
STATISTICS 
IN 

TRANSITION 
new series 

 

An International Journal of the Polish Statistical Association 

CONTENTS 
 

From the Editor ................................................................................................  1 
Submission information for authors  ................................................................  5 

Sampling methods and estimation 

LIBERTS M., The cost efficiency of sampling designs  ..................................  7 
RAI P. K., PANDEY K. K., Synthetic estimators using auxiliary information 

in small domains  ...........................................................................................  31 
SHANKER R., MISHRA A., A two-parameter Lindley distribution  .............  45 
SINGH G. N., PRASAD S., Best linear unbiased estimators of population 

mean on current occasion in two-occasion rotation patterns  ........................  57 
SUBRAMANI J., KUMARAPANDIYAN G., Estimation of finite 

population mean using deciles of an auxiliary variable  ................................  75 
BOKUN N., Sample surveys of households in Belarus: state and 

perspectives  ...................................................................................................  89 

Research articles 

DWIVEDI L. K., Maternal nutritional status and lactational amenorrhea in 
India: a simulation analysis  ...........................................................................  107 

Other articles 

CALABRESE R., A probabilistic scheme with uniform correlation 
structure  ........................................................................................................  129 

PETTERSSON N., Bias reduction of finite population imputation  
by kernel methods  .........................................................................................  139 

SHUKLA A. K., YADAV S. K., MISRA G. C., A linear model for 
uniformity trial experiments  .........................................................................  161 

TARKA P., Model of latent profile factor analysis for ordered categorical 
data  ................................................................................................................  171 

Volume 14, Number 1, Spring 2013 



EDITOR IN CHIEF 
Prof. W. Okrasa, University of Cardinal Stefan Wyszyński, Warsaw, and CSO of Poland  
 w.okrasa@stat.gov.pl; Phone number 00 48 22 — 608 30 66 
 
 
ASSOCIATE EDITORS
 

Sir Anthony B. 
Atkinson 
M. Belkindas, 

University of Oxford,  
UK 
 The World Bank, 
Washington D.C., USA 

Z. Bochniarz, University of Minnesota, USA 
A. Ferligoj, 
 
M. Ghosh, 

University of Ljubljana, 
Ljubljana, Slovenia 
University of Florida, USA 

Y. Ivanov, Statistical Committee of the 
Common-wealth of Independent 
States, Moscow, Russia 

K. Jajuga, 
 
 
G. Kalton, 

Wrocław University of 
Economics, 
Wrocław, Poland 
WESTAT, Inc., USA 

M. Kotzeva, Statistical Institute of Bulgaria 
M. Kozak, University of Information 

Technology and Management in 
Rzeszów, Poland 

D.Krapavickaite,  
 
 
M. Krzyśko, 

 Institute of Mathematics and 
Informatics, 
Vilnius, Lithuania 
Adam Mickiewicz University, 
Poznań, Poland 

J. Lapins, Statistics Department, 
Bank of Latvia, Riga, Latvia 

  
 
  

R. Lehtonen, 
A. Lemmi, 

University of Helsinki, Finland 
Siena University, 
Siena, Italy 

A. Młodak, Statistical Office Poznań, Poland 
C.A. O'Muircheartaigh, University of Chicago, 

Chicago, USA 
V. Pacakova, University of Economics, 

Bratislava, Slovak Republic 
R. Platek, (Formerly) Statistics Canada, 

Ottawa, Canada 
P. Pukli, Central Statistical Office, 

Budapest, Hungary 
S.J.M. de Ree, Central Bureau of Statistics, 

Voorburg, Netherlands 
I. Traat, University of Tartu, Estonia 
V. Verma, 
 
V. Voineagu, 

Siena University, 
Siena, Italy 
National Commission for Statistics, 
Bucharest, Romania 

J. Wesołowski, Central Statistical Office of Poland, 
and Warsaw University of 
Technology,  
Warsaw, Poland 

G. Wunsch, 
 
J. L. Wywiał, 
 

Université Catholiąue de Louvain, 
Louvain-la-Neuve, Belgium 
University of Economics in 
Katowice, Poland 

 
FOUNDER/FORMER EDITOR Prof. J. Kordos, Formerly Central Statistical Office, Poland 
 
 EDITORIAL BOARD 

 Prof. Janusz Witkowski (Chairman), Central Statistical Office, Poland 
 Prof. Jan Paradysz (Vice-Chairman), Poznań University of Economics 
 Prof. Czesław Domański, University of Łódź 
 Prof. Walenty Ostasiewicz, Wrocław University of Economics  
 Prof. Tomasz Panek, Warsaw School of Economics 
 Prof. Mirosław Szreder, University of Gdańsk 
 Władysław Wiesław Łagodziński, Polish Statistical Association 
 
Editorial Office              ISSN 1234-7655 
Marek Cierpiał-Wolan, Ph.D.: Scientific Secretary 
m.wolan@stat.gov.pl 
Beata Witek: Secretary 
b.witek@stat.gov.pl. Phone number 00 48 22 — 608 33 66 
Rajmund Litkowiec: Technical Assistant 
Address for correspondence 
GUS, al. Niepodległości 208, 00-925 Warsaw, POLAND, Tel./fax:00 48 22 — 825 03 95 



STATISTICS IN TRANSITION-new series, Spring 2013 

 

1 

STATISTICS IN TRANSITION-new series, Spring 2013 
Vol. 14, No. 1, pp. 1—4 

FROM THE EDITOR 

A set of eleven articles in this issue is arranged in three parts, containing 
respectively papers devoted to sampling and estimation, a research paper, and 
papers addressing diverse statistical problems.  

Relatively largest, the first part starts with a paper by M. Liberts (of Latvia) 
on The Cost Efficiency of Sampling Designs that is aimed at developing a 
mathematical framework to compare various sample designs with respect to the 
expected precision of estimates and the data collection cost. A framework is 
proposed which employs artificial population data generation, survey sampling 
techniques, survey cost modelling, Monte Carlo simulation experiments and other 
techniques. This framework is applied next to analyze the cost efficiency of the 
sample design used for the Latvian Labour Force Survey (LFS). The advantage of 
the framework is that no extra data collection is required as it utilizes data already 
available to a statistical agency (administrative records, population census data or 
sample survey data). The only requirement is that it must be possible to describe 
the sampling process of a design as an R function. It is proven that the two-stage 
sampling design used currently for the LFS provides more precise parameter 
estimates under the condition of equal fieldwork cost when compared to two other 
simpler sampling designs.  

In their paper Synthetic Estimators Using Auxiliary Information in Small 
Domains,  P. K. Rai, K. K. Pandey discuss the generalized class of synthetic 
estimators for estimating the population mean of small domains under the 
information of two auxiliary variables. They describe the special cases under the 
different values of the constant beta involved in the  proposed generalized class of 
synthetic estimator. A numerical illustration for the two auxiliary variables and 
compared results for the synthetic ratio estimator under single and two auxiliary 
variables are being given. In conclusion, it shows that at least two auxiliary 
variables will be the better choice over a single one when the sample size 
decreases and that it is useful to make use of information on the auxiliary variable 
to increase the precision of the estimators.   

R. Shanker and A. Mishra propose A Two-parameter Lindley Distribution, 
focusing on the case in which one-parameter Lindley Distribution (LD) is a 
particular one. Its moments, failure rate function, mean residual life function and 
stochastic orderings are discussed. The maximum likelihood method and the 
method of moments have been discussed for estimating its parameters. The 
distribution has been fitted to some data sets to test its goodness of fit. Finally, the 
proposed distribution has been fitted to a number of data sets relating to waiting 
and survival times to test its goodness of fit to which the one-parameter LD was 
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fitted earlier. However, it is found that two-parameter LD provides better fits than 
those by the one-parameter LD.  

Best Linear Unbiased Estimators of Population Mean on Current Occasion 
in Two-Occasion Rotation Patterns are studied by G. N. Singh and S. Prasad. 
Behavior of the proposed estimators and their respective optimum replacement 
policies are discussed. Empirical studies are carried out to examine the 
performance of the proposed estimators and consequently the suitable 
recommendations are made. In conclusion, the proposed estimators are proved to 
be the best linear unbiased estimators of population mean Y  with their respective 
minimum variance. They may be seen as new innovative ideas in the survey 
literature as they nicely utilized the information on an auxiliary variable in order 
to improve the precision of the estimates. According to the analyzed results, the 
proposed estimators enhance the precision of estimates as well as reduces the cost 
of the survey. Therefore, they may be recommended to survey practitioners for 
use in real life problems. 

J. Subramani and G. Kumarapandiyan in Estimation of Finite Population 
Mean Using Deciles of an Auxiliary Variable  discuss the problem of a class of 
modified ratio estimators for estimation of population mean of the study variable 
when the population deciles of the auxiliary variable are known. The bias and the 
mean squared error of the proposed estimators are derived and compared with that 
of existing modified ratio estimators for certain known populations. Also, authors 
derive the conditions for which the proposed estimators perform better than the 
existing modified ratio estimators. Based on the numerical study they conclude 
that the proposed modified ratio estimators perform better than the existing 
modified ratio estimators and they recommend that these estimators be employed 
in practical situations.  

This part is concluded by N. Bokun's paper on Sample Surveys of 
Households in Belarus: State and Perspectives. The main principles, 
characteristics and problems of three sample surveys of households conducted by 
the State Statistics of Belarus are discussed: (1) The Household Sample Surveys 
(on expenses and incomes); (2) the Private Subsidiary Plots in rural areas (PSP);  
and (3) the Labour Force Survey (LFS). For each of them the purpose, sample 
design, data collection, methods of estimation and possible ways to improve the 
surveys are briefly presented. The sample units are households and some target 
population groups (for example, persons aged 15-74). The surveys cover the 
whole country: the regions and the city of Minsk (the sample fraction is at the 
level of 0.2-0.6% of HHs; sample frames are Census and additional databases; 
face-to-face interview is a mode of data collection).  The main challenges faced so 
far relate to sample localization, the construction of regional (district) samples, 
non-sampling errors, non-response (20-30%), presence of atypical units, not 
appropriate extrapolation, the use of different weighting schemes, the assessment 
of structural employment and unemployment indicators (for LFS), improving the 
representativeness of the quarterly data.    
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There is one research paper: Maternal Nutritional Status and Lactational 
Amenorrhea in India: A Simulation Analysis by L. K. Dwivedi. Its main 
objective is to examine the linkages between maternal nutritional status (measured 
by body mass index-BMI) and postpartum amenorrhea among currently breast-
feeding women in India and its region. The probability to remain amenorrheic 
through simulative approach has been estimated to get better understanding of the 
impact of maternal nutritional status on postpartum amenorrhea. Using National 
Family Health Survey-2 data, women who were not pregnant, who were breast-
feeding and who were not using any hormonal contraceptives at the time of the 
survey were included in the analysis. There was no significant difference existing 
between mean BMI of each region of India before and after imputation of missing 
cases. The interaction term between maternal nutritional status and duration of 
breast-feeding (child’s age) was significantly associated with the likelihood of 
having resumed menstruation after controlling for breast-feeding practices, child 
nutritional status and socio-economic and demographic covariates. The effect of 
maternal nutritional status on lactational amenorrhea was not found to be 
significant when women were breast-feeding since last 12 months except in the 
northern region of India. However, after 12 months of breast-feeding, the 
probability of undernourished women to remain amenorrheic was likely to be 
greater and this trend was highly consistent across all the six regions included in 
the analysis. 

The 'other articles' part is opened by R. Calabrese's paper A probabilistic 
scheme with uniform correlation structure. The probabilistic schemes with 
independence between the trials show different dispersion characteristics 
depending on the behaviour of the probabilities of the binary event in the trials. 
The author proposes a probabilistic scheme with uniform correlation structure that 
leads to different dispersion characteristics depending on the sign of the linear 
correlation. A hypothesis test is suggested to identify the type of the dispersion of 
the probabilistic scheme.   

In his article Bias Reduction of Finite Population Imputation by Kernel 
Methods, N. Pettersson discusses missing data problem and proposes real donor 
imputation for item nonresponse. A pool of donor units with similar values on 
auxiliary variables is matched to each unit with missing values. The missing value 
is then replaced by a copy of the corresponding observed value from a randomly 
drawn donor. Although such methods can to some extent protect against 
nonresponse bias, the estimator and the nature of the data also matter. Techniques 
adopted from kernel estimation are used to deal with this problem. Using Pólya 
urn sampling the set of potential donors with units already imputed was 
sequentially updated; multiple imputations via Bayesian bootstrap was used to 
account for imputation  uncertainty. Simulations with a single auxiliary variable 
show that such imputation method performs almost as well as competing methods 
with linear data, but better when data is nonlinear, especially with large samples. 

