2, … ,𝑀� are generated by taking independent 
draws from the Bayesian posterior predictive distribution of 𝑓(𝑌𝑛𝑜𝑏𝑠|𝑋,𝑌𝑜𝑏𝑠) 
conditional on the observed data 𝐷. Alternatively, one can generate synthetic 
values of 𝑌 for all 𝑁 units to ensure that no observed values of 𝑌 are released. The 
number of synthetic populations 𝑀 is determined based on the desired accuracy 
for synthetic data inferences and the risk of disclosing confidential information. A 
modest number of fully synthetic data sets (e.g., 5 or 10) are usually sufficient to 
ensure valid inferences (Raghunathan et al., 2003). In the second step, a random 
sample of size 𝑛𝑠𝑦𝑛 is drawn from each of the 𝑙 = 1,2, … ,𝑀 synthetic data 
populations, 𝐷(𝑙) = �𝑥𝑖,𝑦𝑖

(𝑙), 𝑖 = 1,2, … ,𝑛𝑠𝑦𝑛�. The corresponding 𝑀 synthetic 
samples 𝐷𝑠𝑦𝑛 = �𝐷(𝑙); 𝑙 = 1,2, … ,𝑀� comprise the public-use data sets, which 
are released to, and analyzed by, data users. In practice, the first step of generating 
complete synthetic populations is unnecessary and we only need to generate 
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values of 𝑌 for units in the synthetic samples. The complete synthetic population 
setup is useful for theoretical development of combining rules. 

2.2. Obtaining inferences from fully synthetic data sets 

From the publicly-released synthetic data sets, data users can make inferences 
about a scalar population quantity 𝑄 = 𝑄(𝑋,𝑌), such as the population mean of 𝑌 
or the population regression coefficients of 𝑌 on 𝑋. Suppose the analyst is 
interested in obtaining a point estimate 𝑞 and an associated measure of 
uncertainty 𝑣 of 𝑄 from a set of synthetic samples 𝐷𝑠𝑦𝑛 drawn from the synthetic 
populations 𝑃𝑠𝑦𝑛 = �𝑃(𝑙); 𝑙 = 1,2, … ,𝑀� under simple random sampling. The 
values of 𝑞 and 𝑣 computed on the M synthetic data sets are denoted by 
�𝑞(𝑙),𝑣(𝑙), 𝑙 = 1,2, … ,𝑀�. 

Consistent with the theory of multiple imputation for item missing data 
(Rubin, 1987; Little and Rubin, 2002), combining inferences about 𝑄 = 𝑄(𝑋,𝑌) 
from a set of synthetic samples 𝐷𝑠𝑦𝑛 is achieved by approximating the posterior 
distribution of 𝑄 conditional on 𝐷𝑠𝑦𝑛. The suggested approach, outlined by 
Raghunathan et al. (2003), is to treat �𝑞(𝑙),𝑣(𝑙); 𝑙 = 1,2, … ,𝑀� as sufficient 
summaries of the synthetic data sets 𝐷𝑠𝑦𝑛 and approximate the posterior density 
𝑓�𝑄|𝐷𝑠𝑦𝑛� using a normal distribution with the posterior mean 𝑄 computed as the 
average of the estimates, 

 
𝑞�𝑀 = �𝑞(𝑙)

𝑀

𝑙=1

/𝑀 (1) 
 

and the approximate posterior variance is computed as, 

 𝑇𝑀 = (1 + 𝑀−1)𝑏𝑀 − 𝑣𝑚 (2) 

where�̅�𝑀 = ∑ 𝑣(𝑙)𝑀
𝑙=1 /𝑀 is the overall mean of the estimated variances across all 

synthetic data sets (“within variance”) and 𝑏𝑀 = ∑ �𝑞(𝑙) − 𝑞�𝑀�
2

/(𝑀− 1)𝑀
𝑙=1  is 

the variance of 𝑞(𝑙) across all synthetic data sets (“between variance”).  
Under certain regulatory conditions specified in Raghunathan et al. (2003), 

𝑞�𝑀 is an unbiased estimator of 𝑄 and 𝑏𝑀 − 𝑣𝑚 is an unbiased estimator of the 
variance of 𝑄. The 1

𝑀
𝑏𝑀 adjusts for using only a finite number of synthetic data 

sets. It should be noted that the subtraction of the within imputation variance in 
𝑇𝑀 is due to the additional step of sampling units from the synthetic populations. 
Because of this extra sampling step, the between imputation variance contains the 
true between and nearly twice the amount of within variance needed to obtain an 
unbiased estimate of T. 

When 𝑛, 𝑛𝑠𝑦𝑛, and 𝑀 are large, inferences for scalar 𝑄 can be based on 
normal distributions. For moderate 𝑀, inferences can be based on t-distributions 
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with degrees of freedom 𝛾𝑀 = (𝑀 − 1)(1 − 𝑟𝑚−1)2, where 𝑟𝑚 = (1 +𝑀−1)𝑏𝑚/
�̅�𝑀, so that a (1 − 𝛼)% interval for 𝑄 is 𝑞�𝑀 ± 𝑡𝛾𝑀(𝛼/2)�𝑇𝑀 as described in 
Raghunathan and Rubin (2000). Extensions for multivariate 𝑄 are described in 
Reiter and Raghunathan (2007). 

A limitation of the variance estimator 𝑇𝑀 is that it can produce negative 
variance estimates. Negative values of 𝑇𝑀 can generally be avoided by increasing 
𝑀or 𝑛𝑠𝑦𝑛. Numerical routines can be used to calculate the integrals involved in 
the construction of 𝑇𝑀, yielding more precise variance estimates (Raghunathan et 
al., 2003). A simpler variance approximation that is always positive is shown in 
Reiter (2002). 

3. Creation of synthetic data sets for small geographic areas 

Hierarchical models have been used in several applications of small area 
estimation (Fay and Herriot, 1979; Malec et al., 1997). See Rao (2003) for a 
comprehensive review of design-based, empirical Bayes, and fully Bayesian 
approaches for small area estimation. Hierarchical models have also been used for 
multiple imputation of missing data in multilevel data structures (Reiter, 
Raghunathan, and Kinney, 2006; Yucel, 2008). 

The approach considered here involves three stages. In the first stage, the joint 
density of the variables to be synthesized is approximated by fitting sequential 
regression models based on the observed data within each small area. In the 
second stage, the sampling distribution of the unknown regression parameters 
(estimated in the first stage) is approximated and the between-area variation is 
modelled using auxiliary information. In the third stage, the unknown regression 
parameters are simulated and used to draw synthetic microdata values from the 
posterior predictive distribution. 

Two levels of geography are considered. For illustration, consider “small 
areas” as counties nested within states. In illustrating the approach, the models are 
kept relatively simple from a computational perspective to make the modelling 
practical. Despite the simplified presentation, the framework can be extended to 
handle more sophisticated modelling approaches.  

3.1. Stage 1: Approximation of joint density via sequential regression 

Suppose that a simple random sample of size 𝑛 is drawn from a finite 
population of size 𝑁. Assuming units were sampled from each county, let 𝑛𝑐𝑠 and 
𝑁𝑐𝑠 denote the respective sample and population sizes for county 𝑐 = (1,2, … ,𝐶𝑠) 
nested within state 𝑠 = (1,2, … , 𝑆). Let 𝑌𝑐𝑠 = �𝑌𝑖𝑐𝑠,𝑝; 𝑖 = 1,2, … ,𝑛𝑐𝑠;  𝑝 =
1,2, … ,𝑃� represent the 𝑛𝑐𝑠 × 𝑃 matrix of survey variables collected from each 
survey respondent located in county 𝑐 and state 𝑠. Let 𝑋𝑐𝑠 = �𝑋𝑖𝑐𝑠,𝑗; 𝑖 =
1,2, … ,𝑛𝑐𝑠,𝑛𝑐𝑠 + 1, … ,𝑁𝑐𝑠;  𝑗 = 1,2, . . , 𝐽� represent the 𝑁𝑐𝑠 × 𝐽 matrix of 
auxiliary or administrative variables known for every population member in a 
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particular county and state. Here only the survey variables 𝑌𝑐𝑠,𝑝 are synthesized, 
but it is straightforward to synthesize the auxiliary variables 𝑋𝑐𝑠,𝑗 as well. 

