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ABSTRACT 

Inference in surveys with nonresponse has been studied extensively in the 
literature with a focus on the estimation phase. Propensity weighting and 
calibrated weighting are among the adjustment methods used to reduce the 
nonresponse bias. The data collection phase has come into focus more recently; 
the literature on adaptive survey design emphasizes representativeness and 
degree of balance as desirable properties of the response obtained from a 
probability sample. We take an integrated view where data collection and 
estimation are considered together. For a chosen auxiliary vector, we define the 
concepts incidence and inverse incidence and show their properties and 

relationship. As we show, incidences are used in balancing the response in data 
collection; the inverse incidences are important for weighting adjustment in the 
estimation. 

Key words: adaptive survey design, auxiliary vector, incidence, inverse incidence, 

nonresponse adjustment, response imbalance.  

1.  Introduction 

Weighting techniques are important in producing statistics from sample 
surveys. Units under-represented in the sample ought to be given a higher weight 
in the estimation, those over-represented should get a lower weight. This intuitive 
understanding was probably practiced well before theoretical advancement in the 
1930’s made it formal: Unbiased estimation in stratified sampling calls for 
weighting units by the inverse of the stratum sampling rate; the rates may differ 
considerably between strata. Later and more generally, the Horvitz-Thompson 
estimator principle established that if the sampling design gives inclusion 
probability 𝜋𝑘 to unit k, then the weights 1/𝜋𝑘 will grant design unbiased 
estimation of a population total. That holds in the absence of nonresponse. This 
principle has had a great impact on survey methodology for at least 60 years, and 
continues to be a backbone for methodology, particularly in national statistical 
institutes, despite heavy unit nonresponse affecting many surveys today, 
especially those of individuals and households (Bethlehem et al., 2011).  
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When we come to surveys with nonresponse, specifically to NMAR (not 
missing at random) nonresponse, weighting techniques continue to be attractive 
and important, but are less successful in that estimates are no longer unbiased. 
An inspection of the realized set of respondents may reveal that certain types of 
sample units are markedly under- or over-represented. Weighting is used to 
compensate for this, then called “weighting adjustment”. Intuitively, this can 
reduce bias, perhaps considerably, compared with a passive attitude of a flat 
weighting, as when we simply use the respondent mean multiplied by the 
population size. But weighting adjustment will not fully eliminate the bias. 

A comprehensive review of nonresponse weighting adjustment was presented 
by Brick (2013). He identifies three major themes in nonresponse research: (a) 
Study of the response mechanism; (b) Data collection methods to reduce damage 
by nonresponse, (c) Adjustment of the survey weights to adjust for survey 
nonresponse. We are concerned in this article with (b) and (c), and more 
particularly with the interaction between them. As Brick (2013, p. 347) also notes, 
a deeper understanding of nonresponse in surveys is prevented by the complexity 
of the survey process; many unknown factors contribute to it. 

With the considerable attention paid recently to responsive (or adaptive) 
survey design, the practice of weighting comes into a new light. Such designs can 
bring a more appropriate final set of respondents, compared with a stationary 
design where the data collection obeys a fixed unchanging protocol from 
beginning to end. A better balanced response is, potentially, a better starting point 
for the weighting adjustment in the estimation phase. A review of the literature of 
adaptive and responsive survey designs is found in Tourangeau et al. (2017). 
They also suggest directions for further improvement of such designs, and for 
data collection management more generally. 

An adaptive data collection does not follow a stationary protocol. Interventions 
may take place during the data collection period. Representativeness and low 
imbalance are general objectives for the ultimate set of respondents. The R-
indicator of Schouten et al. (2009) is a measure of the former concept. In a similar 
vein, Särndal (2011), Särndal and Lundquist (2014) used the Imbalance statistic 
to monitor the data collection. Representativeness and balance are related. Both 
are measured with respect to an auxiliary vector composed of auxiliary variable 
values known at least for the sample units, possibly for all population units.  

Response propensity is another important concept for the data collection. It is 
a conditional response probability, given the auxiliary vector (Schouten et al., 
2011). It is thus a theoretical quantity, defined either at the population level or at 
the sample level. It can be estimated from a response set. In adaptive design, the 
response propensity of the sample units is evolving during the data collection 
period, in tune with of the recruitment protocol changes (Olson and Groves 2012, 
Schouten et al. 2011).  

Until recently, the data collection phase and the estimation phase have been 
seen largely as separate fields of research. Estimation under nonresponse has a 
long history and a large literature, namely, on how to apply statistical estimation 
theory to get the best possible – least biased – estimates, with the “frozen” set of 
respondents that the data collection happened to give, let alone how “good” or 
“representative” that set of respondents may be.  
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With the recent attention paid to adaptive design for the data collection, the 
need has arisen to know more about how a representative or well-balanced 
response may help the search for less biased estimates. Designs that optimize 
collection and adjustment simultaneously need to be developed (Kaminska 2013, 
p. 356). 

We discuss terminology and concepts important for the two phases, the data 
collection and the estimation. We focus on the interrelation of the two phases and 
explore the connections that exist, via a multivariate auxiliary vector, between a 
realized set of respondents and the full (unrealized) probability sample. We see 
the response not as fixed and frozen but as dynamic, subject to change through 
the adaptive data collection. Important concepts introduced and studied in 
Sections 2 and 3 of the paper are incidence (of different types of sample units) 
and inverse incidence. The former is used for balancing the response during the 
data collection period, see Section 4, the latter for weighting responding units at 
the estimation stage, see Section 5. The two concepts do not necessarily assume 
a probabilistic response mechanism. A concluding discussion is the topic in 
Section 6. 