A. K. Shukla, S. K. Yadav, and G. C. Misra, in their paper A Linear Model 
for Uniformity Trial Experiments propose such a type of model along showing 
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that it yields better results than other existing models. Uniformity trial 
experiments are required to assess fertility variation in agricultural land. Several 
models have appeared in the literature, of which Fairfield Smith’s Variance Law 
assuming a nonlinear relationship between the coefficient of variation (C.V.) and 
a plot size has been extensively used in uniformity trial studies. The expression 
for point of maximum curvature for the proposed model is much simpler as 
compared to the model of Fairfield Smith. The appropriateness of the proposed 
model has also been verified with the help of a data set.  In conclusions, authors 
recommend that the discussed linear model should be preferred in uniformity trial 
experiments. 

In the last paper, Model of Latent Profile Factor Analysis for Ordered 
Categorical Data, P. Tarka discusses some problems associated with application 
of the factor analysis starting with observation that a common factor analysis 
solution is typically being used based on continuous data. This paper addresses 
the issue of latent variable models where discrete variables are used. One of them, 
called Latent Profile Factor Analysis (LPFA) is of particular interest. In order to 
prove the model’s functionality in practice of market research, a brief example of 
LPFA model for ordered categorical data (based on one-factorial solution) in 
reference to hedonic consumption data is given in the paper. The proposed 
solution clarifies, simplifies and reduces ordered data (categorical responses) into 
more simple form than the previous model based on classic factor analysis. 

 
 

Włodzimierz Okrasa 
Editor 
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SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition – new series (SiT) is an international journal 
published jointly by the Polish Statistical Association (PTS) and the Central 
Statistical Office of Poland, on a quarterly basis (during 1993–2006 it was issued 
twice and since 2006 three times a year). Also, it has extended its scope of interest 
beyond its originally primary focus on statistical issues pertinent to transition 
from centrally planned to a market-oriented economy through embracing 
questions related to systemic transformations of and within the national statistical 
systems, world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved 
in data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy 
makers and the general public – with a platform for exchange of ideas and for 
sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 
– as either a scientific domain (new research and data analysis methods) or as a 
domain of informational infrastructure of the economy, society and the state – are 
appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 
internationally recognized experts, who are guided in their decisions about the 
publication by criteria of originality and overall quality, including its content and 
form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
sit@stat.gov.pl., followed by a hard copy addressed to 
Prof. Wlodzimierz Okrasa, 
GUS / Central Statistical Office  
Al. Niepodległości  208, R. 287, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published previously 
and that it is not under review elsewhere. It should include an abstract (of not 
more than 1600 characters, including spaces). Inquiries concerning the submitted 
manuscript, its current status etc., should be directed to the Editor by email, 
address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 
on its Web site: http://www.stat.gov.pl/pts/15_ENG_HTML.htm 
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THE COST EFFICIENCY OF SAMPLING DESIGNS

MĀRTIŅŠ LIBERTS1

ABSTRACT

The aim of a sample survey is to obtain high quality estimates of pop-
ulation parameters with low cost. The expected precision of estimates and
the expected data collection cost are usually unknown making the choice of
sampling design a complicated task. Analytical methods can not be used often
because of the complexity of the sampling design or data collection process.
The aim of this paper is to develop a mathematical framework to compare
chosen sampling designs with respect to the expected precision of estimates
and the data collection cost. As a result a framework is developed which em-
ploys artificial population data generation, survey sampling techniques, sur-
vey cost modelling, Monte Carlo simulation experiments and other techniques.
The framework is applied to analyse the cost efficiency of the sampling design
currently used for the Latvian Labour Force Survey.

Key words: cost efficiency, simulation study, survey cost estimation, sur-
      vey methodology, variance of estimators.

1. Introduction

The inspiration for this paper comes from pure practical necessity. National
Statistical Institutes (NSIs) are the main providers of official statistics in most coun-
tries. A large proportion of official statistics produced by NSIs are done so using
data collected via sample surveys, with the main customer of official statistics being
the general public (or tax payers, in other words). These days, cost efficiency is an
essential consideration in all government spending; the question is, are NSI sample
surveys cost efficient?

There is not a simple answer to the question posed. A sample survey can pos-
sess one of many different sampling designs. The simplest sampling designs do not
necessarily provide the lowest data collection cost. More complex sampling designs
are considered in theory and applied in practice to obtain statistical information with
an acceptable precision at a lower cost. In designing a sample survey, the following
considerations should be decided upon: What is the expected precision of the estim-
ates of population parameters? What is the expected data collection cost? Which
sampling design should be chosen in order to minimise sampling errors under a

1University of Latvia, Raiņa bulvāris 19, Rīga, LV-1586, Latvia, martins.liberts@gmail.com.
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fixed data collection cost? These are commonly asked questions during the plan-
ning stage of a sample survey. In most cases, the answers to the questions posed
cannot be gained through analytical means and NSIs are usually reliant on expert
judgement to some extent.

The relation between the precision of estimates and survey cost has been dis-
cussed in literature for at least 70 years, though the topic has not been comprehens-
ively addressed. Different aspects of the relationship have been analysed and differ-
ent goals of analysis have been set by authors but it is possible to observe the lack
of common foundations for the topic. One of the first papers devoted to the topic
are by Mahalanobis (1940) and Jessen (1942). The topic is extensively discussed
by Hansen, Hurwitz, and Madow (1953) and Kish (1965). Significant book regard-
ing the topic is by Groves (1989). The author advocates simulation studies to be
the best-suited for a sample design analysis because of usual complexity of cost and
precision functions.

Several events have been organised recently, in the United States of America,
devoted to the topics of survey cost estimation and simulation models for survey
fieldwork operations. For example “Survey Cost Workshop” (2006, Washington,
D.C.) and “Workshop on Microsimulation Models for Surveys” (2011, Washington,
D.C.). The research of survey field operations is a brand new topic in the scope of
statistical research. Several research activities have been devoted to the topic only
recently (Chen, 2008; Cox, 2012).

The Latvian Labour Force Survey (LFS) is the main object of the study in the
paper. It was organised for the first time in November 1995 (Lapiņš, 1997) and
ran biannually. The first redesign of the LFS sampling design was done after the
2000 Latvian Population Census with the new sampling design launched in 2002
(Lapiņš, Vaskis, Priede, & Bāliņa, 2002). It become a continuous survey after the
redesign. The second redesign of the survey occurred in 2006. The re-launch of
the LFS with the new sampling design and a much larger sample size took place
in 2007. Finally, the latest redesign of the LFS sampling design was done by the
author in 2009 (Liberts, 2010). The main reason for redesigning the LFS sampling
design for the third timewas the necessity to update the population frame used for the
first-stage sampling units. The redesign resulted in a new sample drawn which was
used to run the LFS since 2010. More information regarding the history of the LFS
is given by Central Statistical Bureau of Latvia (2012) and European Commission
(2012a, 2012b).

The target population and the parameters of interest in the case of the LFS are
described in the second section. Artificial population data reflecting the target pop-
ulation of the LFS are necessary to do simulation experiments. A methodology to
develop artificial population data is presented in the third section. Artificial popu-
lation data with characteristics similar to the target population of the LFS has been
produced with this methodology. The fourth section of the paper is devoted to the
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development and the application of the framework for the cost efficiency analysis
of sampling designs.

2. Target population and parameters of  interest

The target population of the LFS is defined as all residents permanently living
in private households. Residents at working-age (15–74 years) compose the main
domain of interest. The target population is continuously changing over time, for
example some individuals are losing or gaining employment every day. The target
population is observed on a weekly basis by the methodology of the LFS (European
Commission, 2012b, p. 5).

An individual is called unit and denoted by vi (there are cases when households
are used as units). The set of all units is denoted by V . The size of V is M . The
units are labelled with an index i where i ∈ 1,M , V = {v1, v2, . . . , vM}. The
observation of unit vi in week w is called element and denoted by ui,w. The set
of all elements in week w is denoted by Uw. There are M elements in Uw. The
elements of Uw are labelled with a double index (i, w) where i refers to a unit and
w refers to a week, Uw = {u1,w, u2,w, . . . , uM,w}. Values yi,w are associated to
elements ui,w from Uw. The total of a variable y in week w is defined as

Yw =

M∑
i=1

yi,w.

The total number of weeks observed is denoted byW and w is the week index,
w ∈ 1,W . The set of elements over W weeks is denoted by U , U = ∪W

w=1Uw.
Each Uw consists of the observation of units from V observed in different weeks.
The size of Uw is constant over time, |Uw| = M for all w. The size of U is denoted
by N , |U | =

∑W
w=1M = MW = N . An index k is used to label elements over

W weeks, k ∈ 1, N . The elements of each Uw are ordered according to the order of
the units of V . The indices

{k : ((k − 1) mod M) + 1 = i}

correspond to the unit vi. The example of the set U is given in Table 1. TheM rows
of the table represent units. TheW columns of the table represent weeks observed.
The cells of the table represent elements. The dimension of the table isM ×W .

The total of the variable y overW weeks is defined as

Y =

W∑
w=1

Yw =

W∑
w=1

M∑
i=1

yi,w =

N∑
k=1

yk.

Two types of parameter are considered in the further analysis – the average of weekly
totals and the quarterly ratio of two totals. The average of weekly totals is defined
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Table 1. Example of set U
i w = 1 w = 2 w = 3 w = 4 w = 5 · · · w = W

1 y1,1 y1,2 y1,3 y1,4 y1,5 · · · y1,W
2 y2,1 y2,2 y2,3 y2,4 y2,5 · · · y2,W
3 y3,1 y3,2 y3,3 y3,4 y3,5 · · · y3,W

· · ·
M yM,1 yM,2 yM,3 yM,4 yM,5 · · · yM,W

by

Yq =
1

13

13∑
w=1

Yw =
1

13

13∑
w=1

M∑
i=1

yi,w =
1

13

N∑
k=1

yk =
1

13
Y,

and the quarterly ratio of two totals is defined by

Rq =
Yq
Zq

=

∑13
w=1 Yw∑13
w=1 Zw

=

∑13
w=1

∑M
i=1 yi,w∑13

w=1

∑M
i=1 zi,w

=

∑N
k=1 yk∑N
k=1 zk

.

The estimators of Yq and Rq are constructed using the π estimator (Särndal, Swens-
son, & Wretman, 1992, p.42, 176) as

Ŷq =
1

13

∑
(i,w)∈s

yi,w
πi,w

=
1

13

∑
k∈s

yk
πk

, (1)

R̂q =

∑
(i,w)∈s

yi,w
πi,w∑

(i,w)∈s
zi,w
πi,w

=

∑
k∈s

yk
πk∑

k∈s
zk
πk

(2)

where s is a probability sample of elements and πi,w is an inclusion probability of
element ui,w in a sample.

3. Artificial population data

Artificial population data are necessary to carry out simulation experiments. Ar-
tificial population data are created from the data of the Statistical Household Re-
gister (a statistical register owned and maintained by the Central Statistical Bureau
of Latvia) and the survey data of the LFS. The artificial population data are repres-
ented by two files – one for a static population (the population of units) and other for
a dynamic population (the population of elements). There are several assumptions
incorporated in the artificial population model:

• the set of units V is fixed overW weeks,
• background variables such as age and place of residence are fixed during

W weeks, while study variables (for example, employment status) can
change from week to week,
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• the membership of individuals to households is fixed overW weeks.

3.1. Static population data

Two data sources are used to construct the static population data. The list of indi-
viduals aged 15–74 on 30th January 2011 is extracted from the Statistical Household
Register. There are 1 705 048 records (individuals) in the list. The list of individu-
als forms the frame for the static population. Demographic information (age and
gender) and residence information (region, dwelling ID and geographical coordin-
ates) is attached to the list. Dwelling ID allows individuals to be grouped by house-
holds (assume a single household per dwelling).

The LFS data are used to create study variables for the static population. The
LFS data from 2007–2010 are used. The variables describing demographic informa-
tion (age and gender), residence information (region and dwelling ID) and economic
activity status are extracted from the survey data.