A desirable property of the synthetic data is that the multivariate 
relationships among the observed variables are maintained in the synthetic data, 
i.e., the joint distribution of variables given the auxiliary information 
𝑓�𝑌𝑐𝑠,1,𝑌𝑐𝑠,2, … ,𝑌𝑐𝑠,𝑃|𝑋𝑐𝑠,𝑗� is preserved. Specifying and simulating from the joint 
conditional distribution can be difficult for complex data structures involving 
large numbers of variables representing a variety of distributional forms. 
Alternatively, one can approximate the joint density as a product of conditional 
densities (Raghunathan et al., 2001). That is, the joint density 
𝑓�𝑌𝑐𝑠,1,𝑌𝑐𝑠,2, … ,𝑌𝑐𝑠,𝑃|𝑋𝑐𝑠,𝑗� can be factored into the following conditional 
densities: 𝑓�𝑌𝑐𝑠,1|𝑋𝑐𝑠,𝑗�, 𝑓�𝑌𝑐𝑠,2|𝑌𝑐𝑠,1,𝑋𝑐𝑠,𝑗�,…,𝑓�𝑌𝑐𝑠,𝑃|𝑌𝑐𝑠,1, … ,𝑌𝑐𝑠,𝑃−1,𝑋𝑐𝑠,𝑗�. In 
practice, a sequence of generalized linear models are fit based on the observed 
county-level data where the variable to be synthesized comprises the outcome 
variable that is regressed on any auxiliary variables or previously fitted variables, 
e.g.,  𝑌𝑖𝑐𝑠,1 = (𝑋𝑖𝑐𝑠)𝛽𝑐𝑠,1 + 𝜀𝑖𝑐𝑠, 𝑌𝑖𝑐𝑠,2 = �𝑋𝑖𝑐𝑠,𝑌𝑖𝑐𝑠,1�𝛽𝑐𝑠,2 + 𝜀𝑖𝑐𝑠 ,…,𝑌𝑖𝑐𝑠,𝑃 =
�𝑋𝑖𝑐𝑠,𝑌𝑖𝑐𝑠,1,𝑌𝑖𝑐𝑠,2, … ,𝑌𝑖𝑐𝑠,𝑃−1�𝛽𝑐𝑠,𝑃 + 𝜀𝑖𝑐𝑠. The choice of model (e.g., Gaussian, 
binomial) is dependent on the type of variable to be synthesized (e.g., continuous, 
binary). It is assumed that any complex survey design features are incorporated 
into the generalized linear models and that each variable has been appropriately 
transformed to satisfy modelling assumptions. After fitting each conditional 
density, the vector of regression parameter estimates �̂�𝑐𝑠,𝑝, the corresponding 
covariance matrix 𝑉�𝑐𝑠,𝑝, and the residual variance 𝜎�𝑐𝑠,𝑝

2  are extracted from each of 
the 𝑃 regression models and incorporated into the hierarchical model described 
below. 𝑝 = (1,2, … ,𝑃)is used to index the set of parameters associated with the 
𝑝𝑡ℎ synthetic variable of interest and the 𝑝𝑡ℎ regression model from which the 
direct estimates are obtained.  

3.2. Stage 2: Sampling distribution and between-area model 

In the second stage, the joint sampling distribution of the design-based 
county-level regression estimates �̂�𝑐𝑠,𝑝 (obtained from each conditional model 
fitted in Stage 1) is approximated by a multivariate normal distribution, 

 �̂�𝑐𝑠,𝑝 ~ 𝑀𝑉𝑁�𝛽𝑐𝑠,𝑝,𝑉�𝑐𝑠,𝑝� (3) 

where𝛽𝑐𝑠,𝑝 is the (𝐽 + 𝑝) × 1 matrix of unknown regression parameters and 𝑉�𝑐𝑠,𝑝 
is the corresponding (𝐽 + 𝑝) × (𝐽 + 𝑝) estimated covariance matrix obtained from 
Stage 1. The unknown county-level regression parameters 𝛽𝑐𝑠,𝑝 are assumed to 
follow a multivariate normal distribution,  

 𝛽𝑐𝑠,𝑝 ~ 𝑀𝑉𝑁�𝛽𝑝𝑍𝑠, Σ𝑝� (4) 
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where𝑍𝑠 = �𝑍𝑠,𝑘;𝑘 = 1,2, … ,𝐾� is a 𝐾 × 1 matrix of state-level covariates, 𝛽𝑝 is 
a (𝐽 + 𝑝) × 𝐾 matrix of unknown regression parameters, and Σ𝑝 is a (𝐽 + 𝑝) ×
(𝐽 + 𝑝) covariance matrix. State-level covariates are incorporated into the 
hierarchical model in order to “borrow strength” from related areas. Prior 
distributions may be assigned to the unknown parameters 𝛽𝑝and Σ𝑝, but for 
computational simplicity it is assumed that 𝛽𝑝 and Σ𝑝 are fixed at their respective 
maximum likelihood estimates, a common assumption in hierarchical models for 
small area estimation (Fay and Herriot, 1979; Datta, Fay, and Ghosh, 1991; Rao, 
1999). Details for obtaining the maximum likelihood estimates using the 
expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) 
are provided in Appendix 1.  

Based on standard theory of the normal hierarchical model (Lindley and 
Smith, 1972), the unknown regression parameters 𝛽𝑐𝑠,𝑝 can be drawn from the 
following posterior distribution,  
 𝛽�𝑐𝑠,𝑝 ~ 𝑀𝑉𝑁 ��𝑉�𝑐𝑠,𝑝

−1 + Σ�𝑝−1�
−1�𝑉�𝑐𝑠,𝑝

−1 �̂�𝑐𝑠,𝑝 + Σ�𝑝−1�̂�𝑝𝑍𝑠�, �𝑉�𝑐𝑠,𝑝
−1 + Σ�𝑝−1�

−1� (5) 

where𝛽�𝑐𝑠,𝑝 is a simulated vector of values for the unknown regression parameters 
𝛽𝑐𝑠,𝑝 . 

3.3. Stage 3: Simulating from the posterior predictive distribution 

The ultimate objective is to generate synthetic populations for each small area 
using an appropriate posterior predictive distribution. Simulating a synthetic 
variable 𝑌�𝑐𝑠 = �𝑌�𝑙𝑐𝑠,𝑝; 𝑙 = 1,2, … ,𝑁𝑐𝑠;𝑝 = 1,2, … ,𝑃� for observed variable 𝑌𝑐𝑠 for 
synthetic population unit 𝑙 = (1,2, … ,𝑁𝑐𝑠) is achieved by drawing, in sequential 
fashion, from the following posterior predictive distributions 𝑓�𝑌�𝑐𝑠,1|𝑋𝑐𝑠 ,𝛽�𝑐𝑠,1�, 
𝑓�𝑌�𝑐𝑠,2|𝑌�𝑐𝑠,1,𝑋𝑐𝑠 ,𝛽�𝑐𝑠,1�, …, 𝑓�𝑌�𝑐𝑠,𝑃|𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑃−1,𝑋𝑐𝑠,𝛽�𝑐𝑠,1�. For example, if the 
first variable to be synthesized 𝑌𝑐𝑠,1 is normally distributed then 𝑌�𝑐𝑠,1 can be 
drawn from a normal distribution with location and scale parameters 𝑋𝑐𝑠𝛽�𝑐𝑠,1and 
𝜎𝑐𝑠,1
2  , respectively, where 𝜎𝑐𝑠,1

2  may be drawn from an appropriate posterior 
predictive distribution, or fixed at its maximum likelihood estimate 𝜎�𝑐𝑠,1

2  
(obtainable from Stage 1). Generating a second (normally distributed) synthetic 
variable 𝑌�𝑐𝑠,2 from the posterior predictive distribution 𝑓�𝑌�𝑐𝑠,2|𝑌�𝑐𝑠,1,𝑋𝑐𝑠,𝛽�𝑐𝑠,2� is 
achieved by drawing 𝑌�𝑐𝑠,2  from 𝑁��𝑋𝑐𝑠,𝑌�𝑐𝑠,1�𝛽�𝑐𝑠,2,𝜎𝑐𝑠,2