2.  Response Set and Sample Set: One Reflected in the Other 

Suppose the survey data collection has resulted in a non-empty response set 
r, out of a probability sample s drawn from the population 𝑈 = {1, ⋯ , 𝑘, ⋯ , 𝑁}; 𝑟 ⊂
𝑠 ⊂ 𝑈. The response r is the set of units k having delivered the value 𝑦𝑘 of the 
study variable y. The survey may have several study variables; the discussion 
and the formulas will necessarily focus on one. The sample s is drawn from U so 

that unit k has the known inclusion probability 𝜋𝑘 > 0 and the sampling weight 

𝑑𝑘 = 1/𝜋𝑘. The mechanism that generates r from s is unknown. The (sample-

weighted) survey response rate is 𝑃 = ∑ 𝑑𝑘/ ∑ 𝑑𝑘𝑘∈𝑠𝑘∈𝑟 , where 0 1P   is 

assumed. 

2.1. The Auxiliary Vector  

In the nonresponse context, three types of variables play a role: The study 
variable (continuous or categorical) y has values 𝑦𝑘 observed for 𝑘 ∈ 𝑟 only, and 

used to estimate the population total 𝑌 = ∑ 𝑦𝑘𝑘∈𝑈 . The response indicator I   has 
value 𝐼𝑘 = 1  for 𝑘 ∈ 𝑟 and 𝐼𝑘 = 0 for  𝑘 ∈ 𝑠 − 𝑟.  

The auxiliary vector x with value x𝑘 is available at least for 𝑘 ∈ 𝑠, possibly for 

𝑘 ∈ 𝑈. The 𝐽 ≥ 1 variables in the vector x can be continuous or categorical. They 
are recorded from registers or available as paradata from the data collection 
process. An early use of the latter information is in Politz and Simmons (1949), a 
more recent one in Beaumont (2005).  

Since x𝑘 is known for 𝑘 ∈ 𝑠 we can note, in an ongoing data collection, which 

values x𝑘 of the sample units are over-represented (have high incidence) in the 
realized response r, and which are under-represented (have low incidence). At 
the end of data collection, we can analyse the final response outcome with 
respect the specified vector x. 

In an important special case, all auxiliary variables are categorical. We denote 
the number of distinct values x𝑘 by M, a number possibly different from the vector 
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dimension J. More particularly, x can be a group vector, that is, of the form x𝑘 =
(0, … , 1, … , 0)′ with a single entry “1” to indicate the group membership of k. Then 
𝐽 = 𝑀. For other kinds of x-vector, 𝐽 < 𝑀, where M may be considerably greater 
than J. 

To illustrate, if  x represents a crossing of 2 sexes, 3 exhaustive education 
categories and 4 exhaustive age categories, then x is a group vector with 
dimension 𝐽 = 2 × 3 × 4 = 24 and 𝐽 = 𝑀 = 24. If the same three variables are 
used to define instead the auxiliary vector x with sex and education crossed, while 
the categorical age is coded as one of (1,0,0), (0,1,0), (0,0,1) and (0,0,0), then the 
dimension is only 𝐽 = 2 × 3 + 3 = 9, but M is unchanged at 24.   

We assume that all x-vectors used here have the following feature: There 
exists constant vector  μ  (not depending on k) such that  

 μ′x𝑘 = 1 for all k.                                            (1) 

Most vectors of interest satisfy this requirement. When x is a group vector, the 
vector μ with all elements equal to “1” satisfies (1). In the example above, where x 
has sex and education crossed, and age contributing three more positions, the 
vector 𝜇 = (1,1,1,1,1,1,0,0,0)′ satisfies (1). The reason for the requirement is 
convenience in many derivations. 

2.2. The Response Described by the Incidence of the Sampled Units 

To say that the response r is a subset of the sample s, and to say, inversely, 
that the set s contains r, are weak and uninformative descriptions of the 
relationship between r and s. Their relationship is made more explicit through the 

intermediary of chosen vector x and its values x𝑘  known for 𝑘 ∈ 𝑠. No 
assumptions about the probabilistic nature of the response mechanism are 
needed in this description. 

Given r and an x-vector, we ask: What values 𝑓𝑘, attached to the sample units 

𝑘 ∈ 𝑠, will give agreement with the observed response mean x̅𝑟 = ∑ 𝑑𝑘x𝑘𝑘∈𝑟 /
∑ 𝑑𝑘𝑘∈𝑟 ? We seek 𝑓𝑘 for 𝑘 ∈ 𝑠 to satisfy 

∑ 𝑑𝑘𝑓𝑘x𝑘𝑘∈𝑠 / ∑ 𝑑𝑘 = x̅𝑟𝑘∈𝑠 .        (2) 

Further specification is needed to get a unique solution. One is obtained by 
letting 𝑓𝑘 be linear in the x-vector: 𝑓𝑘 = A′x𝑘 for some J-vector A. Inserting into (2), 

and solving, we get  A′ = x̅′𝑟Σ𝑠
−1, where the J J  matrix 

Σ𝑠 = ∑ 𝑑𝑘x𝑘x𝑘
′

𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠      (3) 

is assumed non-singular. Therefore,  

𝑓𝑘 = x̅𝑟
′ Σ𝑠

−1x𝑘 ,   𝑘 ∈ 𝑠.   (4) 

We call 𝑓𝑘 the incidence (factor) of unit k. The mean incidence over s, as a 

consequence of (1), is 𝑓𝑠̅ = ∑ 𝑑𝑘𝑓𝑘𝑘∈𝑠 / ∑ 𝑑𝑘 = 1𝑘∈𝑠 . The variance over s, 

∑ 𝑑𝑘(𝑓𝑘 − 𝑓𝑠̅)2
𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠 , is minimal under the constraint in (2).  The proof is 

in the Appendix.  
Units with the same value of x𝑘 share the same incidence 𝑓𝑘. In the simple 

example where gender is the only x-variable, we have  𝐽 = 𝑀 = 2, x𝑘 = (1,0)′ for 
all men, x𝑘 = (0,1)′ for all women. Then (4) says that all sampled men have the 
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incidence 𝑓𝑘 = 𝑃men/𝑃, all sampled women have 𝑓𝑘 = 𝑃women/𝑃, where 𝑃men and 

𝑃women are the gender response rates and P  the overall rate. This crude kind of 
response analysis describes how the response for men differs from that of 
women. 