The data from both sources are merged using an imputation technique where re-
cipients are the units in the register data and donors are the units in the survey data.
Random donor imputation within classes is used (United Nations, 2010, p.162).
However, this is not the classical application of random donor imputation because
non-response is not the cause of data missingness here. The cause of data missing-
ness is the fact that the register data do not contain the variable describing economic
activity. Imputation classes are built in both data sets according to the same spe-
cification using demographic and residence information as auxiliary information.

The imputation is done at seven levels where imputation units are households
at the first five levels and imputation units are individuals at the last two levels.
Different specification of classes is used at each level. Donors and recipients are
grouped in very detailed classes at the first level. As it is not possible to impute
all households at the first level (there are not enough donors in each class at the
first level), the imputation process is repeated for the not-imputed households at the
succeeding levels by merging the imputation classes. There are 26 variables used to
define household classes at the first level, 16 at the second level, 12 at the third level,
11 at the forth level and 10 at the fifth level (see Table 2 for more details, where strata
is a variable with four values: “Riga”, “Cities”, “Towns”, and “Rural areas”; region
is a variable with six values). Strata, region, gender and age are variables used to
create imputation classes at the sixth level, and strata, region, gender and age group
(12 age groups) are variables used to create imputation classes at the seventh level
when imputation units are individuals.

The description of imputation procedure done at each level is given here. The
imputation is done in each class c independently. A donor dk ∈ Dc is assigned to a
recipient ri ∈ Rc with a probability 1

|Dc| if |Dc| ≥ 10 whereDc is the set of donors
in a class c, Rc is the set of recipients in a class c, and |Dc| is the total number of
donors in a class c. A donor dk ∈ Dc can be assigned to several recipients from Rc.
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Table 2. Household imputation classes at the first five levels
Variable Level 1 Level 2 Level 3 Level 4 Level 5

Males 15–19 1 1 1 1 1
Males 20–24 2 2 2 2 2
Males 25–29 3 3 3 3 3
Males 30–34 4 3 3 3 3
Males 35–39 5 4 3 3 3
Males 40–44 6 4 3 3 3
Males 45–49 7 5 4 4 4
Males 50–54 8 5 4 4 4
Males 55–59 9 6 4 4 4
Males 60–64 10 6 4 4 4
Males 65–69 11 7 5 5 5
Males 70–74 12 7 5 5 5

Females 15–19 13 8 6 6 6
Females 20–24 14 9 7 7 7
Females 25–29 15 10 8 8 8
Females 30–34 16 10 8 8 8
Females 35–39 17 11 8 8 8
Females 40–44 18 11 8 8 8
Females 45–49 19 12 9 9 9
Females 50–54 20 12 9 9 9
Females 55–59 21 13 9 9 9
Females 60–64 22 13 9 9 9
Females 65–69 23 14 10 10 10
Females 70–74 24 14 10 10 10

Strata 25 15 11 11 .
Region 26 16 12 . .

The imputation is not done in a class c if 0 ≤ |Dc| < 10. The units imputed at one
level are not re-imputed any more at the succeeding imputation levels. The units not
imputed at one level will be imputed at one of succeeding imputation levels.

The imputation of households as units at the first five levels allows one to keep
demographic and economic composition of households the same as observed in the
survey data. The specification of the classes at the first five levels is hierarchical.
The classification of the classes is the most detailed at the first level. The classes are
merged by each succeeding level. Economic activity status is imputed for 82.2% of
all individuals from the register data at the first five levels. The imputation for all
individuals can not be done in this manner because there are classes of households
in the register data which have not been observed in the survey data or have been
observed only in few cases (less than 10).
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Economic activity status is imputed for the rest of individuals at the last two
levels with the same imputation technique except imputation units are individuals
and other specification of classes is used. The classification of the classes here is
based on the same auxiliary information as used at the first five levels, though it is
used at the individual level rather than at the household level. The specification of
the classes is hierarchical here as well. It is possible to impute economic activity
status for all remaining individuals at the last two imputation levels.

3.2. Dynamic population data

A dynamic population according to the description in Section 2 is generated.
A variable – economic activity status is extrapolated from the static population to
the dynamic population. Let yi be the economic activity status of an individual vi
from the static population. A Markov chain model is used to generate the dynamic
population. The economic activity status yi can take any of three different values,
yi ∈ {1, 2, 3}:

• yi = 1 if an individual vi is employed,
• yi = 2 if an individual vi is unemployed,
• yi = 3 if an individual vi is economically inactive.

The value of yi is defined once in a week by the LFS methodology. Let yi,w
be the economic activity status for an individual vi on week w ∈ {0, 1, 2, . . .}. Let
yi,w be random variables and sequence yi,0, yi,1, yi,2, . . . be a time-inhomogeneous
Markov chain for an individual vi. The state space of the Markov chain is {1, 2, 3}.
The probability of going from a state k to a state l after a week for an individual vi
is

pi,w,w+1,k,l = P (yi,w+1 = l | yi,w = k) .

Constant transition probabilities for all vi are assumed

pi,w,w+1,k,l = pw,w+1,k,l,

and a time-dependent transition matrix the same for every individual vi is

PPPw,w+1 =

pw,w+1,1,1 pw,w+1,1,2 pw,w+1,1,3

pw,w+1,2,1 pw,w+1,2,2 pw,w+1,2,3

pw,w+1,3,1 pw,w+1,3,2 pw,w+1,3,3

 .

The estimate of PPPw,w+1 is necessary to generate artificial dynamic population
data. It is assumed there are 52 weeks in each year, and 52 weeks are split in four
seasonal quarters by 13 weeks in each.

The first quarter is shown as an example here. It is assumed that all 13 weekly
transition matrices are equal for the first quarter. Thus, the following equivalence
holds for the 13 weekly transition matrices:

PPP 0,1 = PPP 1,2 = . . . = PPP 12,13.
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In general the transition matrix after 13 weeks is equal to the product of 13 weekly
transition matrices: PPP 0,13 =

∏12
w=0PPPw,w+1. Because of the previous equivalence

we can write
PPP 0,13 = PPP 13

w,w+1 for all w ∈ 0, 12.

It follows from the previous equation

PPPw,w+1 =
13
√
PPP 0,13 for all w ∈ 0, 12.

The LFS is a rotating panel survey. There is a 50% overlap between the succeed-
ing quarterly samples. The individuals are interviewed with 13 weeks shift between
the succeeding quarterly samples. Theoretically it is possible to estimatePPP 0,13 from
the LFS data, because there are respondents who are observed both at week w = 0
and weekw = 13. Practically the estimation ofPPP 0,13 will not be precise if only data
from overlapping respondents of weeks w = 0 and w = 13 are used. It is because
the number of such respondents is small.

Thus, the decision was made to estimatePPP 0,13 using the LFS data from overlap-
ping respondents of the first and the second quarter:

P̂PP 0,13 = p̂pp1,2

where p̂pp1,2 is the estimate of transition matrix from the first quarter to the second
quarter using the LFS data. This estimation is introducing some bias to the estimate
of PPP 0,13, but it is more stable estimate.

Thus, the estimate of theweekly transitionmatrix for the first quarter is estimated
as

P̂PPw,w+1 = 13

√
p̂pp1,2 for all w ∈ 0, 12.

Similarly, the weekly transition matrices for the second quarter are estimated as

P̂PPw,w+1 = 13

√
p̂pp2,3 for all w ∈ 13, 25,

where p̂pp2,3 is the estimate of a quarterly transition matrix from the second quarter to
the third quarter and so on.

A time-inhomogeneousMarkov chain is used to introduce a seasonal component
in dynamic population data as it is observed in the survey data with respect to the
changes of economic activity status of individuals. The estimates of the quarterly
transition matrices and the weekly transition matrices are available in Table 3. The
estimated weekly transition matrices are used to generate the dynamic population
data by weeks. The variable of economic status from the static population is used as
the initial state (w = 0) for each individual.
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Table 3. Estimates of Transition Matrices
q w p̂ppq,q+1 P̂PPw,w+1

1 0, 12

 0.950 0.021 0.029
0.251 0.541 0.209
0.058 0.052 0.890

  0.996 0.002 0.002
0.025 0.952 0.022
0.004 0.006 0.990


2 13, 25

 0.944 0.021 0.035
0.253 0.540 0.206
0.055 0.055 0.891

  0.995 0.002 0.003
0.026 0.952 0.022
0.004 0.006 0.990


3 26, 38

 0.937 0.028 0.035
0.199 0.609 0.192
0.048 0.042 0.910

  0.995 0.003 0.003
0.019 0.962 0.019
0.004 0.004 0.992


4 39, 51

 0.930 0.033 0.037
0.183 0.596 0.221
0.042 0.043 0.915

  0.994 0.003 0.003
0.018 0.960 0.022
0.003 0.004 0.993



4. Cost efficiency

Assume an arbitrary population parameter θ. There is a probability sample sp
drawn by a sampling design p (s). The parameter θ is estimated by an estimator
θ̂p. The variance of θ̂p is denoted by Varp

(
θ̂p

)
. There is a cost function c (sp).

The operational cost of a sample sp is computed by the cost function cp = c (sp).
The result of the cost function is a random variable because sp is a random sample.
The expectation of cp under a sampling design p (s) is denoted as E (cp) = Cp.
Definition 1 is used to compare two sampling designs with respect to cost efficiency
where γ is a survey budget available.

Definition 1. A sampling design p (s) is more cost efficient than a sampling design
q (s) for estimation of a population parameter θ with a survey budget γ if

Varp
(
θ̂p

∣∣∣Cp ≈ γ
)
< Varq

(
θ̂q

∣∣∣Cq ≈ γ
)
.

The parameter γ can be replaced by a parameter vector γγγ denoting budget al-
location by operational domains in Definition 1. Specifying the budget as a vector
is useful in practice if the allocation of a budget by operational domains is import-
ant. The practical application of Definition 1 to analyse cost efficiency of sampling
designs is achieved by the following steps:

• selection of sampling designs to be analysed with respect to the cost
efficiency,

• definition of a cost function c (s),
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• setting the total budget γ or a budget allocation γγγ,
• setting specific sample design parameters for each chosen sample design

to achieve the expected total cost or cost allocation for all designs ap-
proximately equal to γ or γγγ accordingly,

• selection of population parameters for analysis,
• calculation of variance for the estimators of parameters selected,
• determination of the most cost efficient sample design using Definition

1.

4.1. Sampling designs

A modified simple random sampling design (mSRS) is introduced as an altern-
ative to the current LFS sampling design. The notation of Section 2 is used here.
The set of sampled units is denoted by s̃ ⊆ V . The set of sampled elements in week
w is denoted by sw ⊆ Uw. The set of sampled elements overW weeks is denoted by
s = ∪W

w=1sw ⊆ U . The weekly sample size is denoted bym. The total sample size
n is computed asmW . The value ofm has to be chosen so that n = mW ≤ M be-
cause each unit can be sampled only once duringW weeks. The goals of the mSRS
are:

• all elements of U have sampling probabilities equal to πk = n
N = m

M ,
• weekly samples forW weeks are drawn,
• all weekly samples are drawn with equal sample size, |sw| = m for all

w, making the total sample size equal to n = mW ,
• all n sampled elements refer to n different units, one and only one ele-

ment ui,w may be sampled for a unit vi.
There are several techniques to achieve the sample by the mSRS. An example

is presented here. The sample is selected in two steps. The first step is to select n
units by simple random sampling without replacement fromM units. The sampled
units are sorted in a random order. The ordered sample of units is systemically split
into W blocks with length m. The units of the first block determine the sampled
elements for the first week, the units of the second block determine the sampled
elements for the second week and so on until the units of the last block determine
the sampled elements for the weekW .

A probability to sample a unit vi at the first step is equal to n
M . The probability

of a unit vi to be located in a block w after the random ordering is equal to 1
W . A

sampled element is determined by the index i of a sampled unit vi and the index w
of a block containing the unit vi. Therefore, the sampling probability of an element
is equal to πi,w = πk = n

M
1
W = n

N = m
M .

A stratified mSRS sampling design is realised if units are stratified in H strata
and mSRS is applied independently in each stratum with sample size nh. The strat-
ified mSRS is denoted as mSSRS.
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Three sampling designs are chosen for the cost efficiency study. The first design
is mSSRS with individuals as sampling units (denoted as mSSRSi). Each sampled
individual is interviewed by a household questionnaire and an individual question-
naire. This is a similar sampling design used for LFS in Sweden and Denmark –
stratified random sampling of individuals, and only sampled individuals take part in
a survey (European Commission, 2012a).