2 �, and  so on up to 
𝑌�𝑐𝑠,𝑃~𝑁��𝑋𝑐𝑠 ,𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑃−1�𝛽�𝑐𝑠,𝑃 ,𝜎𝑐𝑠,𝑃

2 �. Alternatively, if the variable under 
synthesis 𝑌𝑐𝑠,𝑝 is binary, then 𝑌�𝑐𝑠,𝑝 is drawn from a binomial distribution 
𝐵𝑖𝑛�1, �̂���𝑋𝑐𝑠 ,𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑝−1�𝛽�𝑐𝑠,𝑃��, where �̂���𝑋𝑐𝑠,𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑝−1�𝛽�𝑐𝑠,𝑃� is 
the predicted probability computed from the inverse-logit of 
��𝑋𝑐𝑠,𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑝−1�𝛽�𝑐𝑠,𝑃�. For polytomous variables, the same procedure is 
used to obtain posterior probabilities for each categorical response, which are then 
used to generate the synthetic values from a multinomial distribution. The 
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iterative simulation process continues until all synthetic variables 
�𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑃� are generated. The procedure is repeated M times to create 
multiple populations of synthetic variables �𝑌�𝑐𝑠,1

(𝑙) ,𝑌�𝑐𝑠,2
(𝑙) , … ,𝑌�𝑐𝑠,𝑃

(𝑙) ; 𝑙 = 1,2, … ,𝑀�. In 
addition, the entire cycle may be repeated several times to minimize ordering 
effects (Raghunathan et al., 2001). 

The complete synthetic populations may be disseminated to data users, or 
simple random samples of arbitrary size may be drawn from each population and 
released. Stratified random sampling may be used if different sampling fractions 
are to be applied within small areas. Inferences for a variety of estimands can be 
obtained using the combining rules in Section 2.2. 

4. American Community Survey (2005-2009) 

The proposed methodology is applied to a subset of restricted county-level 
microdata from the 2005-2009 American Community Survey (ACS), obtained 
from the Michigan Census Research Data Center. The ACS is an ongoing national 
survey that provides yearly estimates on a variety of topics, including income and 
benefits, health insurance coverage, disabilities, family and relationships, and 
others. The ACS collects information on persons living in housing units and 
group quarters facilities in all 3,141 counties in the United States. Data collection 
is conducted using a mixed-mode design. First, questionnaires are mailed to all 
sampled household addresses obtained from a Master Address File. 
Approximately six weeks after the questionnaire is mailed the Census Bureau 
attempts to conduct telephone interviews with all households that do not respond 
by mail. Following the telephone operation, a random sample is taken from the 
list of addresses where interviews have not been obtained and these addresses are 
visited by a field representative. Full details of the ACS methodology can be 
found in the technical documentation (U.S. Census Bureau, 2009). 

Unlike the ACS public-use microdata files, the restricted data contain 
identifiers for all counties in the United States. For this application, we restrict the 
data to occupied housing units in the Northeast region. The Northeast region 
consists of 217 counties, all of which included households that completed ACS 
interviews. We use 5 years of restricted data to facilitate the disclosure review 
process and allow for the publication of estimates for all counties; the latter is not 
permitted with fewer years. Seven household- and seven person-level variables 
were selected for this analysis. The variables, shown in Table 1, were chosen by 
statisticians at the U.S. Census Bureau specifically for this project due to their 
common use among data users. Some variables (e.g., household tenure status, 
education, race) contained numerous categories. Ideally, each category would be 
preserved in the synthetic data; however, the decision was made to keep the 
number of categories at a minimum while maximizing the number of variables 
used in this small demonstration project. Thus, the few polytomous variables were 
recoded to reduce their number of categories. Transformations were applied to the 
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continuous variables to meet normality assumptions during the model fitting and 
the synthetic data generation stages. After the synthesis was completed, the 
variables were transformed back to their original scales. The Census Bureau 
applies single imputation to missing ACS values in the restricted and public-use 
data files. We treat these imputations as actual observations in this application. 

Table 1. List of ACS Variables Used in Synthetic Data Application. Variables 
Shown in the Order of Synthesis 

Variable Type Range/Categories  Transformation 

Household variables 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
    (excl. bedrooms) 
  Income   
  Tenure 
 

 
count 
continuous 
count 
continuous 
count 
 
continuous 
polytomous 
 

 
1 - 20 
1 - 201 
0 - 5 
1 - 687 
1 - 7 
 
0 – 3,999,996 
recoded; mortgage/loan, own 
free and clear, rent 

  
-- 
log 
-- 
cube root 
-- 
 
cube root 
-- 
 

Person variables 
  Sampling weight 
  Gender 
  Education 
 
  Hispanic ethnicity 
  Age 
  Race 
  Living in poverty 

 
continuous 
binary 
polytomous 
 
binary 
continuous 
polytomous 
binary 

 
1 - 341 
male, female 
recoded; < 12 years, 12 years,  
13-15 years, 16+ years 
yes, no 
0 - 115 
recoded; white, black, other 
yes, no 

  
log 
-- 
-- 
 
-- 
-- 
-- 
-- 

 
Ten fully synthetic household- and person-level data sets were generated for 

each county. To ensure that each synthetic data set contained ample numbers of 
households and persons within each county, synthetic samples were created to be 
approximately equivalent to 20% of the total number of households based on the 
decennial census count. This yielded a total synthetic sample size of 3,963,715 
households and 10,192,987 persons in the Northeast region.  

The first survey variable to be synthesized was household size. Creating a 
household size variable facilitates the subsequent generation of synthetic person-
level data. Household size was simulated using a Bayesian Poisson-Gamma 
model conditional on the observed household size variable with unknown 
hyperparameters fixed at their marginal maximum likelihood estimates obtained 
using the Newton-Raphson algorithm (see Appendix 2 for details). All subsequent 
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variables were synthesized using the hierarchical modelling approach described in 
Section 3. State-level covariates 𝑍𝑠that were incorporated into the hierarchical 
model included population size (2005 estimate: log-transformed) and the number 
of metropolitan and micropolitan areas. These covariates were obtained from the 
Census Bureau website. 

For numerical variables (continuous, count), design-based estimates of 
regression parameters were obtained by fitting normal linear models within each 
county and synthetic values were drawn from the Gaussian posterior predictive 
distribution. For binary variables, logistic regression models were used to obtain 
the design-based parameter estimates and synthetic values were drawn from the 
binomial posterior predictive distribution. Logistic regression was also applied to 
polytomous variables after breaking them up into a series of conditional binary 
variables, estimating the propensity of a case belonging to a particular category 
versus all other categories, and using those propensities to predict case 
membership. We considered using multinomial regression for polytomous 
variables, but preliminary testing yielded convergence and stability problems for 
many counties. Therefore the decision was made to use the modified logistic 
regression approach. To increase the stability of the estimated regression 
coefficients, a minimum sample size rule of 10 ∙ 𝑝 was applied within each 
county. If the target county did not meet this sample size threshold then nearby 
counties were pooled together until the criterion was met. 

The household variables were synthesized first, followed by the person 
variables. After the synthetic household data sets had been created, they were 
converted to person-level data sets based on values of the synthetic household size 
variable. Taylor series linearization (Binder, 1993) was used to adjust the 
variances of the design-based regression estimates for the additional homogeneity 
due to persons clustered within households. To reduce the ordering effect induced 
by synthesizing the variables in a prescribed order, we repeat the entire synthetic 
data process 4 additional times, each time conditioning on the full set of synthetic 
variables generated from the previous implementations. Finally, it should be 
noted that the person-level variables were synthesized independently of the 
household-level variables. Although multiple imputation theory dictates that one 
should condition on all available information (Rubin, 1987), we found in 
preliminary runs that cycling between household- and person-level synthesis by 
aggregating person-level variables up to the household-level did not yield 
satisfactory inferences, possibly due to the non-standard distributions that the 
aggregation procedure produced. After applying several transformation 
procedures to the aggregated person-level variables, which did not significantly 
improve the imputations, we decided to keep the household and person levels 
separate for this demonstration project. 