For x-vectors typically used in practice, the number M of distinct  values can 
be large. The response rate within groups of units with the same x𝑘-value is 

replaced by the wider concept generalized response rate, 𝑃𝑘 = 𝑃 × 𝑓𝑘, which can 
also be seen as an estimated response propensity for unit k characterized by x𝑘. 

The mean of  𝑃𝑘 over s is 𝑃𝑓𝑠̅ = 𝑃, the overall response rate.  

2.3. The Sample Described by the Inverse Incidence of the Responding Units 

After a completed data collection, the composition of the response r can no 
longer be changed or influenced. We can describe the relationship between r and 
s by the inverse incidence. The direction here is to make the smaller set r conform 
to the larger set s, by weighting the units in r. 

We ask: What numbers 𝑔𝑘 applied to the responding units will reproduce the 
auxiliary sample mean x̅𝑠 = ∑ 𝑑𝑘x𝑘𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠 ? It is futile to ask that question for 

𝑦𝑘, because it is missing for 𝑘 ∈ 𝑠 − 𝑟. This is the inverse of the question in the 

preceding section. We seek 𝑔𝑘 for 𝑘 ∈ 𝑟 to satisfy 

∑ 𝑑𝑘𝑔𝑘x𝑘𝑘∈𝑟 / ∑ 𝑑𝑘 = x̅𝑠𝑘∈𝑟 .     (5) 

There is no unique solution. One solution is obtained by forming 𝑔𝑘 as a linear 

combination of the x-variables: For some J-vector B, set 𝑔𝑘 = B′x𝑘. Inserting 
into (5), solving for B, and assuming that 

Σ𝑟 = ∑ 𝑑𝑘x𝑘x𝑘
′

𝑘∈𝑟 / ∑ 𝑑𝑘𝑘∈𝑟      (6) 

is non-singular, we get  

𝑔𝑘 = x̅𝑠
′ Σ𝑟

−1x𝑘, 𝑘 ∈ 𝑟.   (7) 

We call 𝑔𝑘 the inverse incidence (factor), or weight, of unit 𝑘 ∈ 𝑟. The mean 

over r is 𝑔̅𝑟 = ∑ 𝑑𝑘𝑔𝑘𝑘∈𝑟 / ∑ 𝑑𝑘 = 1𝑘∈𝑟 , using (1). The variance over r,  
∑ 𝑑𝑘(𝑔𝑘 − 𝑔̅𝑟)2

𝑘∈𝑟 / ∑ 𝑑𝑘𝑘∈𝑟 , is minimal under the constraint in (5). The proof is 
analogous to the corresponding one for 𝑓𝑘, which is given in the Appendix. Note 

that 𝑔𝑘 is computable for all 𝑘 ∈ 𝑠, because x𝑘 is available for 𝑘 ∈ 𝑠. 

3.  Properties of Incidence and Inverse Incidence 

3.1. The Moments and the Interrelation 

The equation (2) makes a sample s conform to a realized response r through 
the incidence factor f  with values 𝑓𝑘 = x̅𝑟

′ Σ𝑠
−1x𝑘 given in (4) for 𝑘 ∈ 𝑠. The equation 

(5) makes an “upweighted” response r conform with a given sample s through the 

inverse incidence factor (or weight factor) 𝑔 with values 𝑔𝑘 = x̅𝑠
′ Σ𝑟

−1x𝑘 given in (7) 

for 𝑘 ∈ 𝑠. The values 𝑓𝑘 × g𝑘 for 𝑘 ∈ 𝑠 define the product factor.  

Example. Let x be a group vector of dimension J, x𝑘 = (0, … , 1, … , 0)′, coding 
the same number of different groups of sample units. Suppose that s is a self-

weighting fixed size n sample. Then 𝑑𝑘 = 𝑁/𝑛 for all k, and 𝑚𝑥̅𝑟 =
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(𝑚1, … , 𝑚𝑗 , … , 𝑚𝐽)′, where 𝑚𝑗 is the number of responding units in group j. 

Alternatively expressed, 𝑚𝑗 is the size of the j:th response group 𝑟𝑗, and 𝑚 =

∑ 𝑚𝑗
𝐽
𝑗=1   is the size of  r. From (4) and (7) we obtain 𝑓𝑘 = 𝑃𝑗/𝑃 , 𝑔𝑘 = 𝑃/𝑃𝑗 for all 

units k in the same sample group 𝑠𝑗, where 𝑃 = 𝑚/𝑛,  𝑃𝑗 = 𝑚𝑗/𝑛𝑗 is the group  j  

response rate and 𝑛𝑗 is the size of 𝑠𝑗, 𝑗 = 1, … , 𝐽.  Hence, when x is a group 

vector, 𝑔𝑘 is the inverse of 𝑓𝑘 in an exact numerical sense: 𝑓𝑘𝑔𝑘 = 1 for every k.   
In practice, the incidences 𝑓𝑘 for 𝑘 ∈ 𝑠 are used at the data collection phase, 

as tools for an adaptive data collection to create a well-balanced final response. 
This is reviewed in Section 4. The inverse incidences  𝑔𝑘 are used in the 
estimation phase for weighting adjustment. This is the topic of Section 5. Here we 
present general properties of 𝑓𝑘 and  𝑔𝑘. 