The second sampling design is mSSRS with households as sampling units (de-
noted as mSSRSh). Each sampled household is interviewed by a household ques-
tionnaire and all household members are interviewed by an individual question-
naire. This is a similar sampling design used for LFS in Malta, Austria and United
Kingdom – stratified random sampling of dwellings or households and all members
of a sampled dwelling or household take part in a survey (European Commission,
2012a).

The third sampling design is two-stage sampling design (denoted as TSSh) used
in practice for the Latvian LFS. The primary sampling units (PSUs) are census count-
ing areas at the first stage. Census counting areas are geographically compact areas
with low variation by size (here and afterwards the size of PSU is measured as the
number of dwellings in PSU) making them useful for sampling purposes. The aver-
age PSU size is 238 in Riga (capital city), 219 in other cities (excluding Riga), 190
in towns and 141 in rural areas.

PSUs are stratified in four strata by the level of urbanisation (Riga – the capital
of Latvia, other cities, towns and rural areas). PSUs are sampled by systematic πps
sampling with random starting point and sampling probabilities proportional to PSU
size. PSUs are ordered in “serpentine” order in each stratum allowing for implicit
stratification by administrative territories. The systematic sampling of PSUs allows
the implementation of the chosen rotation scheme 2-(2)-2 (European Commission,
2012a, p.7).

Dwellings are the secondary sampling units sampled by simple random sampling
with fixed sample size in each stratum. Usually there is only one household in each
dwelling. Each sampled dwelling is interviewed by a household questionnaire and
all household members are interviewed by an individual questionnaire. More details
about the TSSh design are available at Liberts (2010).

The two-stage sampling design using census counting areas as PSUs has been
used for the Latvian LFS since 2002. Several questions about the chosen sampling
design have been raised quite often: Why should Central Statistical Bureau of Latvia
(CSB) use such complex (two-stage) sampling design? Why CSB are not switching
to more simpler (one-stage) sampling design? One of the main reasons for these
questions was the fact that design is using census counting areas as PSUs. The
frame of census counting areas (PSUs) has to be updated using the resources of the
CSB (it is because the census counting areas are not available in any administrative
register). Thus, the question regarding the most appropriate sampling design for
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LFS has been open for quite a long time. This explains the choice of the alternative
sampling designs for this study.

It is not obvious which of the selected sampling designs is the most cost efficient
in the case of the LFS. The mSSRSi and the mSSRSh could provide more precise
estimates with smaller sample sizes because of lower cluster effect (in the case of the
LFS). However, the TSSh requires lower fieldwork cost per unit because of shorter
travelling distances for interviewers allowing to select larger sample size.

Other sampling designs can be analysed as well, for example, mixed designs
where one-stage sampling is used for high density areas and two-stage sampling for
low density areas (to reduce travelling cost). This kind of sampling design was used
for the Latvian LFS in 1995–2001 (Lapiņš et al., 2002, p.628). On the one hand this
kind of sampling design could have good cost efficiency properties.

On the other hand, the complexity of the design is higher making the estimators
of population parameters and estimators of precision more complex. This could be
an obstacle for the external users of survey micro-data or for automatic precision
estimation systems assuming unified sampling design used throughout the survey.
It will be possible to observe further in the paper that mixed sampling design (with
chosen stratification) would not be more cost effective compared to the three chosen
sampling designs.

4.2. Cost function

Assume a survey done by face to face personal interviews where interviewers
are travelling to respondents. Two components of fieldwork cost are assumed –
travel cost and interview cost. Travel cost is approximated by a function c1 (s) =
dKfCfkd where d is the total travelling distance done by interviewers expressed in
kilometres,Kf is the average fuel consumption expressed in litres per kilometre,Cf

is the average price of fuel expressed in lats per litre (lats is the national currency of
the Republic of Latvia, 1 lats = 0.702804 euro), and kd is an adjustment coefficient
specified by a statistician.

There are G interviewers available and there is an interviewer assigned to each
unit in population. Sampled units for week w are split by interviewers according
to the predefined interviewer assignment in population. Geographical coordinates
are known for the sampled units and also for the residence places of interviewers.
Distances between sampled units and interviewers residence are computed as the
Euclidean distance.

The shortest path connecting the residence of an interviewer g and the sampled
units assigned to an interviewer g is found by solving a travelling salesperson prob-
lem (TSP). The TSP is solved by the nearest insertion algorithm (Rosenkrantz, Ste-
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arns, & Lewis, 1977, p.572). The total travel distance d is computed by

G∑
g=1

W∑
w=1

dg,w

where W is the total number of weeks observed and dg,w is the length of the path
found by solving a TSP for an interviewer g in week w. The constants Kf , Cf and
kd are set.

The interview cost is computed by a function c2 (s) = aCa + bCb where a is
the total number of individuals in a sample s, b is the total number of households
in a sample s, Ca is the interview cost for an individual questionnaire, and Cb is
the interview cost for a household questionnaire. A cost function c (s) = c1 (s) +
c2 (s) = KfCfkd

∑G
g=1 dg + aCa + bCb is used further in the study.

4.3. Fieldwork budget allocation

The fieldwork budgetγγγ is set equal to the survey budget necessary to run the LFS
by the current sampling design (TSSh) for a quarter allocated by three operational
domains: “Riga”, “Cities” and “Towns and rural areas”. The estimation of γγγ is done
by a Monte Carlo simulation experiment.

The expected values of dl, al and bl are estimated by a Monte Carlo simulation
experiment where l is the operational domain index. A sample is selected by the
TSSh and the values of dl, al and bl are computed in each iteration. The total number
of the iterations of the simulation is 6000. The values ofKf , Cf , Ca, Cb and kd are
set according to the available information about the LFS fieldwork organisation.

The resulting total survey cost for a quarter with TSSh design is 36 004.8. The
allocation of the survey cost by operational domains and resulting field work budget
is set as γγγ = {5395.1, 7719.5, 22 890.1} (for “Riga”, “Cities” and “Towns and rural
areas” accordingly).

4.4. Design parameters of alternative sampling designs

ThemSSRSi andmSSRSh are chosen as alternative sampling designs. The strat-
ification of both designs is set equal to the operational domains of TSSh. Therefore,
three strata (“Riga”, “Cities”, “Towns and rural areas”) are created for each design.
Units are individuals for the mSSRSi and units are households for the mSSRSh. A
sample size is estimated independently for each design and each stratum (six cases).
A stratum sample size nh is the only parameter for the designs. The valid values of
nh are

{nh : (0 < nh ≤ Mh & nh mod 13 = 0)}

where Mh is the total number of units stratum h. The aim is to find nh so that
C (nh) ≈ γh where C (nh) is the expected survey cost with sample size nh, and γh
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is the survey budget for a stratum h. The solution is defined as

n∗
h = argmin

{nh:C(nh)>γh}
C (nh) .

The solution is found by a stepwise procedure for each design and each stratum
independently:

• Eight values of nh widely spread in the interval of valid sample sizes
are selected and C (nh) is estimated for each selected nh with a Monte
Carlo simulation.

• The relation between the expected cost and sample size is approxim-
ated by a non-linear regression C (nh) ∼ β0 + β1nh + β2

√
nh. The

regression coefficients β0, β1 and β2 are estimated from the eight pairs
of
{
nh, Ĉ (nh)

}
.

• An approximate solution n̂∗
h is computed from the regression equation

by

n̂∗
h =

(√
β̂2

2 − 4β̂1

(
β̂0 − γh

)
− β̂2

)2

4β̂1
2 .

• It has been observed that the exact solution n∗
h is close to n̂

∗
h. The exact

solution is found by another Monte Carlo simulation experiment estim-
ating the cost for a sampling design with seven different sample sizes
close to n̂∗

h. The sample sizes chosen for the simulation are n̂
∗
h−39, n̂∗

h−
26, n̂∗

h − 13, n̂∗
h, n̂

∗
h + 13, n̂∗

h + 26, n̂∗
h + 39.

The resulting sample size and survey cost for each stratum and sampling design
are available in Table 4, where table columns are: n.PSU – number of PSUs, n.h
– number of households in sample, n.i expected number of individuals in sample,
c.travel – expected travel cost, c.interview – expected interview cost, c.total
– expected total survey cost (the total survey cost is slightly higher than the budget
available for mSSRSi and mSSRSh sampling designs to preserve a conservative
position with respect to the TSSh).

4.5. Parameters of interest

There are six parameters considered:
• a.empl – the average of weekly totals of employed individuals,
• a.unem – the average of weekly totals of unemployed individuals,
• a.inact – the average of weekly totals of economically inactive indi-

viduals,
• r.act – the activity rate (the total number of employed and unemployed

individuals by the total number of working-age individuals),
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Table 4. Sample size and survey cost by stratum and sampling design
stratum design n.PSU n.h n.i c.travel c.interview c.total

Riga mSSRSi . . 1 261 403.2 5 036.6 5 439.8
Riga mSSRSh . 1 001 2 105 351.7 5 107.6 5 459.4
Riga TSSh 104 1 040 2 185 90.6 5 304.6 5 395.1

Cities mSSRSi . . 1 781 660.1 7 099.0 7 759.2
Cities mSSRSh . 1 404 2 963 581.9 7 174.6 7 756.5
Cities TSSh 208 1 456 3 073 278.8 7 440.8 7 719.5

Other mSSRSi . . 2 834 11 631.4 11 301.7 22 933.1
Other mSSRSh . 2 340 5 554 10 356.7 12 573.7 22 930.4
Other TSSh 416 3 536 8 318 3 964.2 18 925.9 22 890.1

• r.empl – the employment rate (the total number of employed individu-
als by the total number of working-age individuals),

• r.unem – the unemployment rate (the total number of unemployed indi-
viduals by the total number of employed and unemployed individuals).

Six parameters are estimated for the whole target population and also in breakdowns
by domains. Three sets of domains are considered:

• geographical domain (4) – Riga, cities (excluding Riga), towns, and rural
areas,

• age group (2) – individuals aged 15–24 and 25–74 years,
• geographical domain (4) × age group (2).

It makes 90 parameters (45 averages of weekly totals and 45 ratios of two totals)
selected for the cost efficiency analysis.

4.6. Variance of parameter estimators 

The variance of Ŷq (1) by the mSSRSi and the mSSRSh is computed by

Var
(
Ŷq

)
=

1

169

H∑
h=1

(
M2

h

mh

∑
w

S2
w,h (y)−Mh

∑
w

∑
v

Sw,v,h (y)

)
where h is a stratum index, H is the total number of strata, Mh is the total number
of units in the unit population of a stratum h, mh is the total number of units in
the sample of a stratum h, S2

w,h (y) is the variance of a variable y in week w and a
stratum h, and Sw,v,h (y) is the covariance of a variable y between weeks w and v in
a stratum h. The approximate variance of R̂q (2) by the mSSRSi and the mSSRSh
is computed by

AVar
(
R̂q

)
=

1

Z2
q

H∑
h=1

(
M2

h

mh

∑
w

S2
w,h (u)−Mh

∑
w

∑
v

Sw,v,h (u)

)
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where Zq is the denominator of Rq, and u is the so called linearised variable for the
ratio of two totals (Särndal et al., 1992, p.178). The variance of Ŷq and R̂q by the
TSSh is estimated by a Monte Carlo simulation experiment.

4.7. Cost efficiency analysis

The three selected designs are compared by their cost efficiency using Definition
1 for the estimation of each selected parameter. A hypothesis testing is used in the
case when the estimate of the variance by the TSSh is compared to the variance
by the mSSRSi or the mSSRSh. An assumption is made that the estimates of the
parameters by the TSSh are normally distributed:

θ̂ ∼ N
(
µ, σ2

)
where σ2 is unknown and is estimated by s2 = s2 (xxx) from the data xxx of the sim-
ulation experiment. The length of xxx is equal to the total number of iterations in
the simulation, |xxx| = J = 20 000 in this case. The aim is to compare σ2 by the
TSSh with the known σ2

0 under alternative design. A one-sided hypothesis testing
(Wasserman, 2004) is done:

H0 : σ
2 ≥ σ2

0,

H1 : σ
2 < σ2

0.
(3)

A test statistic is computed as

T (xxx) =
(J − 1) s2

σ2
0

,

and a rejection region R is defined as

R = {xxx : T (xxx) ≤ c}

where c = F−1
J−1 (α) is the value of the inverse cumulative distribution function of

χ2
J−1 at α. The following statements with respect toH0 are set:

T (xxx) ≤ c ⇒ reject H0,

T (xxx) > c ⇒ retain (do not reject)H0.