All results were reviewed and approved by the U.S. Census Bureau’s 
Disclosure Review Board. 
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4.1. Validity of univariate estimates 

Figure1 contains back-to-back histograms depicting the overall distributions 
for each continuous household- and person-level variable. The actual distributions 
are shown in the left panel and the synthetic distributions in the right panel. All 
variables are presented in their original scale. Visual comparisons show that for 
some variables, the synthetic data distribution corresponds to the actual data 
distribution reasonably well, but for others, the correspondence is poorer. 
Although the bulk of the distributions are generally maintained in the synthetic 
data, not every peak and valley is preserved. Those variables which do not follow 
a smooth parametric form tend to be most susceptible to a lack of correspondence. 
For example, the shape of the age distribution is bimodal denoting the highest 
frequency of people between the ages of 0-20 and 45-55. The synthetic age 
values, which are simulated from a normal distribution, fail to reflect the 
underlying bimodality. To a lesser degree, the sampling weight variables exhibit 
some bimodality at the left-most portion of their distributions, which is also not 
accounted for by the synthetic data. More sophisticated techniques, such as 
mixture modelling or nonparametric imputation may do a better job of preserving 
these non-standard distributional forms. 

 

Figure 1. Back-to-Back Histograms of Actual (Left) and Synthetic (Right) 
Distributions for Continuous ACS Household- and Person-Level 
Variables in the Northeast Region. 

 

 



STATISTICS IN TRANSITION new series, Summer 2014 

 

353 

 

 
 

While it is useful to compare synthetic and actual variable distributions for 
purposes of evaluation, data users are most interested in the validity of the small 
estimates obtained from the synthetic data. Table 2shows summary measures of 
univariate county-level estimands obtained from the synthetic and actual data. 
The first column contains the original set of ACS variables as well as recoded 
binary variables indicating overall income percentiles (50th, 75th and 90th) and 
specific subgroups (income x tenure; poverty x race/ethnicity). The second 
column shows the average county mean obtained from the synthetic and actual 
data, across all 217 counties. The third and fourth columns show the average 
standard deviation and standard error of the county means. The last column 
contains the intercept and slope values obtained from regressing the actual county 
means against the corresponding synthetic means. Intercept values close to zero 
and slope values close to one indicate strong correspondence between the 
synthetic and actual data estimates.  
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The synthetic data estimates, based on the original ACS variables, correspond 
roughly to the actual estimates, on average; out of the 9 household- and 12 
person-level estimands, 5 and 10 of them yield synthetic point estimates that lie 
within two standard errors of the actual estimates, respectively, on average. The 
largest deviations occur for the tenure variable where the percentage of housing 
units being rented is overestimated by about two percentage points, on average, 
and the percentages of housing units owned free and clear and being financed 
through a mortgage or loan, are both underestimated in the synthetic data by about 
one and three percentage points, respectively, on average. These deviations are 
evident from examination of scatter plots of synthetic and actual county-level 
estimates (not shown, but available upon request). Similar over- and under-
estimation effects appear in estimates of the other polytomous variables 
(education, race), but to a lesser extent. The cause of these effects is likely driven 
by two joint factors. The overestimation is likely due to the pooling of nearby 
counties to facilitate model fit for target counties that contained insufficient 
numbers of rented housing units; the rarest of the three membership categories. 
For the affected counties, the act of pooling at the estimation stage yields a higher 
rate of rented housing units in the synthetic data, which is closer to the population 
average. The underestimation in the other tenure estimates is driven by the fact 
that rental status was the first tenure category to be simulated, followed by 
ownership (conditional on not being rented) and mortgage/loan status (conditional 
on not being rented or owned). A consequence of this step-by-step conditional 
simulation approach is that the higher rates of rented housing units generated for 
the areas with inadequate samples sizes are offset by lower rates of ownership and 
mortgage/loan status for these smaller areas. 

Aside from the positive/negative deviations among the polytomous estimates, 
the other estimates, based on continuous and binary ACS variables, appear to be 
reasonably valid as indicated by the diagnostic measures in Table 2. Many of the 
estimands yield intercept and slope values for the linear regression of actual 
county means against the synthetic means that are close to zero and one, 
respectively, indicating good correspondence between the actual and synthetic 
estimates. However, some of the continuous variables including electricity bill 
amount, household income, and, especially, age, yield larger deviations from the 
ideal intercept and slope values. The largest deviation occurs for the age 
estimates, which are likely due to the aforementioned bimodality of the age 
distribution that is reflected poorly in the synthetic data. The resulting synthetic 
county-level age estimates tend to be biased upward, particularly, for the counties 
with the highest average ages. 

The validity of the percentile and subgroup estimates is mixed. The 
percentage of households with incomes exceeding the 50th percentile in the 
synthetic data corresponds closely to the actual percentages, on average. 
However, the estimates based on the 75th and 90th percentiles are higher in the 
synthetic data by about 1.5-2.0 percentage points, on average. Scatterplots of the 
county-level percentile means (not shown, but available upon request) indicate 
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that the correspondence between synthetic and actual means becomes poorer as 
the percentile increases. Almost all of the income and poverty subgroup means lie 
within 1-2 standard errors of their corresponding actual means, on average. 
However, a positive and negative bias can be seen for synthetic estimates of mean 
income among mortgaged and rented housing units from scatterplots (not shown, 
but available upon request); a result that is likely due to the aforementioned 
under- and over-estimation of these tenure variables in the synthetic data, 
respectively.  

A few remarks can be made about the uncertainty of the synthetic estimates. 
Based on multiple imputation theory, we would expect the synthetic standard 
deviations to be approximately the same and the standard errors to be larger than 
the actual standard deviations and standard errors, respectively, on average. This 
expectation is confirmed for some, but not all estimates. In most cases, the 
synthetic data standard deviations are close to their actual data counterparts. A 
particular exception is age, which yields larger standard deviations in the 
synthetic data, on average, due to the aforementioned bimodal age distribution, 
which is smoothed over in the synthetic data causing more age values to lie 
further away from the mean. On average, about half of the synthetic standard 
errors is equal to or greater than the corresponding actual standard errors. 
Estimates of income tend to have smaller standard errors in the synthetic data, on 
average, as a result of outlying observations being less preserved in the synthetic 
data. Moreover, the underestimated variances could be caused by misspecification 
of the imputation model and/or poor choice of transformation for preserving the 
tail-end of the distribution in the synthetic data, a problem which has been 
highlighted in earlier research on the estimation of imputed totals in skewed 
populations (Rubin, 1983). Another possible source of variation not accounted for 
in the synthetic data is due to the fact that the hyperparameters were fixed at their 
maximum likelihood estimates (see Section 3.2), rather than being randomly 
drawn from an a priori distribution. 

Table 2. Summary Measures of Actual and Synthetic County Means 
  

Avg.  
Mean 

 
Avg. Standard 

 Deviation 

 
Avg. Standard  
Error of Mean 

Regression of 
Actual Means 
on Synthetic 

Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Household variables 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms 
  Income 
  Tenure (%) 
    Mortgage/loan 
    Own free & clear 
    Rent 

 
2.12 
9.99 
2.88 

118.89 
3.23 

67983.9 
 

49.00 
31.12 
19.88 

 
2.12 
10.20 
2.82 

119.37 
3.18 

67382.4 
 

47.03 
30.37 
22.60 

 
1.46 
7.21 
0.96 
78.72 
1.19 

68481.3 
 

49.38 
45.53 
38.86 

 
1.45 
7.04 
1.09 
78.33 
1.28 

54081.9 
 

49.30 
44.97 
41.00 

 
0.02 
0.11 
0.02 
1.25 
0.02 

1067.3 
 

0.82 
0.77 
0.63 

 
0.01 
0.11 
0.01 
1.10 
0.02 
692.6 

 
0.74 
0.72 
0.63 

 
0.02 
0.01 
0.15 
9.90 
0.09 

4681.7 
 

0.04 
0.05 
-0.05 

 
0.99 
0.98 
0.97 
0.91 
0.99 
0.94 

 
0.95 
0.85 
1.09 
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Table 2. Summary Measures of Actual and Synthetic County Means (cont.) 
  