We derive mean and variance of 𝑓𝑘,  𝑔𝑘 and of their product 𝑓𝑘 × 𝑔𝑘, over the 

response and over the full sample. For the 𝑓 factor, these moments are defined 
as 

𝑓𝑟̅ = mean𝑟(𝑓) = ∑ 𝑑𝑘𝑓𝑘𝑘∈𝑟 / ∑ 𝑑𝑘𝑘∈𝑟 , 𝑓𝑠̅ = mean𝑠(𝑓) = ∑ 𝑑𝑘𝑓𝑘𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠 ,     (8) 

var𝑟(𝑓) = ∑ 𝑑𝑘(𝑓𝑘 − 𝑓𝑟̅)2
𝑘∈𝑟 / ∑ 𝑑𝑘𝑘∈𝑟 ,  var𝑠(𝑓) = ∑ 𝑑𝑘(𝑓𝑘 − 𝑓𝑠̅)2

𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠 .  (9) 

For the corresponding moments of the 𝑔 factor, replace 𝑓 by 𝑔. For the 

product factor, replace 𝑓 by 𝑓 × 𝑔 and 𝑓𝑘 by 𝑓𝑘 × 𝑔𝑘 in (8) and (9).  
The moments of the three factors are shown in Table 1 for an arbitrary vector x. 
Some of the table entries involve quadratic forms in the vector difference x̅𝑟 − x̅𝑠: 

𝑄𝑠 = (x̅𝑟 − x̅𝑠)′Σ𝑠
−1(x̅𝑟 − x̅𝑠);       𝑄𝑟 = (x̅𝑟 − x̅𝑠)′Σ𝑟

−1(x̅𝑟 − x̅𝑠),        (10) 

where the J J  weighting matrices Σ𝑠 and Σ𝑟 (non-singular) are given by (3) and 

(6). Four of the variances have less transparent expressions and are shown only 
as concepts. 

Table 1.  Mean and variance of f, 𝑔 and 𝑓 × 𝑔. The quantities 𝑄𝑟 and 𝑄𝑠 are given 
in (10). 

Factor mean in s mean in r variance in s variance in r 

f 1 1 + 𝑄𝑠  𝑄𝑠  var𝑟(𝑓) 

𝑔 1 + 𝑄𝑟  1 var𝑠(𝑔) 𝑄𝑟  

𝑓 × 𝑔 1 1 var𝑠(𝑓 × 𝑔) var𝑟(𝑓 × 𝑔) 

 

The properties in Table 1, used in later sections, follow from the definitions in 
(8) and (9) by standard matrix and vector manipulations, using also x̅𝑠

′ Σ𝑠
−1x𝑘 =

x̅𝑟
′ Σ𝑟

−1x𝑘 = 1 for all k, and x̅𝑟
′ Σ𝑠

−1𝑥̅𝑠 = x̅𝑠
′ Σ𝑟

−1𝑥̅𝑟 = 1; these follow from (1).  

By Table 1, 𝑓𝑟̅ = 1 + 𝑄𝑠 ≥ 1 = 𝑓𝑠̅. Equality holds only for 𝑄𝑠 = 0, implying x̅𝑟 =
x̅𝑠. In general 𝑓𝑘 × 𝑔𝑘 ≠ 1 for any particular unit k , but Table 1 shows that the 

mean of the products 𝑓𝑘 × 𝑔𝑘 is 1, over s as well as over r.  This interesting 
property says that one factor is the inverse of the other, in a generalized sense. In 
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the group vector case the inverse relationship holds in an exact numerical sense, 
𝑓𝑘𝑔𝑘 = 1 for every k. 

The covariances are 

cov𝑠(𝑓, 𝑔) = mean𝑠(𝑓 × 𝑔) − 𝑓𝑠̅𝑔̅𝑠 = 1 − 1 × (1 + 𝑄𝑟) = −𝑄𝑟 < 0,       (11) 

cov𝑟(𝑓, 𝑔) = mean𝑟(𝑓 × 𝑔) − 𝑓𝑟̅𝑔̅𝑟 = 1 − (1 + 𝑄𝑠) × 1 = −𝑄𝑠 < 0        (12) 

Hence, 𝑓𝑘 and 𝑔𝑘 are negatively correlated, over s as over r. More specifically, 
the coefficient of correlation over s is usually large negative, not far from  -1. This 
claim is justified by an approximation shown in the Appendix, whereby 

 corr𝑠(𝑓, 𝑔) ≈ −1/(1 + 𝑄𝑠).                                     (13) 

The right-hand side is greater than -1, but not far from -1, because compared 
with 1, 𝑄𝑠 is small positive. The approximation in (13) may not be highly accurate 
for all outcomes r, given s, but a large negative correlation is indicated. 

The covariances with the auxiliary vector are 

 cov𝑠(𝑓, x) = ∑ 𝑑𝑘(𝑓𝑘 − 1)(x𝑘 − x̅𝑠𝑘∈𝑠 )/ ∑ 𝑑𝑘𝑘∈𝑠 = (x̅𝑟 − x̅𝑠),         (14) 

cov𝑟(𝑔, x) = ∑ 𝑑𝑘(𝑔𝑘 − 1)(x𝑘 − x̅𝑟)𝑘∈𝑟 / ∑ 𝑑𝑘𝑘∈𝑟 = −(x̅𝑟 − x̅𝑠).      (15) 

It is interesting to note that cov𝑠(𝑓, x) = −cov𝑟(𝑔, x).  

The fit of a linear regression with intercept of 𝑔𝑘 on 𝑓𝑘 over 𝑘 ∈ 𝑠 gives the 

slope coefficient 𝑏 = cov𝑠(𝑓, 𝑔)/var𝑠(𝑓) = −𝑄𝑟/𝑄𝑠 and the intercept 𝑎 = 𝑔̅𝑠 −
𝑏𝑓𝑠̅ = 1 + 𝑄𝑟 + 𝑄𝑟/𝑄𝑠. The predicted 𝑔𝑘-value from this linear fit is 𝑔̂𝑘 = 𝑎 + 𝑏𝑓𝑘, 
so for every 𝑘 ∈ 𝑠 we have the equation 

(𝑔̂𝑘 − 1)/𝑄𝑟 + (𝑓𝑘 − 1)/𝑄𝑠 = 1.     (16) 

3.2. Empirical Illustration of the Relationship 

Figure 1 illustrates the relationship between the 𝑓- and 𝑔-factors in a specific 
experiment. From a data set collected in an Estonian household survey a simple 
random sample s of 700 households (HH) was drawn and then kept fixed. A 
number of characteristics of each household and head of household (HD) were 
recorded. Response probabilities 𝜙𝑘 (where k designates a household) were then 
computed for 𝑘 ∈ 𝑠 by the model 

logit(𝜙) = 5 – 4 × HD sex + 2 × HD employment status – 0.0004 × HH income. 