The smallest α which rejectsH0 is called p-value, and p-value is equal to the value
of the cumulative distribution function of χ2

J−1 at the point
(J−1)s2

σ2
0

.
The most cost efficient sampling design for the estimation of a parameter is de-

termined by the following procedure:
1. The value of σ2

0 is computed as min
(
σ2
mSSRSi, σ

2
mSSRSh

)
.

2. The hypothesis testing (3) is done by computing p-value.
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3. The TSSh is chosen as the most cost efficient sampling design for a
parameter and the procedure stops here if p-value is less than 0.01. The
procedure is continued to the step 4 if p-value is equal or greater than
0.01.

4. The mSSRSi is chosen as the most cost efficient sampling design for a
parameter if σ2

mSSRSi < σ2
mSSRSh, and the mSSRSh is chosen as the

most cost efficient sampling design for a parameter otherwise.
The expected precision of parameter estimates by the three sampling designs and
the most efficient sampling design determined is given in Tables 5, 6, 7, and 8. The
columns of the tables are:

• param: the name of parameter,
• dom: five geographical domains – “Latvia”, “Riga”, “Cities” (excluding

city Riga), “Towns” or “Rural” (rural areas),
• age: three age groups – “15–74”, “15–24” or “25–74”,
• value: the true value of a population parameter computed from the ar-

tificial population data,
• σ1: the expected standard error of an estimate by the mSSRSi,
• σ2: the expected standard error of an estimate by the mSSRSh,
• σ3: the estimated standard error of an estimate by the TSSh,
• p-val: p-value of the hypothesis testing (3),
• des.eff: the most cost efficient sampling design determined by the

framework – “mSSRSi”, “mSSRSh” or “TSSh”.

Table 5. Precision of the estimates for the average of weekly totals in Latvia
param dom age value σ1 σ2 σ3 p-val des.eff

a.empl Latvia 15–74 972 327 11 034 12 061 11 437 1.000 mSSRSi
a.unem Latvia 15–74 133 746 6 173 4 958 4 654 0.000 TSSh
a.inact Latvia 15–74 545 052 10 513 9 109 8 605 0.000 TSSh
a.empl Latvia 15–24 102 838 5 410 4 344 4 097 0.000 TSSh
a.unem Latvia 15–24 27 693 2 868 2 191 2 034 0.000 TSSh
a.inact Latvia 15–24 157 176 6 487 5 373 5 078 0.000 TSSh
a.empl Latvia 25–74 869 489 11 204 10 802 10 150 0.000 TSSh
a.unem Latvia 25–74 106 054 5 565 4 393 4 121 0.000 TSSh
a.inact Latvia 25–74 387 876 9 499 7 800 7 282 0.000 TSSh

The efficiency of the sampling designs strongly depends on a domain and the
type of a parameter. The mSSRSi is selected as the most efficient design only for
three parameters – “the average of weekly totals of employed individuals” in the
domains “Latvia”, “Riga” and “Cities”. The mSSRSh is reasonably efficient for the
estimation of the averages of totals in the domain “Riga” – it has been selected as
the most efficient design in five out of nine cases. There are five other parameters
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Table 6. Precision of the estimates for the ratio of two totals in Latvia
param dom age value σ1 σ2 σ3 p-val des.eff

r.act Latvia 15–74 0.670 0.0064 0.0049 0.0045 0.000 TSSh
r.empl Latvia 15–74 0.589 0.0067 0.0051 0.0048 0.000 TSSh
r.unem Latvia 15–74 0.121 0.0055 0.0043 0.0040 0.000 TSSh
r.act Latvia 15–24 0.454 0.0161 0.0122 0.0113 0.000 TSSh
r.empl Latvia 15–24 0.357 0.0155 0.0118 0.0109 0.000 TSSh
r.unem Latvia 15–24 0.212 0.0197 0.0148 0.0138 0.000 TSSh
r.act Latvia 25–74 0.716 0.0067 0.0053 0.0050 0.000 TSSh
r.empl Latvia 25–74 0.638 0.0072 0.0057 0.0053 0.000 TSSh
r.unem Latvia 25–74 0.109 0.0056 0.0044 0.0040 0.000 TSSh

in the domains “Riga” and “Cities” which are the most efficiently estimated by the
mSSRSh.

The TSSh is the most efficient design for the estimation of ratios in the domain
“Riga” and also for the estimation of totals and ratios in the domain “Cities”. The
TSSh dominates in the domains “Towns” and “Rural areas” – all parameters in these
domains are the most efficiently estimated by the TSSh. It is because travelling
distances are longer in these domains compared to the domains “Riga” and “Cities”.
The TSSh is the most efficient also for the estimation of the parameters representing
the domain “Latvia” (only one parameter for the domain “Latvia” is more efficiently
estimated by the mSSRSi).

The cost efficiency analysis is done from a conservative position with respect
to the TSSh. Firstly, the total sample size of each stratum for the mSSRSi and the
mSSRSh is chosen slightly larger compared to the TSSh (Section 4.4).

Secondly, the TSSh is chosen as the most efficient design only in the cases when
it is supported by strong evidence (p-value of the hypothesis testing is less than 0.01).
The mSSRSi and the mSSRSh are preferred in the cases when there is uncertainty
in the determination of the most efficiency design. For example, there are several
cases when the precision of estimates achieved by the mSSRSh and the TSSh is quite
similar.

The TSSh sampling design can be used reasonably well in some of these cases
even if the mSSRSh has been chosen as the most efficient design, for example, in
cases for the estimation of the average of weekly totals of inactive individuals in
the domain “Riga” and the average of weekly totals of employed individuals aged
25–74 in the domain “Riga” (these are the cases when p-value is slightly higher than
0.01).

The TSSh has achieved the highest precision of estimates in most cases despite
the conservative position with respect to it. Therefore, it is recommended to use
the currently used two-stage sampling design for the Latvian LFS to achieve the
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Table 7. Precision of the estimates for the average of weekly totals
param dom age value σ1 σ2 σ3 p-val des.eff

a.empl Riga 15–74 330 855 7 381 8 272 8 329 1.000 mSSRSi
a.unem Riga 15–74 47 160 4 284 3 569 3 504 0.000 TSSh
a.inact Riga 15–74 160 949 6 938 6 062 6 009 0.040 mSSRSh
a.empl Riga 15–24 31 245 3 543 2 903 2 960 1.000 mSSRSh
a.unem Riga 15–24 8 152 1 851 1 452 1 435 0.011 mSSRSh
a.inact Riga 15–24 40 138 3 980 3 300 3 301 0.508 mSSRSh
a.empl Riga 25–74 299 610 7 533 7 509 7 430 0.017 mSSRSh
a.unem Riga 25–74 39 007 3 928 3 222 3 184 0.008 TSSh
a.inact Riga 25–74 120 810 6 322 5 329 5 250 0.001 TSSh

a.empl Cities 15–74 196 200 3 870 4 304 4 126 1.000 mSSRSi
a.unem Cities 15–74 26 352 2 125 1 746 1 713 0.000 TSSh
a.inact Cities 15–74 110 307 3 703 3 250 3 261 0.754 mSSRSh
a.empl Cities 15–24 19 779 1 860 1 532 1 500 0.000 TSSh
a.unem Cities 15–24 5 362 991 782 764 0.000 TSSh
a.inact Cities 15–24 30 430 2 267 1 903 1 846 0.000 TSSh
a.empl Cities 25–74 176 421 3 926 3 878 3 736 0.000 TSSh
a.unem Cities 25–74 20 990 1 913 1 536 1 510 0.000 TSSh
a.inact Cities 25–74 79 877 3 360 2 839 2 850 0.784 mSSRSh

a.empl Towns 15–74 166 623 5 991 6 139 3 325 0.000 TSSh
a.unem Towns 15–74 23 376 2 493 1 935 1 395 0.000 TSSh
a.inact Towns 15–74 96 256 4 808 4 206 2 549 0.000 TSSh
a.empl Towns 15–24 17 418 2 160 1 687 1 203 0.000 TSSh
a.unem Towns 15–24 5 101 1 179 873 639 0.000 TSSh
a.inact Towns 15–24 29 682 2 797 2 284 1 593 0.000 TSSh
a.empl Towns 25–74 149 205 5 749 5 487 2 967 0.000 TSSh
a.unem Towns 25–74 18 275 2 212 1 676 1 224 0.000 TSSh
a.inact Towns 25–74 66 574 4 085 3 361 2 167 0.000 TSSh

a.empl Rural 15–74 278 650 7 004 7 761 5 583 0.000 TSSh
a.unem Rural 15–74 36 859 3 103 2 405 2 085 0.000 TSSh
a.inact Rural 15–74 177 540 6 129 5 698 4 516 0.000 TSSh
a.empl Rural 15–24 34 396 3 001 2 401 2 043 0.000 TSSh
a.unem Rural 15–24 9 078 1 568 1 165 1 023 0.000 TSSh
a.inact Rural 15–24 56 926 3 802 3 252 3 013 0.000 TSSh
a.empl Rural 25–74 244 254 6 779 6 787 4 821 0.000 TSSh
a.unem Rural 25–74 27 781 2 710 2 043 1 754 0.000 TSSh
a.inact Rural 25–74 120 615 5 285 4 461 3 473 0.000 TSSh
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Table 8. Precision of the estimates for the ratio of two totals
param dom age value σ1 σ2 σ3 p-val des.eff

r.act Riga 15–74 0.701 0.0129 0.0101 0.0099 0.000 TSSh
r.empl Riga 15–74 0.614 0.0137 0.0109 0.0106 0.000 TSSh
r.unem Riga 15–74 0.125 0.0111 0.0090 0.0088 0.000 TSSh
r.act Riga 15–24 0.495 0.0366 0.0287 0.0281 0.000 TSSh
r.empl Riga 15–24 0.393 0.0358 0.0281 0.0277 0.001 TSSh
r.unem Riga 15–24 0.207 0.0422 0.0329 0.0329 0.542 mSSRSh
r.act Riga 25–74 0.737 0.0134 0.0109 0.0107 0.000 TSSh
r.empl Riga 25–74 0.652 0.0145 0.0119 0.0116 0.000 TSSh
r.unem Riga 25–74 0.115 0.0113 0.0092 0.0090 0.000 TSSh

r.act Cities 15–74 0.669 0.0111 0.0088 0.0086 0.000 TSSh
r.empl Cities 15–74 0.589 0.0116 0.0092 0.0091 0.001 TSSh
r.unem Cities 15–74 0.118 0.0093 0.0075 0.0073 0.000 TSSh
r.act Cities 15–24 0.452 0.0288 0.0227 0.0221 0.000 TSSh
r.empl Cities 15–24 0.356 0.0277 0.0218 0.0213 0.000 TSSh
r.unem Cities 15–24 0.213 0.0352 0.0275 0.0269 0.000 TSSh
r.act Cities 25–74 0.712 0.0117 0.0097 0.0095 0.013 mSSRSh
r.empl Cities 25–74 0.636 0.0125 0.0103 0.0102 0.069 mSSRSh
r.unem Cities 25–74 0.106 0.0095 0.0076 0.0074 0.000 TSSh

r.act Towns 15–74 0.664 0.0146 0.0105 0.0079 0.000 TSSh
r.empl Towns 15–74 0.582 0.0153 0.0111 0.0082 0.000 TSSh
r.unem Towns 15–74 0.123 0.0125 0.0092 0.0069 0.000 TSSh
r.act Towns 15–24 0.431 0.0359 0.0263 0.0195 0.000 TSSh
r.empl Towns 15–24 0.334 0.0342 0.0249 0.0184 0.000 TSSh
r.unem Towns 15–24 0.227 0.0462 0.0334 0.0246 0.000 TSSh
r.act Towns 25–74 0.716 0.0154 0.0116 0.0087 0.000 TSSh
r.empl Towns 25–74 0.637 0.0165 0.0125 0.0092 0.000 TSSh
r.unem Towns 25–74 0.109 0.0126 0.0093 0.0070 0.000 TSSh

r.act Rural 15–74 0.640 0.0113 0.0083 0.0072 0.000 TSSh
r.empl Rural 15–74 0.565 0.0117 0.0086 0.0074 0.000 TSSh
r.unem Rural 15–74 0.117 0.0095 0.0070 0.0061 0.000 TSSh
r.act Rural 15–24 0.433 0.0259 0.0188 0.0166 0.000 TSSh
r.empl Rural 15–24 0.343 0.0248 0.0180 0.0156 0.000 TSSh
r.unem Rural 15–24 0.209 0.0323 0.0234 0.0204 0.000 TSSh
r.act Rural 25–74 0.693 0.0122 0.0093 0.0081 0.000 TSSh
r.empl Rural 25–74 0.622 0.0128 0.0098 0.0084 0.000 TSSh
r.unem Rural 25–74 0.102 0.0096 0.0071 0.0061 0.000 TSSh
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highest overall precision under the current budget constrains. Switching to a simpler
sampling design will result in one of two negative effects. The first possible negative
effect is the loss of overall precision if the survey cost is kept in the current budget
level. The second possible negative effect is the increase in the survey cost if overall
precision level is kept equal to the current level.