Avg.  
Mean 

 
Avg. Standard 

 Deviation 

 
Avg. Standard  
Error of Mean 

Regression of 
Actual Means 
on Synthetic 

Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Recoded variables 
  Income > 50th pctile,% 
  Income > 75th pctile,% 
  Income > 90th pctile,% 
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
44.65 
19.34 
6.78 

84667.0 
61076.6 
38844.5 

 
44.56 
21.49 
8.38 

86992.6 
60456.9 
36921.9 

 
48.24 
37.34 
22.96 

69019.2 
76053.1 
37759.4 

 
48.19 
38.69 
24.58 

58960.1 
45083.6 
32527.3 

 
0.80 
0.59 
0.35 

1536.0 
2132.8 
1436.0 

 
0.56 
0.43 
0.24 

1195.3 
1232.7 
1166.5 

 
0.01 
-0.00 
0.56 

5460.0 
1717.0 
3480.0 

 
0.97 
0.91 
0.74 
0.91 
0.98 
0.99 

Person variables 
  Sampling weight 
  Gender (%) 
  Education (%) 
< 12 years 
    12 years 
    13-15 years 
    16+ years 
  Hispanic (%) 
  Age 
  Race (%) 
    White 
    Black 
    Other 
  Poverty (%) 
Recoded variables 
  Poverty (White=1; %) 
  Poverty (Black=1; %) 
  Poverty (Other=1; %) 
  Poverty (Hispanic=1; %) 

 
10.27 
48.63 

 
31.48 
28.34 
20.33 
19.85 
3.85 

40.89 
 

92.21 
3.55 
4.24 
8.65 

 
7.93 

20.48 
16.62 
19.92 

 
10.67 
48.63 

 
31.67 
27.74 
20.25 
20.35 
4.23 
41.16 

 
91.34 
4.01 
4.65 
9.04 

 
8.19 
21.30 
17.84 
21.11 

 
7.59 
49.97 

 
46.31 
44.40 
40.11 
38.72 
15.72 
22.98 

 
22.17 
14.54 
14.54 
27.54 

 
26.41 
36.86 
35.37 
37.08 

 
8.02 
49.97 

 
46.31 
44.06 
40.04 
39.14 
16.99 
30.34 

 
24.08 
16.26 
18.61 
28.13 

 
26.84 
37.03 
36.07 
37.96 

 
0.08 
0.53 

 
0.49 
0.48 
0.43 
0.40 
0.14 
0.25 

 
0.20 
0.13 
0.16 
0.30 

 
0.30 
4.62 
2.96 
3.52 

 
0.14 
0.44 

 
0.39 
0.57 
0.50 
0.51 
0.26 
0.27 

 
0.36 
0.26 
0.27 
0.53 

 
0.51 
3.52 
4.38 
5.54 

 
-0.09 
0.04 

 
0.09 
0.01 
0.01 
-0.01 
-0.00 
22.02 

 
0.01 
-0.01 
-0.00 
-0.00 

 
-0.00 
-0.01 
0.01 
-0.01 

 
0.97 
0.91 

 
0.71 
0.97 
0.96 
1.00 
1.00 
0.46 

 
1.00 
1.00 
1.00 
1.00 

 
1.00 
1.01 
0.87 
0.98 

4.2. Validity of multivariate estimates 

The next set of analyses examine the analytic validity of synthetic 
multivariate estimates obtained from multiple regression models. Table 3 shows 
average coefficient estimates (and their standard errors) for two regression models 
fit within each county. The first model fits a household-level linear regression of 
income (cube root) on the remaining ACS household covariates, and the second 
model fits a person-level logistic regression of poverty status on the remaining 
person covariates. Both models yield coefficient estimates based on the synthetic 
data that closely resemble those based on the actual data. Nearly all of the 
synthetic data coefficient estimates lie within one standard error of their 
corresponding actual data estimates, on average. Scatterplots of the synthetic and 
actual county regression coefficients (not shown, but available upon request) 
show that the synthetic data county estimates are in agreement with the actual 
county estimates as the points lie about the 45 degree line. However, there are 
clear biases associated with some coefficients, particularly, those associated with 
tenure variables that have already been shown to be affected by biases in the 
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synthetic data. The standard errors of the synthetic data estimates appear to be on 
par, and in some cases, twice as large as those of the actual data estimates. In 
summary, the multivariate relationships examined here appear to be reasonably 
valid in the synthetic data. This is a reassuring result given that these relationships 
were explicitly accounted for in the synthetic data generation models. 

Table 3. Summary Measures of Actual and Synthetic Linear and Logistic County 
Regression Coefficients 

 
 

Avg. Beta  
Coefficient 

Avg. Standard Error 
of Beta Coefficient 

Linear regression of household  income (cube 
root) on household-level covariates 

 
Actual 

 
Synthetic 

 
Actual 

 
Synthetic 

Intercept 
Household size 
Sampling weight 
Total bedrooms 
Electricity bill/mo. 
Total rooms 
Tenure 
Mortgage/loan 
Own free & clear 
Rent 

24.34 
1.52 
-0.04 
1.15 
0.99 
1.25 

 
Ref 

-3.47 
-6.01 

24.26 
1.44 
-0.05 
1.23 
1.04 
1.26 

 
Ref 

-3.05 
-6.84 

1.11 
0.14 
0.24 
0.19 
0.18 
0.14 

 
Ref 
0.37 
0.44 

1.09 
0.14 
0.26 
0.18 
0.17 
0.13 

 
Ref 
0.34 
0.47 

 Avg. Beta  
Coefficient 

Avg. Standard Error 
of Beta Coefficient 

Logistic regression of poverty status on 
person-level covariates 

 
Actual 

 
Synthetic 

 
Actual 

 
Synthetic 

Intercept 
Sampling weight 
Gender: Male 
Education 
<12 years 
 12 years 
13-15 years 
16+years 
Hispanic 
Age 
Race 
White 
Black 
Other 

-2.39 
0.25 
-0.33 

 
Ref 

-0.36 
-0.62 
-1.52 
0.36 
-0.00 

 
Ref 
0.28  
0.41 

-2.32 
0.25 
-0.34 

 
Ref 

-0.35 
-0.63 
-1.59 
0.27 
0.01 

 
Ref 
0.22 
0.41 

0.16 
0.07 
0.08 

 
Ref 
0.12 
0.13 
0.18 
0.29 
0.00 

 
Ref 
0.34 
0.25 

0.24 
0.10 
0.08 

 
Ref 
0.13 
0.15 
0.30 
0.63 
0.07 

 
Ref 
0.87 
0.56 

5. ACS simulation 

This section evaluates the repeated sampling properties of small area 
inferences drawn from the synthetic data based on a simulation study. In this 
simulation, we use public-use ACS microdata for the Northeast region for years 
2005-2007.  The smallest geographical unit in the public-use microdata is 
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a Public-Use Microdata Area (PUMA). PUMAs are defined as areas which 
contain at least 100,000 persons. In many cases, PUMAs overlap exactly with 
counties with the exception of very large counties, which are split into multiple 
PUMAs, and very small counties, which are combined with nearby counties to 
form a single PUMA. There are 405 PUMAs located in the Northeast region. For 
this simulation study, the ACS data is treated as a population from which 
subsamples are drawn. 500 stratified random subsamples are drawn from each 
PUMA with replacement. Each subsample accounts for approximately 30% of the 
total sample in each PUMA. Each ACS subsample is used as the basis for 
constructing a synthetic population from which 100 synthetic samples are drawn. 
This resulted in a total of 50,000 synthetic data sets. 

Two types of inferences can be obtained from the synthetic data: conditional 
and unconditional. Conditional synthetic inferences are obtained from synthetic 
samples that are based on a single observed sample drawn from the population. 
This is the situation that most commonly occurs in practice, where a survey is 
carried out on a single population-based sample and the synthetic data is 
generated conditional on that sample. Unconditional inferences are obtained from 
synthetic samples that are based on multiple, or repeated, population-based 
samples. Obtaining unconditional inferences is not feasible in practice but is 
possible in the simulation study considered here.  