Here, HD sex (1 for woman, 0 for man) and HD employment status (1 for 
employed, 0 for unemployed) are dichotomous; HH income is continuous. The 
model deliberately assigns lower response probability to high income households 
where the head is unemployed female. One single response set r, with response 

rate 𝑃 = 60%, was realized by giving household k the response probability 𝜙𝑘. 
Given that set r, computations were carried out with the vector 

x = (HD education, HD sex, HH size, HH children, HD employment status, HH 
expenditure). 
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Here, HD education, with 3 exhaustive categories, was coded as (1,0,0), 
(0,1,0) and (0,0,1). The variables HH size and HH children (the number of 
children in household) are discrete univariate; HH expenditure is continuous. The 
dichotomous HD sex and HD employment status are as explained earlier. This x 

is not a group vector, so the inverse relationship 𝑔𝑘 = 1/𝑓𝑘 will not hold with 
exactness for all k, but it does so to the degree of approximation that Figure 1 
illustrates. The dimension of x is 8: The first variable occupies 3 positions, the 
other 5 variables one position each. The response set r has considerable 
imbalance; IMB = 0.055, computed by (17) below. 

The 𝑓- and 𝑔-factors were computed on the realized r and s. The 700 points 

(𝑓𝑘, 𝑔𝑘) for 𝑘 ∈ 𝑠 are plotted (as hollow small circles) in Figure 1. The figure 

illustrates that 𝑓𝑘 can be negative for a small number of units 𝑘 ∈ 𝑠. In the figure, 
none of the points with 𝑓𝑘 < 0  belong to r. Consequently, the linear approximation 

of 𝑔𝑘 through 𝑓𝑘 works quite well in the response set r. The solid line is the linear 

regression line 𝑔 = 𝑎 + 𝑏𝑓,  with  𝑎 = 1 + 𝑄𝑟 + 𝑄𝑟/𝑄𝑠= 3.145 and 𝑏 = −𝑄𝑟/
𝑄𝑠=−1.863. The dashed curve is 𝑔 = 1/𝑓. We verified empirically, for the group 
vector x = (HD education × HD employment status), with 3×2 = 6 groups, that 

𝑔𝑘 = 1/𝑓𝑘  holds exactly for all k, as it should. 

 

Figure 1. Relationship between 𝑓- and 𝑔-factors for a sample of size 700. Each 
circle represents a sample element. 

4.  Achieving Low Imbalance in the Data Collection  

The incidences 𝑓𝑘 are important for the data collection. They are used for 
creating a well balanced response set. The response r is called perfectly 

balanced with respect to the vector x if x̅𝑟 = x̅𝑠 (Särndal, 2011). It follows from (2) 
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that the equality in means is achieved if 𝑓𝑘 = 1 for all k. The equality x̅𝑟 = x̅𝑠 also 

holds if 1kg   for all k, as seen from (5). To get a perfectly balanced response r 

is a distant possibility in a survey data collection, especially for a long  x vector. 
We can strive to come close. But ordinarily, a perfect balance is not achieved. 
Since x̅𝑟 − x̅𝑠 is a vector, a scalar measure of the difference is created, called the 
imbalance of the response r with respect to the vector x for the given sample  s,  

IMB(𝑟, x|𝑠) = 𝑃2𝑄𝑠,  (17) 

where 𝑃 is the response rate and 𝑄𝑠 is given in (10) (Särndal, 2011; Lundquist 
and Särndal, 2013; Särndal and Lundquist, 2014). Although IMB(𝑟, x|𝑠) is more 

descriptive, we shall use for simplicity the notation IMB. For any r, s and vector x, 

0 ≤ IMB ≤ 𝑃(1 − 𝑃) ≤ 0.25. For most survey data, IMB does not come close to 

the upper bound  𝑃(1 − 𝑃); typical values are in the range 0.03 to 0.06.  
A measure related to IMB is the R-indicator, with R for “representativeness” 

(Bethlehem et al., 2011). It is different in its background, which is estimation of 
response probabilities assumed to exist for all population units. 

The incidences 𝑓𝑘, computable for all 𝑘 ∈ 𝑠, are tools for an adaptive data 
collection aiming at an ultimate response set r with low imbalance. A property 
making this possible is that the variance (computed over s) of the (estimated) 

propensities 𝑃𝑘 = 𝑃𝑓𝑘 is equal to the imbalance, IMB = 𝑃2𝑄𝑠  (see Table 1).  The 
𝑃𝑘 can be computed continuously during an ongoing data collection period. 
Therefore, an avenue to low imbalance in the final response  r is to manage the 

data collection to achieve in the end a low variance of 𝑃𝑘, and therefore low IMB. 
There may be several ways to accomplish this. One is the threshold method 
proposed in Särndal and Lundquist (2014), which we now describe. 

The data collection, which may last several days or weeks, is seen as a 
dynamic process where inspections and change of protocol may take place, at 
specified points. For example, one may decide, at a certain point, to focus the 
continued data collection on specific types of units, say those that are so far 
underrepresented. 

In the threshold method, the propensities 𝑃𝑘 = 𝑃𝑓𝑘 are computed for 𝑘 ∈ 𝑠 at 
several points, say four to six, in the data collection period, and with a “monitoring 
vector” x designated for this purpose.  

At the first inspection point, units with propensity greater than a fixed 
threshold, say 0.60, are set aside and not further contacted during the period. 
Contact attempts continue with the remaining non-responding sample units; as a 
result more units join the response set. At the second inspection point, 𝑃𝑘 is 

computed again for all 𝑘 ∈ 𝑠, and some more units, those with the new propensity 
𝑃𝑘 greater than 0.60, join those already set aside. This pattern is repeated at each 
remaining inspection point; at each of these some more units are set aside. Non-
responding units remaining at the last inspection point are pursued until the very 
end of the data collection period. By the mechanics of this procedure, the 
variability of the propensities - and therefore the imbalance IMB - is more and 

more reduced. In the end, the imbalance IMB can be quite low. Alternative 
adaptive designs can be constructed with a similar objective. 
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5.  The Estimation Stage 

After a completed data collection, it remains to produce estimates of important 
finite population parameters, such as the population total 𝑌 = ∑ 𝑦𝑘𝑘∈𝑈 , using the 

values 𝑦𝑘 available for 𝑘 ∈ 𝑟. The estimates are design biased, more or less.  