5. Conclusions

The aim of this paper was to develop a mathematical framework to compare
chosen sampling designs with respect to the expected precision of estimates and the
data collection cost. The framework has been developed and its application in case
of Latvian Labour Force Survey has been demonstrated. The framework presented
in the paper utilises Monte Carlo simulation experiment techniques when analytical
methods can not be applied.

The framework allows the user to gain information about the sampling design
properties (for example, the expected fieldwork cost or the expected precision of
estimates) in a relatively short time and with relatively low cost. This information is
very valuable for survey planning and the decisionmaking processes. The advantage
of the framework is that no extra data collection is required. The framework util-
ises data already available to a statistical agency (administrative records, population
census data or sample survey data).

A set of procedures is developed to support the implementation of the framework
in practice. The aim of the procedures is to runMonte Carlo simulations of sampling
designs. The procedures are developed in Rwhich is a free software environment for
statistical computing and graphics (R Core Team, 2013). The code of the procedures
is available online at the “GitHub” repository (Liberts, 2013). The procedures are
developed as modular functions. It allows for the extension of the procedures with
additional functions if necessary. There is no limitation on the types of design that
can be analysed by the procedures. The only requirement is that it must be possible
to describe the sampling process of a design as an R function.

The cost efficiency of three sampling designs is analysed using the framework.
The properties of the chosen sampling designs are explored and recommendations
with respect to an appropriate sampling design for the Latvian LFS are given. It
is proven that the two-stage sampling design used currently for the LFS provides
more precise parameter estimates under the condition of equal fieldwork cost when
compared to two other simpler sampling designs.

The developed framework for cost efficiency analysis is flexible. It can be ap-
plied for different surveys and arbitrary sampling designs. There are broad possib-
ilities of tuning the framework to specific aspects under analysis, for example, the
survey cost estimation can be extended to take into account other processes from
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real fieldwork operations. The developed framework can be used both by national
statistical agencies and private companies organising sample surveys.

The research can be continued by extending the framework with non-response
modelling. The set of the developed R procedures has to be extended with additional
procedures. The additional procedure is necessary to simulate the process of the non-
response of sampled units. The cost function has to be adjusted to take into account
the actions done by interviewers in the case of non-response. The procedure for
estimation of the population parameters in the case of non-response is necessary.
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SYNTHETIC ESTIMATORS USING AUXILIARY 
INFORMATION IN SMALL DOMAINS  

P. K. Rai1, K. K. Pandey2
 

ABSTRACT 

In the present article we discuss the generalized class of synthetic estimators for 
estimating the population mean of small domains under the information of two 
auxiliary variables, and describe the special cases under the different values of the 
constant beta involved in the proposed generalized class of synthetic estimator. In 
addition we have taken a numerical illustration for the two auxiliary variables and 
compared the result for the synthetic ratio estimator under single and two 
auxiliary variables.  

Key words: auxiliary information, small area (domain) estimation, synthetic 
estimation, optimum weights. 

1. Introduction 

An estimator is called a synthetic estimator if a reliable direct estimator for a 
larger area, covering several small areas, is used to derive an indirect estimator for 
a small area under the assumption that the small areas have the same 
characteristics as the large area (Gonzalez, 1973). Such estimators have been 
studied by Gonzalez (1973), Gonzalez and Waksberg (1973). It is a fact that if 
small domain sample sizes are relatively small the synthetic estimator performs 
better than the simple direct estimators, whereas when sample sizes are large the 
direct estimators perform better than the synthetic estimators (Schaible, Brock, 
Casady and Schnack, 1977). The classes of synthetic estimators proposed by the 
above authors give consistent estimators if the corresponding synthetic 
assumptions are satisfied. These authors, further, discuss the generalized class of 
synthetic estimators under simple random sampling and stratified random 
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sampling schemes. In sample surveys usually auxiliary variables are used to 
increase the precision of the estimators. A ratio estimator is one of the most 
commonly used estimators among others for the population mean or population 
total with the help of an auxiliary character. It was shown by Tikkiwal, G.C. and 
Ghiya, A. (2004), Tikkiwal, G.C. and Pandey, K.K. (2007), Pandey Krishan K. 
and Tikkiwal, G.C. (2010), Pandey, Krishan K. (2010), that when an auxiliary 
variable is closely related with the variable under study, the small area estimators 
based on auxiliary information perform better than those which do not use 
auxiliary information. Further, Tikkiwal, G.C. and Pandey, K.K. (2007) discuss 
the generalized class of synthetic and composite estimators under Lahiri-Midzuno 
and systematic sampling schemes. The relative performances of these estimators 
are empirically assessed for the problem of crop acreage estimation for small 
domains. 

It is rather difficult to assess the performance of these estimators theoretically. 
Here we have discussed the different aspect of the generalized class of synthetic 
estimators for small area estimation problems when more than one auxiliary 
information is available.  

2. Generalized class of synthetic estimators in sample surveys 

We define a generalized class of synthetic estimators for estimating the 
population mean Y  under ‘k’ auxiliary variables 1 2, ,....... kx x x , as follows 
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∑ =1. Here, ix  

and iX  denote the sample mean and population mean of ( 1, 2,....., )ix i p=  
respectively, ( 0,1,....., )i j i j pρ ≠ =   denotes the correlation coefficient between 

ix  and jx , and ( 0,1,....., )iC i p=  denotes the coefficient of variation of ix ; the 
suffix 0 stands for the variable y  and y   is the sample mean of the variable under 
study.  
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3. Notations and formulation under small domains 

Let us represent the important notations which are to be used in this paper. 
Suppose that a finite population U= (1,…, i,…, N) is divided into ‘A’ non-
overlapping domains Ua of size Na (a=1,…, A) for which estimates are required. 
The domains may be numerous and represent small geographical areas of 
a sampled population, which may be a state or a sub-division of the state as the 
case may be. Let the characteristic under study be denoted by ‘y’. Further, assume 
that the auxiliary information is also available and denoted by ‘x’. A simple 
random sample (without replacement) s= (1,…, i, …, n) of size n  is selected such 
that na (a=1,…, A) units in the sample ‘s’ come from small area ‘a’. 
Consequently, 
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Let us consider the case of generalized synthetic estimator for estimating the 
population mean aY   for domain ‘a’ under two auxiliary variables 1x  and 2x ; 
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Here, 1W  and 2W  are the weights such that 1W + 2W =1 and 1β  , 1β  are suitably 
chosen constants. To find the expectation and mean square error of the estimator 
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4. Bias and mean square error 

In this section bias and mean square error expressions are considered up to the 
terms of order (1/n) only.  The ,syn ay  can be expressed as 
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assuming that the contribution of terms involving powers in 0ε , 1ε  and 2ε  higher 
than the second order is negligible. The design bias of ,syn ay   and ,( )syn aMSE y is 
given below as 
 

1

2

21 1 1
, 1 1 1 01

1

22 2 2
2 2 2 02

2

( 1)( ) 1
2!

( 1)1
2!

syn a
a

a
a

X fB y W Y C C
X n

X fW Y C C Y
X n

β

β

β β β

β β β

   −  = + +    
   

   −  + + + −    
   

 
(11) 
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(2 4 )

2
2

syn a
a a

a

a

a a
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X n
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X X fW W Y
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β β

β

β

β β

β β

β β

β

    
 = +   
     

   + + − +     

   + + − +     
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  − +         −  + + +       
    −  + +    

    −  
   −  + + +         

2
aY+




(12) 

 
Also, the optimum value for the weights 1

optW  and 2
optW  can be obtained by 

minimizing mean square error term of (12). 
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5. Special cases: various synthetic estimators 

The generalized synthetic estimator ,syn ay  reduces to the simple synthetic 

estimator if 1β  and 2β equal to zero, i.e. 1 2 0β β= =  

, , ,syn a syn s ay y y= =                                                                (13) 

and synthetic assumption ( ) ( )a aY X Y X
β β≅  reduces to aY Y≅ . Substituting 

1 2 0β β= =  in the expression (11) we get  

, 1 2 , ,( ) ( )syn a a a syn s aB y W Y W Y Y Y Y B y= + − = − =  (14) 

This is the expression for design bias of the simple synthetic estimator. The 
design bias of the synthetic estimator vanishes if the synthetic assumption, i.e. 

aY Y  is satisfied. Now 1 2 0β β= =  in the expression (12) gives 

( ) ( )2 22 2 2 2
, , 1 2 0 1 2 1 2( ) 2 ( )syn s a a a

fMSE y Y W W Y C W W Y Y W W Y
n

= + + + − + +  

2 2 2
0 y

f N nY C S
n Nn

−
= =                                                                       (15) 

This is the mean square error of simple synthetic estimator under said 
synthetic assumption. 

The generalized Synthetic estimator ,syn ay  reduces to ratio synthetic estimator 

under two auxiliary variables, if 1β  and 2β equal to -1, i.e. 1 2 1β β= = −  

, , 1 1 2 2
1 2

syn r a a a
y yy W X W X
x x

   
= +   

   
                    (16) 

Substituting 1 2 1β β= = −  in the expression (11) and (12) we get the 
expressions for the bias and mse for the ratio synthetic estimator. 

The generalized synthetic estimator ,syn ay  reduces to the product synthetic 

estimator under two auxiliary variables, if 1β  and 2β equal to +1, i.e. 

1 2 1β β= = +  

                1 2
, , 1 2

1 2
syn p a

a a

x xy W y W y
X X

   
= +   

   
                   (17) 

Substituting 1 2 1β β= = +  in the expression (11) and (12) we get the 
expressions for the bias and mse for the product synthetic estimator. 
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6. Numerical illustration 

We consider the study variable as REV84, the real estate values according to 
1984 assessment and use the two auxiliary variables as population under 
municipalities of 1975 and 1985 of the different geographic region indicator of 
Swedish municipalities. Just draw the sample of different sizes using SRSWOR 
scheme and analyze the cases for regions 1, 2 and 3 as small domains. 

We have considered the cases under single and double auxiliary variables and 
computed the biases and mse’s for the different sample sizes. Using the 
expressions of optimum weights we have computed the value of weights for the 
generalized synthetic estimator under 1 2 1β β= = −  which reduces to synthetic 

ratio estimator, thus optW1 = 0.978828466 and optW2 =0.021171534. And aY = 

3011.683, aX 1 =28.92308, aX 2 = 255.0192, Y =3133.862676, 1X = 28.80986, 

2X = 111.9471831 
Under single auxiliary variable the bias and mse for the synthetic ratio 

estimator is given by 

            
( ) ( )2

2 , , 1syn r a a x xy a
Y N nB B y X C C Y
X Nn

− = = + − −  
                       (18) 

 

and     ( ) { }
2

2 2
, , 1 3 4syn r a a x y xy

Y N nMSE y X C C C
X Nn

  − = + + −     
 

( )2 22 1a a x xy a
Y N nY X C C Y
X Nn

  − − + − +     
               (19) 

Using the equations above we show the results for bias and mse of synthetic 
ratio estimator under two scenarios for the different sample sizes in the given 
tables in appendix. The results can be also explored by the following graphical 
presentation. 

7. Conclusions 

At least two auxiliary variables will be the better choice over a single one 
when the sample size decreases. In sample surveys it is useful to make use of 
information on the auxiliary variable to increase the precision of the estimators. 
The above study will provide the motivation towards the use of generalized class 
of synthetic estimators in the small area estimation, when the information on two 
auxiliary variables is available.  
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APPENDICES 

FIGURES 
Graph 1. 

 

 Graph 2. 
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Graph 3. 

 
Graph 4. 
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Graph 5. 