To obtain conditional inferences, 500 sets of 10 synthetic samples are 
randomly selected (with replacement) from each of the 100 synthetic samples 
generated conditional on each of the 500 ACS subsamples. For each set of 10 
synthetic samples, a synthetic estimate and associated 95% confidence interval 
are obtained for each variable in each PUMA using the combining rules of 
Section 2.2. To obtain unconditional inferences, 100 sets of 10 synthetic samples 
are randomly selected with replacement across each of the 100 ACS subsamples 
and point estimates and associated confidence intervals are again obtained using 
the relevant combining rules. 

We use two evaluative measures to assess the validity of the synthetic data 
estimates. The first one is confidence interval coverage (CIC). For conditional 
inference, CIC is defined as the proportion of times that the synthetic data 
confidence interval, computed at the 0.05 level,�𝐿𝑞�𝑀,𝑠𝑦𝑛,𝑈𝑞�𝑀,𝑠𝑦𝑛� contains the 
actual estimate 𝑦�𝑎𝑐𝑡: 

𝑄𝐶𝐼𝐶 = 𝐼�𝑦�𝑎𝑐𝑡 ∈  �𝐿𝑞�𝑀,𝑠𝑦𝑛,𝑈𝑞�𝑀,𝑠𝑦𝑛�� 

where 𝐼(∙) is an indicator function. 𝑄𝐶𝐼𝐶 = 1if𝐿𝑞�𝑀,𝑠𝑦𝑛 ≤ 𝑦�𝑎𝑐𝑡 ≤ 𝑈𝑞�𝑀 ,𝑠𝑦𝑛 and 
𝑄𝐴 = 0 otherwise. 

For unconditional inference, the only difference is that the CIC is calculated 
as the proportion of times that the synthetic data confidence interval contains the 
“true” population value 𝑌𝑝𝑜𝑝, i.e., 𝐿𝑞�𝑀,𝑠𝑦𝑛 ≤ 𝑌𝑝𝑜𝑝 ≤ 𝑈𝑞�𝑀 ,𝑠𝑦𝑛.  

The second evaluative measure is referred to as the confidence interval 
overlap (CIO; Karr et al., 2006). CIO is defined as the average relative overlap 
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between the synthetic and actual data confidence intervals.  For every estimate the 
average overlap is calculated as, 

𝑄𝐶𝐼𝑂 = 1
2
�𝑈𝑜𝑣𝑒𝑟−𝐿𝑜𝑣𝑒𝑟
𝑈𝑎𝑐𝑡−𝐿𝑎𝑐𝑡

+ 𝑈𝑜𝑣𝑒𝑟−𝐿𝑜𝑣𝑒𝑟
𝑈𝑠𝑦𝑛−𝐿𝑠𝑦𝑛

� , 

where 𝑈𝑎𝑐𝑡 and 𝐿𝑎𝑐𝑡 denote the upper and the lower bound of the confidence 
interval for the actual estimate 𝑦�𝑎𝑐𝑡, 𝑈𝑠𝑦𝑛 and 𝐿𝑠𝑦𝑛 denote the upper and the 
lower bound of the confidence interval for the synthetic data estimate 𝑞�𝑀, and 
𝑈𝑜𝑣𝑒𝑟 and 𝐿𝑜𝑣𝑒𝑟 denote the upper and lower bound of the overlap of the 
confidence intervals from the original and synthetic data for the estimate of 
interest. 𝑄𝐶𝐼𝑂can take on any value between 0 and 1. A value of 0 means that 
there is no overlap between the two intervals and a value of 1 means that the 
synthetic interval completely covers the actual interval. Calculating the 
confidence interval overlap is only possible for conditional inferences. This 
measure yields a more accurate assessment of data utility in the sense that it 
accounts for the significance level of the estimate. That is, estimates with low 
significance might still have a high confidence interval overlap and therefore a 
high data utility even if their point estimates differ considerably from each other. 

5.1. Validity of univariate estimates 
Table 4 shows the average confidence interval coverage (CIC) and confidence 

interval overlap (CIO) across all PUMAs for univariate household-level 
estimands. The conditional CIC is high for non-recoded estimates ranging from 
0.86-0.99. The income by tenure subgroup estimates also yield relatively high 
conditional CIC values (range: 0.89-0.97). The CIC values for income percentile 
estimates do not fare as well as they tend to decline monotonically as the 
percentiles increase. The same general trend is observed for the conditional CIO 
values, which closely resemble the CIC values. Regarding the unconditional 
inferences, the CIC values tend to be slightly higher than the corresponding 
values obtained from the conditional evaluation. The actual CIC  values, obtained 
from the actual ACS subsamples, tend to be very close to the synthetic CIC 
values, if not slightly higher, except for the aforementioned percentile estimates 
which demonstrate weaker coverage for the most extreme percentiles.  

Table 4. Simulation-Based Confidence Interval Results for PUMA Means 
 Conditional Inference Unconditional Inference 

 CIC CIO CIC CIC (Actual) 
Household variables 
Household size 
Sampling weight 
Bedrooms 
Electricity cost/mo. 
Rooms 
Household income 
Tenure 
Own free & clear 
Rent 

 
0.99 
0.95 
0.89 
0.86 
0.97 
0.90 

 
0.93 
0.94 

 
0.97 
0.99 
0.87 
0.87 
0.93 
0.91 

 
0.92 
0.96 

 
0.98 
0.99 
0.93 
0.91 
0.98 
0.94 

 
0.96 
0.96 

 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 

 
0.98 
0.98 
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Table 4. Simulation-Based Confidence Interval Results for PUMA Means  (cont.) 
Recoded variables 
Income > 50thpctile 
Income > 75thpctile 
Income > 90thpctile 
Income (Mortgage=1) 
Income (Own=1) 
Income (Rent=1) 

 
0.89 
0.71 
0.52 
0.89 
0.91 
0.97 

 
0.92 
0.71 
0.60 
0.88 
0.98 
0.93 

 
0.94 
0.80 
0.62 
0.94 
0.96 
0.99 

 
0.98 
0.98 
0.97 
0.97 
0.96 
0.96 

5.2. Validity of multivariate estimates 

Multivariate simulation results are shown in Table 5. This table shows 
average CIC and CIO values for regression coefficient estimates obtained within 
each PUMA from a linear regression of income (cube root) on household-level 
covariates. The conditional CIC and CIO values are high and range from 0.93-
0.99 and 0.90-0.98, respectively, indicating good analytic validity for these 
multivariate statistics. The unconditional CIC values range from 0.85-0.92, which 
are slightly below the actual CIC values obtained from the observed data (0.98). 
The lowest unconditional CIC values (0.85 and 0.87) are associated with the 
household tenure categories. Given that the analytic model being evaluated here is 
one of the same models used during the synthetic data generation process, it is not 
surprising that the analytic validity of the estimates is generally high. Overall, we 
believe this result is reassuring and underscores the importance of ensuring that 
the models used during the imputation process sufficiently overlap with the 
analytic models of interest. 

Table 5. Simulation-Based Confidence Interval Results for PUMA Regression 
Coefficients  

 
Linear regression of  
income (cube root) on 

Conditional Inference Unconditional Inference 

CIC CIO CIC CIC (Actual) 
  Intercept 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Tenure  
    Mortgage/loan 
    Own free & clear 
    Rent   

0.98 
0.98 
0.99 
0.98 
0.99 
0.98 

 
Ref 
0.95 
0.93 

0.97 
0.95 
0.97 
0.98 
0.97 
0.97 

 
Ref 
0.90 
0.96 

0.92 
0.91 
0.92 
0.91 
0.91 
0.92 

 
Ref 
0.87 
0.85 

0.98 
0.98 
0.98 
0.98 
0.98 
0.98 

 
Ref 
0.98 
0.98 

6. Conclusions 
Data users are increasingly interested in producing small area estimates, but 

statistical agencies are prevented from releasing these data due to disclosure 
concerns. In this article, a synthetic data methodology for generating and 
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disseminating public-use microdata for small geographic areas was evaluated 
using restricted data from the U.S. Census Bureau. Compared with current 
practices of disseminating detailed geographical data, the synthetic data 
framework offers data users the flexibility of performing their own customizable 
geographic analyses using data that can presumably be released to the public 
without restriction. 