If individual response probabilities 𝜙𝑘 were known, then 𝑌̂2ph = ∑ 𝑑𝑘𝑘∈𝑟 𝜙𝑘
−1𝑦𝑘 

would be unbiased for the total 𝑌 = ∑ 𝑦𝑘𝑘∈𝑈 . This claim derives from design-based 
theory for two-phase selection: First a probability sample s from U, then a 

response r from the given s. Since 𝜙𝑘 is unknown, 𝑌̂2ph should be adjusted. Brick 

(2013) reviews three types of weighing adjustment procedures in surveys with 
nonresponse. In the first of these, the unknown individual response probabilities 

𝜙𝑘 in 𝑌̂2ph are replaced by estimates 𝜙̂𝑘. This results in   

𝑌̂ADJ = ∑ 𝑑𝑘𝜙̂𝑘
−1𝑦𝑘𝑘∈𝑟  ,  (18) 

also referred to  as “quasi-randomization” estimators. Access to suitable auxiliary 
variables and the choice of the model for the response mechanism play an 
important role in (18).  

Brick’s (2013) second type is the weighting class estimator. It is a special 

case of (18), where 𝜙̂𝑘
−1 is equal to the inverse of a group response rate. That is, 

if the sample s is divided into J mutually exclusive and exhaustive subgroups 𝑠𝑗 

with 𝑟𝑗 as the responding subset of 𝑠𝑗, 𝑗 = 1, … , 𝐽, then 𝜙̂𝑘
−1 = ∑ 𝑑𝑘/𝑘∈𝑠𝑗

∑ 𝑑𝑘𝑘∈𝑟𝑗
, 

common to all units k in a group. 
The third weighting adjustment estimator in Brick’s (2013) review is the 

calibration estimator. It differs in its construction from (18) but is still unmistakably 
design-based in its orientation. All three weighting adjustment procedures are 
imperfect under nonresponse because they fail to meet the design-based criterion 
of unbiased estimation.  

Here, we distinguish three arguments for constructing an estimator for 𝑌 =
∑ 𝑦𝑘𝑘∈𝑈 . They are: Weighting by inverse incidence (Section 5.1), calibration 
estimation (Section 5.2) and estimation by explicit modelling/prediction (Section 
5.3). 

5.1. Weighting by Inverse Incidence 

Weighting by inverse incidence does not require any response model. It 
reflects the intuitive idea that units in r with low incidence get relatively higher 
weight, and vice versa.   

The incidence factor 𝑓𝑘 is given in (4), the inverse incidence factor 𝑔𝑘 in (7). 
Now put 

 𝑃𝑘 = 𝑃𝑓𝑘;  𝜈𝑘 = 𝑃−1𝑔𝑘 ,                                               (19) 

where 𝑃 is the overall response rate. 𝑃𝑘 and 𝜈𝑘 are each other’s inverse, in that 

the mean of their product, 𝑃𝑘𝜈𝑘 = 𝑓𝑘𝑔𝑘, is equal to one, over r and over s (see 
Table 1). The inverse incidence weighting estimator of 𝑌 = ∑ 𝑦𝑘∈𝑈 𝑘

 is then given 

by  

 𝑌̂WEI = ∑ 𝑑𝑘𝜈𝑘𝑦𝑘𝑘∈𝑟 .                                           (20) 
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This is weighting adjustment as in (18), if we let  𝜙̂𝑘
−1 = 𝜈𝑘. Moreover, 𝑃𝑘 is 

reminiscent of a second phase inclusion probability for unit k, that is, in “drawing” 

the response set r  from s. The sample mean of 𝑃𝑘 is 𝑃̅𝑠 = ∑ 𝑑𝑘𝑃𝑘𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠 =
𝑃𝑓𝑠̅ = 𝑃, the overall response rate.  

The weighting in (20) is motivated purely by inverse incidence, based on a 
given x-vector, with no particular variable y in mind. The same weights are 
applied to all variables y, whatever their special characteristics. This is appealing 
in surveys where many y-variables require estimation, none of them deemed to 
be truly more important or different in nature. Implicit in the inverse incidence 
weighting is a relationship between the 0/1 indicator of the response and the 
auxiliary vector x that determines the incidence 𝑓𝑘.  

5.2. Calibration Estimation 

A well-known weighting adjustment estimator is the calibration estimator. 
Weighting is based on x with implicit y-to-x relationship. Still, all y-variables are 
typically given the same weighting. For comparability reasons, we consider 

calibration up to s. Weight factors ku  are calibrated “from r up to s”, to satisfy the 

calibration equation 

∑ 𝑑𝑘𝑢𝑘x𝑘𝑘∈𝑟 = ∑ 𝑑𝑘x𝑘𝑘∈𝑠 .                                          (21) 

The resulting calibration estimator is then 

𝑌̂CAL = ∑ 𝑑𝑘𝑢𝑘𝑦𝑘𝑘∈𝑟 .    (22) 

If we choose 𝑢𝑘 to be linear in x𝑘, 𝑢𝑘 = λ′x𝑘, it follows from the derivation in 
Section 2.3 that  𝑢𝑘 = 𝑃−1𝑔𝑘, where 𝑔𝑘 is the inverse incidence given in (7). Then, 

(22) is the linear calibration estimator, 𝑌̂CALlin, which we can express in several 
ways: 

𝑌̂CALlin = ∑ 𝑑𝑘𝜈𝑘𝑦𝑘𝑘∈𝑟 = 𝑃−1 ∑ 𝑑𝑘𝑔𝑘𝑦𝑘𝑘∈𝑟 = ∑ 𝑑𝑘𝑦̂𝑘𝑘∈𝑠 = 𝑁̂ x̅𝑠
′ b𝑟,      (23) 

where  𝑦̂𝑘 = x𝑘
′ b𝑟 and b𝑟 is the regression coefficient vector in a linear regression 

fit of y  on x over r, 

b𝑟 = (∑ 𝑑𝑘x𝑘x𝑘
′

𝑘∈𝑟 )−1 ∑ 𝑑𝑘𝑘∈𝑟 x𝑘𝑦𝑘.      (24)  

Hence, the inverse incidence weighting estimator 𝑌̂WEI in (20) has a double 
identity: It is at the same time a (linear) calibration estimator.  