 
Graph 6. 
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TABLES 
 

Table No. 6.1 
Coefficient of Variation involved in Computation 

 
C0

2 
2.54 

C1
2 3.34 

C2
2 2.81 

C01 2.81 
C02 1.56 
C12 1.87 

 
Table No. 6.2 

Bias of Synthetic Ratio Estimator under Single and Two Auxiliary Variables 
 

Sample Sizes Bias Under Single AV Bias Under Two AV 
160 221.07 139.14 
100 222.30 145.53 
50 225.57 162.56 
10 251.71 298.79 

 
Table No. 6.3 

MSE of Synthetic Ratio Estimator under Single and Two Auxiliary Variables 
 

Sample Sizes MSE Under Single AV MSE Under Two AV 
160 51908.99 26914.89 
100 54960.31 39043.23 
50 64560.66 71385.74 
10 176930.48 330125.22 

 
Table No. 6.4 

Bias of Synthetic Ratio Estimator under Single and Two Auxiliary Variables 

Sample Sizes Bias Under Single AV Bias Under Two AV 
160 231.13 152.10 
100 242.29 169.76 
50 276.56 195.83 
10 305.31 350.77 
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Table No. 6.5 
MSE of Synthetic Ratio Estimator under Single and Two Auxiliary Variables 

Sample Sizes MSE Under Single AV MSE Under Two AV 

160 50025.81 36980.87 

100 55635.45 42565.40 

50 64860.68 82344.91 

10 223692.88 362512.46 
 

Table No. 6.6 
Bias of Synthetic Ratio Estimator under Single and Two Auxiliary Variables 

Sample Sizes Bias Under Single AV Bias Under Two AV 
160 331.74 225.37 
100 385.35 258.88 
50 390.56 325.83 
10 403.30 336.73 

 

Table No. 6.7 
MSE of Synthetic Ratio Estimator under Single and Two Auxiliary Variables 

Sample Sizes MSE Under Single AV MSE Under Two AV 

160 69871.32 38565.61 

100 66523.33 45021.33 

50 72563.24 77452.26 

10 213564.13 325613.65 
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A TWO-PARAMETER LINDLEY DISTRIBUTION 

R. Shanker1, A. Mishra2 

ABSTRACT 

A two-parameter Lindley distribution, of which the Lindley distribution (LD) is a 
particular case, has been introduced. Its moments, failure rate function, mean 
residual life function and stochastic orderings have been discussed. The 
maximum likelihood method and the method of moments have been discussed for 
estimating its parameters. The distribution has been fitted to some data-sets to test 
its goodness of fit. 

Key words: Lindley distribution, moments, failure rate function, mean residual 
life function, stochastic ordering, estimation of parameters, goodness of fit. 

1. Introduction  

Lindley (1958) introduced a one-parameter distribution, known as Lindley 
distribution, given by its probability density function  

                  ( ) ( )
2

; 1
1

xf x x e θθθ
θ

−= +
+

;      0,    0x θ> >                          (1.1) 

It can be seen that this distribution is a mixture of exponential ( )θ and gamma

( )2,θ  distributions. Its cumulative distribution function has been obtained as          

              ( ) 11
1

xxF x e θθ θ
θ

−+ +
= −

+
; 0,  0x θ> >                                         (1.2) 

Ghitany et al (2008) have discussed various properties of this distribution and 
showed that in many ways (1.1) it provides a better model for some applications 
than the exponential distribution. The first four moments about origin of the 
Lindley distribution have been obtained as 

                                                           
1 College of Business and Economics, Asmara, Eritrea (N-E Africa). E-mail: 
shankerrama2009@gmail.com. 
2 Department of Statistics, Patna University, Patna, (India). E-mail:  mishraamar@rediffmail.com. 
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( )
( )
( )

( )
( )

( )
( )1 2 3 42 3 4

2 3 6 4 24 52 ,    ,     ,      
1 1 1 1

θ θ θθµ µ µ µ
θ θ θ θ θ θ θ θ

+ + ++′ ′ ′ ′= = = =
+ + + +

     

(1.3)    
and its central moments have been obtained as  
                             

( )
( )

( )
( )

( )

3 2 4 3 22

2 3 42 3 42 3 4

2 6 6 2 3 3 24 44 32 84 2 ,    ,    
1 1 1

θ θ θ θ θ θ θθ θµ µ µ
θ θ θ θ θ θ

+ + + + + + ++ +
= = =

+ + +
                                           
                                                                                                                                        (1.4) 
 

Ghitany et al (2008) studied various properties of this distribution. A discrete 
version of this distribution has been suggested by Deniz and Ojeda (2011) having 
its applications in count data related to insurance. Sankaran (1970) obtained the 
Lindley mixture of Poisson distribution. Mazucheli and Achcar (2011), Ghitany et 
al (2009, 2011) and Bakouchi et al (2012) are some among others who discussed 
its various applications. Zakerzadah and Dolati (2009) obtained a generalized 
Lindley distribution and discussed its various properties and applications. 

In this paper, a two parameter Lindley distribution, of which the Lindley 
distribution (1.1) is a particular case, has been suggested. Its first four moments 
and some of the related measures have been obtained. Its failure rate, mean 
residual rate and stochastic ordering have also been studied. Estimation of its 
parameters has been discussed and the distribution has been fitted to some of 
those data sets where the Lindley distribution has earlier been fitted by others, to 
test its goodness of fit. 

2. A Two-parameter Lindley distribution 

A two-parameter Lindley distribution with parameters α and θ  is defined by 
its probability density function (p.d.f) 

     ( ) ( )
2

; ,
1

xf x x e θθα θ α
αθ

−= +
+

; 0,  0,  1x θ αθ> > > −                      (2.1) 

It can easily be seen that at 1α = , the distribution (2.1) reduces to the Lindley 
distribution (1.1) and at 0α = , it reduces to the gamma distribution with 
parameters ( )2,θ .The p.d.f. (2.1) can be shown as a mixture of exponential ( )θ
and gamma ( )2,θ distributions as follows: 
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        ( ) ( ) ( ) ( )1 2; , 1f x pf x p f xα θ = + −                                                          (2.2) 

where ( )1,
1

xp f x e θαθ θ
αθ

−= =
+

 and ( ) 2
2

xf x x e θθ −= . 

The first derivative of  (2.1) is obtained as 

                                     ( ) ( )
2

1
1

xf x x e θθ αθ θ
αθ

−′ = − −
+

 

  and so ( ) 0f x′ =  gives 
1x αθ
θ
−

= . From this it follows that  

(i) for 1αθ < , 0
1x αθ
θ
−

=  is the unique critical point at which ( )f x is 

maximum. 

(ii) for 1α ≥ , ( ) 0f x′ ≤  i.e. ( )f x is decreasing in x . 

Therefore, the mode of the distribution is given by 

       
1 , 1

Mode
0,       otherwise

αθ αθ
θ
− <= 



                                                                     (2.3) 

The cumulative distribution function of the distribution is given by           

              ( ) 11
1

xxF x e θαθ θ
αθ

−+ +
= −

+
; 0, 0, 1x θ αθ> > > −                              (2.4) 

3. Moments and related measures 

The rth moment about origin of the two-parameter Lindley distribution has 
been obtained as 

                
( )
( )

( 1) 1
;  1, 2,...

1r r

r r
r

αθ
µ

θ αθ
Γ + + +′ = =

+
                                                  (3.1) 

Taking 1, 2,3r =  and 4 in (3.1), the first four moments about origin are 
obtained as  
 

     

( )
( )
( )

( )
( )

( )
( )1 2 3 42 3 4

2 3 6 4 24 52 , ,   ,    
1 1 1 1

αθ αθ αθαθµ µ µ µ
θ αθ θ αθ θ αθ θ αθ

+ + ++′ ′ ′ ′= = = =
+ + + +

                                                                                                   (3.2) 
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It can be easily verified that for 1α = , the moments about origin of the 
distribution reduce to the respective moments of the Lindley distribution. Further, 
the mean of the distribution is always greater than the mode, the distribution is 
positively skewed. The central moments of this distribution have thus been 
obtained as 
                                             

( )
( )
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2 2

2 22

3 3 2 2

3 33
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                ,                                
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α θ αθµ
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α θ α θ αθ
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θ αθ

+ +
=

+

+ + +
=

+

( )
( )

4 4 3 3 2 2

4 44

                                 (3.4)

3 3 24 44 32 8
                                                           (3.5)

1

α θ α θ α θ αθ
µ

θ αθ

+ + + +
=

+
                                    

It can be easily verified that for 1α = , the central moments of the distribution 
reduce to the respective moments of the Lindley distribution. 

The coefficients of variation ( )γ , skewness ( )1β and the kurtosis ( )2β of the 

two-parameter LD are given by  
 

           
2 2

1

4 2
2

σ α θ αθγ
αθµ

+ +
= =

+′
                                                                (3.6) 

          
( )
( )

3 3 2 2

1 3 22 2

2 6 6 2

4 2

α θ α θ αθ
β

α θ αθ

+ + +
=

+ +
                                                        (3.7) 

     
( )

( )

4 4 3 3 2 2

2 22 2

3 3 24 44 32 8

4 2

α θ α θ α θ αθ
β

α θ αθ

+ + + +
=

+ +
                                  (3.8) 

4. Failure rate and mean residual life 

For a continuous distribution with p.d.f. ( )f x and c.d.f. ( )F x , the failure 
rate function (also known as the hazard rate function) and the mean residual life 
function are respectively defined as  

  ( ) ( ) ( )
( )0

lim
1x

P X x x X x f x
h x

x F x∆ →

< + ∆ >
= =

∆ −
                                                (4.1) 
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and ( ) ( ) ( )1 1
1 x

m x E X x X x F t dt
F x

∞
=  − >  = −    − ∫                (4.2) 

The corresponding failure rate function ( )h x and the mean residual life 

function ( )m x of the distribution are thus given by  

                                     ( ) ( )2

1
x

h x
x

θ α
αθ θ

+
=

+ +
                                                               (4.3) 

  

and ( ) ( ) ( ) ( )
1 21

1 1
t

x x

xm x t e dt
x e x

θ
θ

αθ θαθ θ
αθ θ θ αθ θ

∞ −
−

+ +
= + + =

+ + + +∫     (4.4) 

 

It can be easily verified that ( ) ( )
2

0 0
1

h fθ α
αθ

= =
+

and 

 ( ) ( ) 1
20
1

m αθ µ
θ αθ

+ ′= =
+

.It is also obvious that ( )h x is an increasing 

function of x , α andθ , whereas ( )m x is a decreasing function of x , α and 
increasing function ofθ . For 1α = , (4.3) and (4.4) reduce to the corresponding 
measures of the Lindley distribution. The failure rate function and the mean 
residual life function of the distribution show its flexibility over Lindley 
distribution and exponential distribution. 

5. Stochastic orderings 

Stochastic ordering of positive continuous random variables is an important 
tool for judging the comparative behaviour. A random variable X is said to be 
smaller than a random variable Y in the  

(i) stochastic order ( )stX Y≤ if ( ) ( )X YF x F x≥ for all x  

(ii) hazard rate order ( )hrX Y≤ if ( ) ( )X Yh x h x≥  for all x  

(iii) mean residual life order ( )mrlX Y≤ if ( ) ( )X Ym x m x≤ for all x  

(iv) likelihood ratio order ( )lrX Y≤ if 
( )
( )

X

Y

f x
f x

 decreases in x . 

The following results due to Shaked and Shanthikumar (1994) are well known 
for establishing stochastic ordering of distributions 

                     lr hr mrlX Y X Y X Y≤ ⇒ ≤ ⇒ ≤                                            (5.1) 

                                                       
stX Y≤
⇓  
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The two-parameter LD is ordered with respect to the strongest ‘likelihood 
ratio’ ordering as shown in the following theorem: 
Theorem: Let X ∼  two-parameter LD ( )1 1,α θ  and Y ∼  two-parameter LD ( )2 2,α θ . 

If 1 2α α=  and 1 2θ θ≥ (or if 1 2θ θ=  and 1 2α α≥ ), then lrX Y≤ and hence hrX Y≤ , 

mrlX Y≤ and stX Y≤ . 

Proof: We have  

                    ( )
( )

( )1 2

2

1 2 2 1

2 1 1 2

1
1

X

Y

f x x
f x

x e
x

θ θθ α θ α
θ α θ α

− −    + +
=     + +    

  ;  0x >          

Now  
               

( )
( ) ( ) ( ) ( )1 2 2

1 2 1 2
2 1 1

1log 2log log log log
1

X

Y

f x
f x x x xθ α θ α α θ θ

θ α θ
   +

= + + + − + − −   +   
.   