The empirical evaluations show that the synthetic data generated from a 
Bayesian hierarchical model yields generally valid univariate and multivariate 
county-level estimates and repeated sampling properties. However, limitations of 
the method were apparent when simulating synthetic data for non-standard 
distributions and for polytomous variables when sample size limitations required 
pooling of nearby counties. Such limitations can potentially be overcome with 
more sophisticated modelling approaches, such as nonparametric imputation or 
mixture modelling, which was beyond the scope of this demonstration project. In 
addition, the “empirical” Bayesian approach considered here by fixing the 
hyperparameters at their maximum likelihood estimates may have underestimated 
the uncertainty of the synthetic data estimates, resulting in smaller standard errors 
and narrower confidence intervals. Although some underestimation of uncertainty 
might be welcomed in fully-synthetic data applications where standard errors are 
expected to be much higher relative to the observed standard errors, a more 
principled approach that accounts for all sources of variation might be viewed 
more favourably by sceptical data users. 

Several extensions of this work are currently being considered. The 
preservation of skewed and non-standard distributions is an important issue that 
will need to be addressed prior to pubic release of synthetic small area microdata. 
Parametric modelling approaches are inherently limited in real-world applications 
where many of the most commonly used variables do not follow a smooth 
distributional form. The use of transformations to achieve normality is one 
possible solution; however, such transformations are not always effective for 
some types of distributions (e.g., bimodal). One must also consider the possibility 
that the same transformation might not work in all small areas. In this application, 
a single transformation was applied across all counties based on the overall 
distribution. Incorporating a tuning parameter in the hierarchical modelling 
approach that accounts for distributional differences across small areas might 
yield higher quality synthetic data and small area estimates with greater analytic 
validity. Another possible extension of this work is complex sample surveys. 
Although the ACS does not employ a complex sample design, most large-scale 
surveys do, and studies have shown that ignoring important design features during 
the imputation process can have drastic effects on the validity of the resulting 
estimates (Reiter, Raghunathan, and Kinney, 2006). Finally, the disclosure risk 
properties associated with fully synthetic data need to be studied in greater depth. 
Although we argue that fully synthetic data greatly enhances data confidentiality 
and prevents respondent re-identification because no observed data is released to 
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the public, the extent to which confidentiality is protected needs to be 
systematically and empirically assessed. 

Despite the potential for future improvements, the methodology examined 
here shows some promise and could be implemented by large-scale survey 
projects, such as the American Community Survey, to release more 
geographically-relevant data to the public. Such efforts could potentially help 
meet the growing demand for small area microdata, which is expected to grow 
among a variety of data users across many disciplines. 
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APPENDICES  
 

Appendix 1. EM algorithm for estimating Bayesian hyperparameters 

The EM algorithm is used to estimate the unknown population parameters 
𝛽𝑝and Σ𝑝from the following setup, 

�̂�𝑐𝑠,𝑝 ~ 𝑀𝑉𝑁�𝛽𝑐𝑠,𝑝,𝑉�𝑐𝑠,𝑝� 

𝛽𝑐𝑠,𝑝 ~ 𝑀𝑉𝑁�𝛽𝑝𝑍𝑠, Σ𝑝� 

where𝑝 = (1,2, … ,𝑃) is used to index the set of parameters associated with the 
𝑝𝑡ℎ synthetic variable of interest and the 𝑝𝑡ℎ regression model from which the 
direct estimates �̂�𝑐𝑠 and 𝑉�𝑐𝑠 were obtained in Step 1. 

The E step consists of solving the following expectations, 

𝛽𝑐𝑠,𝑝
∗ = 𝐸�𝛽𝑐𝑠,𝑝� = ��V�𝑐𝑠,𝑝

−1 + Σ𝑝−1�
−1�V�𝑐𝑠,𝑝

−1 �̂�𝑐𝑠 + Σ𝑝−1𝛽𝑝𝑍𝑠�� 

�𝛽𝑐𝑠,𝑝�𝛽𝑐𝑠,𝑝�
𝑇
�
∗

= 𝐸�𝛽𝑐𝑠,𝑝𝛽𝑐𝑠,𝑝
𝑇 � = �V�𝑐𝑠,𝑝

−1 + Σ𝑝−1�
−1 + 𝛽𝑐𝑠,𝑝

∗ �𝛽𝑐𝑠,𝑝
∗ �𝑇 

Once these expectations are computed they are then incorporated into the 
maximization (M-step) of the unknown hyperparameters 𝛽𝑝 andΣ�𝑝 using the 
following equations, 

�̂�𝑝 = 𝛽+𝑠,𝑝
∗ 𝑍𝑠(𝑍𝑠𝑍𝑠𝑇)−1 , where 𝛽+𝑠∗ = �∑ 𝛽𝑐𝑠∗

𝐶𝑠
𝑐=1 � 𝐶𝑠� , and 

Σ�𝑝 =

�∑
�∑ �𝛽𝑐𝑠,𝑝

∗ − �̂�𝑝𝑍𝑠��𝛽𝑐𝑠,𝑝
∗ − �̂�𝑝𝑍𝑠�

𝑇𝐶𝑠
𝑐=1 �

𝐶𝑠
�𝑆

𝑠=1 �

𝑆
 

After convergence the maximum likelihood estimates are incorporated into 
the posterior distribution of 𝛽𝑐𝑠,𝑝 shown in equation [5]. 

http://www.census.gov/acs/www/Downloads/survey_methodology/acs_design_methodology.pdf
http://www.census.gov/acs/www/Downloads/survey_methodology/acs_design_methodology.pdf
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Appendix 2. Creation of synthetic household size variable 

Let 𝑍ℎ𝑐𝑠 be the number of people in household ℎ = (1,2, … ,𝑛𝑐𝑠) in county 
𝑐 = (1,2, … ,𝐶𝑠) within state 𝑠 = (1,2, … , 𝑆). Assume that 
𝑍ℎ𝑐𝑠~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑐𝑠)and 𝜆𝑐𝑠~𝐺𝑎𝑚𝑚𝑎(𝛼𝑠,𝛽𝑠). Conditional on the data and 
(𝛼𝑠,𝛽𝑠; 𝑠 = 1,2, … , 𝑆) it is straightforward to simulate values of 𝑍ℎ𝑐𝑠.  

First, obtain the marginal maximum likelihood estimates of (𝛼𝑠,𝛽𝑠; 𝑠 =
1,2, … , 𝑆) through Newton-Raphson for each state independently. Also, obtain the 
covariance matrix 𝑉�𝑠 = 𝐶𝑜𝑣�𝛼�𝑠, �̂�𝑠� by inverting the observed Fisher Information 
matrix. The marginal likelihood is given by, 

� ��𝑒−𝛽𝑠𝜆𝑐𝑠𝜆𝑐𝑠
𝛼𝑠−1

𝐶𝑠

𝑐=1

��𝑒−𝜆𝑐𝑠
𝑛𝑐𝑠

ℎ=1

𝜆𝑐𝑠
𝑍ℎ𝑐𝑠� /Γ(𝛼𝑠)𝑑𝜆𝑐𝑠� 

= �� 𝑒−(𝛽𝑠+𝑛𝑐𝑠)𝜆𝑐𝑠 𝜆𝑐𝑠
𝑍+𝑐𝑠+𝛼𝑠−1/Γ(𝛼𝑠)𝛽𝑠

𝛼𝑠

𝐶𝑠

𝑐=1

𝑑𝜆𝑐𝑠 

= �{Γ(𝑍+𝑐𝑠 + 𝛼𝑠)}(𝛽𝑠 + 𝑛𝑐𝑠)−(𝑍+𝑐𝑠+𝛼𝑠)/Γ(𝛼𝑠)
𝐶𝑠

𝑐=1

𝛽𝑠
𝛼𝑠 

where 𝑍+𝑐𝑠 = ∑ 𝑍ℎ𝑐𝑠
𝑛𝑐𝑠
ℎ=1  . Taking the logarithms, the quantity to be maximized 

with respect to 𝛼𝑠 and 𝑏𝑠 via the Newton-Raphson is, 

𝐿 = �{𝑙𝑜𝑔Γ(𝑍+𝑐𝑠 + 𝛼𝑠) − (𝑍+𝑐𝑠 + 𝛼𝑠)𝑙𝑜𝑔(𝛽𝑠 + 𝑛𝑐𝑠)} − 𝐶𝑠𝑙𝑜𝑔Γ(𝛼𝑠)
𝐶𝑠

𝑐=1
+ 𝐶𝑠𝛼𝑠𝑙𝑜𝑔(𝛽𝑠) 