The purely mechanical aspect of the calibration approach is to deliver weights 
to satisfy (21) – which has an unbiased Horvitz-Thompson estimator on the right 
hand side – and to apply these weights in the estimation. But the purpose is also 
to explain the y-variable through the auxiliary vector x. The calibration approach is 
thus double-natured: The weighting aspect is combined with implicit relationship 

y-to-x. This can be seen when we examine the deviation of 𝑌̂CALlin from the 

unbiased estimator requiring full response, 𝑌̂FUL = ∑ 𝑑𝑘𝑦𝑘𝑘∈𝑠 . This deviation can 
be written as  

𝑌̂CALlin − 𝑌̂FUL = − ∑ 𝑑𝑘𝑒𝑘𝑘∈𝑠                                           (25) 
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with the residual 𝑒𝑘 = 𝑦𝑘 − x𝑘
′ b𝑟, where b𝑟 is the regression vector given in (24). If 

the model fits well in the response set, the residuals are small, and 𝑌̂CALlin based 

on the response is close to the unbiased 𝑌̂FUL.  
Calibration estimators have been extensively studied for the last 20 years. 

One direction is to use information both in the sample and population levels. 
Another direction is to use non-linear forms of calibration. Some references are 
Deville (1998), Deville and Särndal (1992), Folsom and Singh (2000), Estevao 
and Särndal (2000), Montanari and Ranalli (2003, 2005, 2012), Särndal and 
Lundström (2005), Chang and Kott (2008), Kott and Chang (2010), Kott and Liao 
(2012). 

5.3. Estimation by Explicit Modelling/Prediction  

The modelling/prediction approach  is based on replacing missing y-values by 
the best possible substitutes that statistical theory can offer. This argument is, on 
surface at least, very different from both incidence weighting and calibration 
weighting. Its importance is illustrated by Little’s (2013) discussion of Brick (2013). 

This approach focuses directly on one y-variable at a time. From an explicitly 
formulated (linear or non/linear) model for the y-to-x relationship, and a fit of that 
model based on (𝑦𝑘 , x𝑘) for 𝑘 ∈ 𝑟, predicted values are obtained for the non-

observed 𝑦𝑘, using the values x𝑘 known for 𝑘 ∈ 𝑠 − 𝑟. Observed 𝑦𝑘 together with 

predictions 𝑦̂𝑘 are used to build the estimator of the population y-total, 

𝑌̂PRED = ∑ 𝑑𝑘𝑦𝑘𝑘∈𝑟 + ∑ 𝑑𝑘𝑦̂𝑘𝑘∈𝑠−𝑟 .                           (28) 

Examination of the design-based behaviour of 𝑌̂PRED has shown that strong 
regression relationship holds good prospects for a considerable reduction of the 
(design-based) nonresponse bias. Early references are Bethlehem (1988) and 
Cassel et al. (1983).   

A variety of models and methods can be entertained to get the predicted 
values 𝑦̂𝑘. A simple application is by ordinary linear regression fit of y on x, 

resulting in the regression vector b𝑟 in (24) and predicted values 𝑦̂𝑘 = x𝑘
′ b𝑟 for 𝑘 ∈

𝑠. Note that ∑ 𝑑𝑘(𝑦𝑘 − 𝑦̂𝑘)𝑘∈𝑟 = 0 because of (1). Then 

𝑌̂PREDlin = ∑ 𝑑𝑘𝑦𝑘𝑘∈𝑟 + ∑ 𝑑𝑘𝑦̂𝑘𝑘∈𝑠−𝑟 = ∑ 𝑑𝑘𝑦̂𝑘𝑘∈𝑠 = 𝑌̂CALlin = 𝑌̂WEI.     (29) 

It can also be seen as a result of the linear generalized regression (GREG) 
construction; 

𝑌̂GREG = ∑ 𝑑𝑘𝑦̂𝑘𝑘∈𝑠 + ∑ 𝑑𝑘(𝑦𝑘 − 𝑦̂𝑘)𝑘∈𝑟 = ∑ 𝑑𝑘𝑦̂𝑘𝑘∈𝑠 .                   (30) 

Hence the inverse incidence weighting estimator 𝑌̂WEI in (20) has multiple 
identities: It is at the same time (a) a calibration estimator, (b) a prediction 
estimator, and (c) a GREG estimator. It is important to note that this equivalence 
happens under the linear formulation, and under the x-vector condition in (1).  

We can link the bias to the tendency of nonresponse to misrepresent the 
regression relationship:  Denote by b𝑠 = (∑ 𝑑𝑘x𝑘x𝑘

′
𝑘∈𝑠 )−1 ∑ 𝑑𝑘𝑘∈𝑠 x𝑘𝑦𝑘 the 

regression coefficient vector in the linear fit of y on x over s. Then, by (1), 

𝑁̂ x̅𝑠
′ b𝑠 = 𝑁̂𝑦̅𝑠 = ∑ 𝑑𝑘𝑘∈𝑠 𝑦𝑘 = 𝑌̂FUL and the deviation from the unbiased estimation 

can be written as 

 𝑌̂PREDlin − 𝑌̂FUL = 𝑌̂CALlin − 𝑌̂FUL = 𝑁̂ x̅𝑠
′ (b𝑟 − b𝑠),                      (31) 
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where b𝑟 is given in (24). As is well known from regression theory, the selection 
effect is likely to distort an estimated regression relationship, that is, to make the 

regression vectors b𝑟 and b𝑠 differ considerably, and thus 𝑌̂PREDlin to differ from 

the unbiased 𝑌̂FUL. Särndal et al. (2016) evaluate the deviation Δ = (𝑌̂CALlin −
𝑌̂FUL)/𝑁̂ =  x̅𝑠

′ (b𝑟 − b𝑠) under certain assumptions, and find potential for improved 
accuracy under adaptive design. Expressions for the design-based bias have 
been derived for some types of regression-based estimators (Fuller et al. 1994, 
Särndal and Lundström 2005, Brick and Jones 2008).  

In the model-based version of the modelling/prediction approach, the 
sampling design and the sampling weights 𝑑𝑘 may not enter at all. A 
comprehensive coverage is found in books such as Valliant et al. (2000) and 
Chambers et al. (2012). Other recent contributions are Breidt and Opsomer 
(2000), Breidt et al. (2005), Little (1986).  

6.  Conclusion 

We have examined a survey setting where nonresponse is occurring in a 
probability sample from the finite population. We emphasized an integrated view, 
in which the data collection and the estimation stage can benefit from each other, 
and support each other, in making inference about the population. 

We have assumed that an appropriate auxiliary vector was formulated, from 
the available supply of auxiliary variables, categorical or continuous. We 
discussed the auxiliary vector’s important role in forming a bridge between a 
realized set of respondents and the full probability sample. To that end, we 
formulated the concepts of incidence and inverse incidence of the sample units. A 
realized response set can be described by the (computable) incidences of the 
sample units; vice versa, the drawn sample can be described by the (also 
computable) inverse incidences of the responding units. 

As we showed, the incidences are used in an adaptive data collection to 
realize a final response set with low imbalance. The inverse incidences are used 
at the estimation stage, for building a weighted estimator. It is one that does not 
use any assumptions about a probabilistic response mechanism. We pointed out 
that it coincides, in the special case of a “linear formulation”, with estimators 
derived by other approaches: Calibration, modelling/prediction and GREG. These 
approaches have branched out in their own directions and have generated a 
stream of literature that we do not review here. 

To a considerable degree, this article has dealt with concepts and principles. 
This has left unanswered a number of other important aspects. Among these is 
the question whether a reduced imbalance in the ultimate response set will lead 
to reduced bias in the estimates, over and beyond what (weighting) adjustment 
alone can accomplish at the estimation stage. There is some positive evidence in 
this direction in the recent literature. A relationship between auxiliary vector x and 
survey variable y is implicitly assumed; one can say that balancing the survey 
response gives some added protection against large nonresponse bias. Recent 
articles in this direction are Schouten et al. (2016) and Särndal et al. (2016). Also, 
Tourangeau et al. (2017) confirm that a bias reduction, although perhaps 
marginal, can be realized by balancing, and these authors claim that further 
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improvement may be possible, through alternative and better adaptive designs. 
These and other recent contributions to the literature underline the need for an 
integrated view, one where data collection and estimation are considered 
together; in this article, we have also taken a step in that direction. 
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APPENDIX 

Proof that the incidence factors 𝒇𝒌 in (4) have minimal variance subject 
to (2): 

Using the Lagrange multiplier method, we seek the minimum of 

 ∑ 𝑑𝑘(𝑓𝑘 − 𝑓𝑠̅)2
𝑘∈𝑠 − 2λ′(∑ 𝑑𝑘𝑓𝑘x𝑘𝑘∈𝑠 − (∑ 𝑑𝑘𝑘∈𝑠 )x̅𝑟).          (32) 

Setting the derivative with respect to 𝑓𝑘 equal to zero gives  

 2𝑑𝑘(𝑓𝑘 − 𝑓𝑠̅) − 2𝑑𝑘λ′x𝑘 = 0 ;   𝑓𝑘 − 𝑓𝑠̅ = λ′x𝑘.                 (33) 

Determine λ from the condition in (2): λ′ = x̅𝑟
′ Σ𝑠

−1 − 𝑓𝑠̅x̅𝑠
′ Σ𝑠

−1. Post-multiply by x𝑘 

and note that x̅𝑠
′ Σ𝑠

−1x𝑘 = 1 by (1). This gives  λ′x𝑘 = x̅𝑟
′ Σ𝑠

−1x𝑘 − 𝑓𝑠̅ and 𝑓𝑘 = 𝑓𝑠̅ +
λ′x𝑘 = x̅𝑟

′ Σ𝑠
−1x𝑘, as given in (4). 

Derivation of the approximation in (13): 

By definition, corr𝑠(𝑓, 𝑔) = cov𝑠(𝑓, 𝑔)/(var𝑠(𝑓)var𝑠(𝑔))1/2. First use var𝑠(𝑔)/
𝑔̅𝑠

2 ≈ var𝑟(𝑔)/𝑔̅𝑟
2, assuming that the coefficient of variation of 𝑔 (standard 

deviation divided by mean) is roughly the same over r as over s. Then by Table 1, 

var𝑠(𝑔) ≈ 𝑄𝑟(1 + 𝑄𝑟)2, and var𝑠(𝑓) = 𝑄𝑠. Both 𝑄𝑟 and 𝑄𝑠 are small compared to 1 
and not greatly different, so (1 + 𝑄𝑟)/(1 + 𝑄𝑠) = 1 + 𝛿 for some small 𝛿. Then 

 corr𝑠(𝑓, 𝑔) =
−𝑄𝑟

(𝑄𝑠𝑄𝑟)1/2(1+𝑄𝑟)
= −

1

1+𝑄𝑠
ℎ(𝛿),                    (34) 

where ℎ(𝛿) = (1 + (1 + 𝑄𝑠
−1)𝛿)1/2/(1 + 𝛿). Now, for small 𝛿, ℎ(𝛿) ≈ 1. The 

formula in (13) follows. 