The first and second derivatives of this function are, 

𝜕𝐿
𝜕𝛼𝑠

= �{𝜓(𝑍+𝑐𝑠 + 𝛼𝑠) − 𝑙𝑜𝑔(𝛽𝑠 + 𝑛𝑠)} − 𝐶𝑠𝜓(𝛼𝑠) + 𝐶𝑠𝑙𝑜𝑔(𝛽𝑠)
𝐶𝑠

𝑐=1

 

𝜕𝐿
𝜕𝛽𝑠

= −�{(𝑍+𝑐𝑠 + 𝛼𝑠)/(𝛽𝑠 + 𝑛𝑠)} + 𝐶𝑠𝛼𝑠/𝛽𝑠

𝐶𝑠

𝑐=1

 

𝜕2𝐿
𝜕𝛼𝑠2

= �𝜓′(𝑍+𝑐𝑠 + 𝛼𝑠) − 𝐶𝑠𝜓′(𝛼𝑠)
𝐶𝑠

𝑐=1

 

𝜕2𝐿
𝜕𝛽𝑠2

= �{(𝑍+𝑐𝑠 + 𝛼𝑠)/(𝛽𝑠 + 𝑛𝑠)2}
𝐶𝑠

𝑐=1

− 𝛼𝑠𝐶𝑠/𝛽𝑠2 

𝜕2𝐿
𝜕𝛽𝑠𝜕𝛼𝑠

= −� 1/(𝛽𝑠 + 𝑛𝑠)
𝐶𝑠

𝑐=1

+ 𝐶𝑠/𝛽𝑠 
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The logarithm of the gamma function, its first and second derivatives can be 
accurately approximated as follows, 

𝑙𝑜𝑔Γ(𝑧) = −𝑙𝑜𝑔�𝑐𝑖𝑧𝑖
26

𝑖=1

 

𝜓(𝑧) =
𝜕
𝜕𝑧
𝑙𝑜𝑔Γ(𝑧) = −

∑ 𝑖𝑐𝑖𝑧𝑖−126
𝑖=1
∑ 𝑐𝑖𝑧𝑖26
𝑖=1

 

𝜓′(𝑧) = �
∑ 𝑖𝑐𝑖𝑧𝑖−126
𝑖=1
∑ 𝑐𝑖𝑧𝑖26
𝑖=1

�
2

−
∑ 𝑖(𝑖 − 1)𝑐𝑖𝑧𝑖−226
𝑖=1

∑ 𝑐𝑖𝑧𝑖26
𝑖=1

 

The constants 𝑐𝑖 can be found in Abramowitz and Stegun (1965). The 
Newton-Raphson method is applied iteratively to obtain maximum likelihood 
estimates of 𝛼𝑠and 𝛽𝑠, 

�
𝛼𝑠,𝑛+1

𝛽𝑠,𝑛+1
� =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜕2𝐿

𝜕𝛼𝑠,𝑛
2� 𝜕2𝐿

𝜕𝛼𝑠,𝑛𝜕𝛽𝑠,𝑛
�

𝜕2𝐿
𝜕𝛽𝑠,𝑛𝜕𝛼𝑠,𝑛
� 𝜕2𝐿

𝜕𝛽𝑠,𝑛
2�

⎦
⎥
⎥
⎥
⎥
⎤
−1

�
𝜕𝐿

𝜕𝛼𝑠,𝑛
�

𝜕𝐿
𝜕𝛽𝑠,𝑛
�

� 

The logarithm of the estimates for 𝛼𝑠 and 𝛽𝑠 are then assumed to follow the 
hierarchical model,  

�
𝑙𝑜𝑔 𝛼�𝑠
𝑙𝑜𝑔 �̂�𝑠

�~𝑁 ��
𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

� , �
1/𝛼�𝑠 0

0 1/�̂�𝑠
� 𝑉�𝑠 �

1/𝛼�𝑠 0
0 1/�̂�𝑠

�� = 𝑁 ��
𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

� , Σ�𝑠� 

�𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

�~𝑁 ��𝜃𝜙� , �Ω11 Ω12
Ω22 Ω22

�� = 𝑁 ��𝜃𝜙� ,Ω� 

The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin, 
1977) is used to obtain maximum likelihood estimates of (𝜃,𝜙,Ω). The E step is 
carried out by solving the following expectation equations, 

�𝑙𝑜𝑔 𝛼𝑠∗
𝑙𝑜𝑔 𝛽𝑠∗

� = 𝐸 �𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

� = ��Σ�𝑠−1 + Ω−1�−1 �Σ�𝑠−1 �
𝑙𝑜𝑔 𝛼�𝑠
𝑙𝑜𝑔 �̂�𝑠

� + Ω−1 �𝜃𝜙��� 

��
𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

��
𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

�
𝑇

�
∗

= 𝐸 ��𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

� �𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

�
𝑇
�

= �Σ�𝑠−1 + Ω−1�−1 + �𝑙𝑜𝑔 𝛼𝑠∗
𝑙𝑜𝑔 𝛽𝑠∗

� �𝑙𝑜𝑔 𝛼𝑠∗
𝑙𝑜𝑔 𝛽𝑠∗

�
𝑇
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and the M step is performed by solving the following maximization equations, 

�𝜃
�
𝜙�� =

�∑ �𝑙𝑜𝑔 𝛼𝑠∗
𝑙𝑜𝑔 𝛽𝑠∗

�𝑆
𝑠=1 �

𝑆
 

Ω� = �Ω
�11 Ω�12
Ω�22 Ω�22

� =
�∑ ��𝑙𝑜𝑔 𝛼𝑠∗

𝑙𝑜𝑔 𝛽𝑠∗
� − �𝜃

�
𝜙���

𝑆
𝑠=1 ��𝑙𝑜𝑔 𝛼𝑠∗

𝑙𝑜𝑔 𝛽𝑠∗
� − �𝜃

�
𝜙���

𝑇

�

𝑆
 

It is then straightforward using this setup to synthesize the number of 
members in each household by treating the parameter estimates of (𝜃,𝜙,Ω) as 
known and retracing back to simulate values of 𝑍ℎ𝑐𝑠 using the following 3 steps: 

Step 1: Simulate Gamma parameters 𝛼𝑠 and 𝛽𝑠 from the bivariate normal 

distribution, �
𝛼�𝑠
𝛽�𝑠
�~𝑒𝑥𝑝 �𝑁 ��Σ�𝑠−1 + Ω�−1�−1 �Σ�𝑠−1 �

𝑙𝑜𝑔 𝛼�𝑠
𝑙𝑜𝑔 �̂�𝑠

� + Ω−1 �𝜃
�
𝜙��� , �Σ�𝑠−1 +

Ω�−1�−1��, 

Step 2: Simulate Poisson parameter 𝜆𝑐𝑠 from the Gamma distribution given the 
county population size, number of households, and simulated parameters obtained 
from Step 1, 
�̃�𝑐𝑠~𝐺𝑎𝑚𝑚𝑎�𝑍+𝑐𝑠 + 𝛼�𝑠,𝛽�𝑠 +  𝑛𝑐𝑠�, 
 
Step 3: Simulate household size 𝑍ℎ𝑐𝑠from the Poisson distribution, 
𝑍�ℎ𝑐𝑠~𝑃𝑜𝑖𝑠𝑠𝑜𝑛��̃�𝑐𝑠�. 
 
 
 

 