Thus 

             ( )
( ) ( )2 1

1 2

1 1log X

Y

f x
f x

d
dx x x

θ θ
α α

= − + −
+ +

 

( )( ) ( )2 1
2 1

1 2x x
α α θ θ

α α
−

= + −
+ +

                                                                                (5.2) 

                                                                                    

Case (i). If 1 2α α=  and 1 2θ θ≥ , then ( )
( )log 0X

Y

f x
f x

d
dx

< . This means that 

lrX Y≤ and hence hrX Y≤ , mrlX Y≤ and stX Y≤ . 

Case (ii). If 1 2θ θ=  and 1 2α α≥ , then ( )
( )log 0X

Y

f x
f x

d
dx

< . This means that 

lrX Y≤ and hence hrX Y≤ , mrlX Y≤ and stX Y≤ . 
This theorem shows the flexibility of two-parameter LD over Lindley and 

exponential distributions. 

6. Estimation of parameters 

6.1. Maximum likelihood estimates 

Let 1 2, , , nx x x  be a random sample of size n from a two-parameter Lindley 

distribution (2.1) and let xf  be the observed frequency in the sample 

corresponding to X x=  ( )1,2,...,x k= such that 
1

k

x
x

f n
=

=∑ , where k is the 
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largest observed value having non-zero frequency. The likelihood function, L of 
the two-parameter Lindley distribution (2.1) is given by 

             ( )
2

11
x

n k
f n X

x

L x e θθ α
αθ

−

=

 
= + + 

∏                                                   (6.1.1) 

 and so the log likelihood function is obtained as  

 ( ) ( )2

1
log log log 1 log

k

x
i

L n n f x n Xθ αθ α θ
=

= − + + + −∑                (6.1.2) 

The two log likelihood equations are thus obtained as  

                   
log 2 0

1
L n n nXα

θ θ αθ
∂

= − − =
∂ +

                                     (6.1.3) 

                
1

log 0
1

k
x

x

fL n
x

θ
α αθ α=

∂
= − + =

∂ + +∑                                    (6.1.4) 

Equation (6.1.3) gives
( )

2
1

X αθ
θ αθ

+
=

+
, which is the mean of the two-

parameter Lindley distribution. The two equations (6.1.3) and (6.1.4) do not seem 
to be solved directly. However, the Fisher’s scoring method can be applied to 
solve these equations. We have 

                               

( )

( )

2 2

22 2

2

2

log 2                                                                                       (6.1.5)
1

log                                                                
1

L n n

L n

α
θ θ αθ

θ α αθ

∂
= − +

∂ +

∂
= −

∂ ∂ +

( ) ( )

2 2

2 22
1

                               (6.1.6)

log                                                                             (6.1.7)
1

k
x

x

fL n
x

θ
α αθ α=

∂
= −

∂ + +
∑

 The following equations for θ̂  and α̂  can be solved 
 

00

00

2 2

2
0

2 2
0

ˆ2 ˆ
ˆˆ

log log log
ˆ

logˆlog log

L L L

LL L
θ θθ θ
α αα α

θ θθ θ α θ
α α

αθ α α ==
==

 ∂ ∂ ∂ 
    −∂ ∂ ∂ ∂  =    ∂−∂ ∂    
   ∂ ∂ ∂ ∂ 

                         

(6.1.8) 
where 0θ and 0α are the initial values of θ  and α respectively. These equations are 

solved iteratively till sufficiently close estimates of θ̂ and α̂  are obtained. 
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6.2. Estimates from moments 

Using the first two moments about origin, we have  

                    2
2

1

kµ

µ

′
=

′
(say)

( )( )
( )2

2 3 1
2

αθ αθ

αθ

+ +
=

+
                                          (6.2.1) 

Taking b αθ= , we get 

                       
( )( )
( )

2
2

2 22
1

2 3 1 2 8 6
4 42

b b b b k
b bb

µ

µ

′ + + + +
= = =

+ +′ +
 . 

This gives   ( ) ( ) ( )22 4 2 2 3 2 0k b k b k− + − + − =                      (6.2.2) 

which is a quadratic equation in b .Replacing the first and the second moments 1µ ′ and 

2µ ′by the respective sample moments X and 2m ′ an estimate of k can be obtained, 

using which , the equation (6.2.2) can be solved and an estimate of b obtained. 

Substituting this estimate of b in the expression for the mean of the two-parameter LD, an 

estimate of θ  can be obtained as              

 
2 1ˆ
1

b
b X

θ + =  + 
                                             (6.2.3) 

Finally to get an estimate ofα , we substitute the value b  and estimate of θ  
in the expressionb αθ= , which gives an estimate of α  as   

                                                           ˆ ˆ
bα
θ

=                                                      (6.2.4) 

7. Goodness of fit 

The two-parameter Lindley distribution has been fitted to a number of data- 
sets to which earlier the Lindley distribution has been fitted by others and to 
almost all these data-sets the two-parameter Lindley distribution provides closer 
fits than the one parameter Lindley distribution.  

The fittings of the two-parameter Lindley distribution to three such data-sets 
have been presented in the following tables. The data sets given in tables-1, 2 and 
3 are the data sets reported by Ghitany et al (2008), Bzerkedal (1960) and 
Paranjpe and Rajarshi (1986) respectively. The expected frequencies according to 
the one parameter Lindley distribution have also been given for ready comparison 
with those obtained by the two-parameter Lindley distribution. The estimates of 
the parameters have been obtained by the method of moments. 
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Table 1. Waiting times (in minutes) of 100 bank customers 
 

Waiting Time      Observed                     Expected frequency 
 (In minutes)        frequency         One-parameter LD     Two-parameter LD         
_________________________________________________________________   
    0 – 5                        30                       30.4                                30.2 
  5 – 10                        32                       30.7                                30.9 
10 – 15                        19                       19.2                                19.3 
15 – 20                        10                       10.3                                10.3 
20 – 25                          5                         5.1                                  5.0 
25 – 30                          1                         2.4                                  2.4 
30 – 35                          2                        1.1                                  1.1 
35 – 40                          1                        0.8                                  0.8 
__________________________________________________________________ 
Total                          100                     100.0                              100.0 
 __________________________________________________________________ 

Estimates of parameters                    ˆ 0.187θ =                 
ˆ 0.191139

0.894052
θ
α
=
=

 

                          2χ                             0.09402                      0.07481 
                          d.f.                               4                                3 
__________________________________________________________________ 

 
Table 2. Data of survival times (in days) of 72 guinea pigs infected with 
virulent tubercle bacilli 

 
Survival Time              Observed                     Expected frequency 
 (In days)                      frequency         One-parameter LD     Two-parameter LD         
__________________________________________________________________ 
        0 – 80                        8                           16.1                                 10.7 
    80 – 160                      30                           21.9                                 26.9 
  160 – 240                      18                           15.4                                 17.7 
   240 – 320                       8                             9.0                                   9.2 
   320 – 400                       4                             5.5                                   4.3 
   400 – 480                       3                             1.8                                   1.9 
   480 – 560                       1                             2.3                                   1.3 
__________________________________________________________________ 
      Total                          72                           72.0                                  72.0 

       __________________________________________________________________      

   Estimates of parameters                                ˆ 0.011θ =                 
ˆ 0.012992
ˆ 20.08359
θ
α
=
= −

 

                          2χ                                             7.7712                      1.2335 
                          d.f.                                                  3                             2 
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Table 3. Mortality grouped data for blackbird species 
 

 Survival Time     Observed                        Expected frequency 
     (In days)         frequency        One-parameter LD         Two-parameter LD 
________________________________________________________________   
0 – 1                         192                        173.5                       168.0 
1 – 2                          60                           98.6                         88.4 
2 – 3                          50                           46.5                         46.2 
3 – 4                          20                           20.1                         24.0 
4 – 5                          12                             8.1                         12.4 
5 – 6                            7                             3.2                           6.4 
6 – 7                            6                             1.4                           3.3 
7 – 8                            3                             0.3                           1.7 
  ≥  8                            2                             0.3                           1.6     
_________________________________________________________________      
Total                         352                        352.0                        352.0    
_________________________________________________________________ 

Estimates of parameters                         ˆ 0.984θ =                 
ˆ 0.731104
ˆ 10.266582
θ
α
=
=

 

              2χ                                               49.846                          16.5342 
            d.f.                                                    4                                      4 
___________________________________________________________________ 
 
 

It can be seen that the two-parameter LD gives much closer fits than the one 

parameter Lindley distribution and thus provides a better alternative to the 

Lindley distribution. 

8. Conclusions 

In this paper, a two-parameter Lindley distribution (LD), of which the one-
parameter LD is a particular case, has been proposed. Several properties of the 
two-parameter LD such as moments, failure rate function, mean residual life 
function, stochastic orderings, estimation of parameters by the method of 
maximum likelihood and the method of moments have been discussed. Finally, 
the proposed distribution has been fitted to a number of data sets relating to 
waiting and survival times to test its goodness of fit to which earlier the one-
parameter LD has been fitted, and it is found that two-parameter LD provides 
better fits than those by the one-parameter LD.  
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BEST LINEAR UNBIASED ESTIMATORS OF 
POPULATION MEAN ON CURRENT OCCASION IN 

TWO-OCCASION ROTATION PATTERNS 

G. N. Singh, S. Prasad1 

ABSTRACT 

Best linear unbiased estimators have been proposed to estimate the population 
mean on current occasion in two-occasion successive (rotation) sampling. 
Behavior of the proposed estimators have been studied and their respective 
optimum replacement policies are discussed. Empirical studies are carried out to 
examine the performance of the proposed estimators and consequently the 
suitable recommendations are made. 

Key words: successive sampling, auxiliary information, unbiased, variance, 
optimum replacement policy. 

1. Introduction 

Often in sample surveys on successive occasions for the same population, the 
current or most recent estimates are of the primary interest if the characteristics of 
the population are likely to change rapidly over time. For example, monthly 
surveys are carried out to collect data on prices of goods to determine the 
consumer price index, labor force surveys are conducted on monthly basis to 
estimate the numbers of people in employment and industries, collect information 
at regular intervals to know popularity of their products, etc. In such studies, 
successive (rotation) sampling may be an impressive statistical tool to generate 
reliable and cost effective estimates of different population parameters on 
successive points of time (occasions) in chronological order. It also provides 
effective estimates of changing patterns over a period of time. 

The problem of successive (rotation) sampling with a partial replacement of 
sampling units was initiated by Jessen (1942) in the analysis of agricultural 
survey data. He pioneered using the entire information collected during the 
previous investigations. The theory of successive (rotation) sampling was further 
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extended by Patterson (1950), Rao and Graham (1964), Gupta (1979), Das (1982) 
and Chaturvedi and Tripathi (1983), among others. Sen (1971) applied this theory 
with success in designing the strategies for estimating the population mean on the 
current occasion using information on two auxiliary variables readily available on 
the previous occasion. Sen (1972, 1973) extended his work for several auxiliary 
variables. Singh et al. (1991) and Singh and Singh (2001) used the auxiliary 
information available on the current occasion and proposed estimators for the 
current population mean in two-occasion successive (rotation) sampling. Singh 
(2003) generalized his work for h-occasion successive sampling.  

In many situations, information on an auxiliary variable may be readily 
available on the first as well as on the second occasion; for example, tonnage (or 
seat capacity) of each vehicle or ship is known in survey sampling of 
transportation, number of beds in different hospitals may be known in hospital 
surveys, number of polluting industries and vehicles is known in environmental 
surveys, nature of employment status, educational status, food availability and 
medical aids of a locality is well known in advance for estimating various 
demographic parameters in demographic surveys. Utilizing auxiliary information 
on both the occasions, Feng and Zou (1997), Biradar and Singh (2001), Singh 
(2005), Singh and Priyanka (2006, 2007, 2008), Singh and Karna (2009a, b) have 
proposed several estimators for estimating the population mean on current 
(second) occasion in two-occasion successive (rotation) sampling. Recently Singh 
and Vishwakarma (2009) have suggested a general estimation procedure for 
population mean in successive (rotation) sampling. Motivated with the above 
works and utilizing the information on an auxiliary variable, readily available on 
both the occasions, we have proposed best linear unbiased estimators for 
estimating the current population mean in two-occasion successive (rotation) 
sampling. Behaviors of the proposed estimators are examined through empirical 
means of comparison and subsequently the suitable recommendations are made. 

2. Sample structures and notations on two occasions 

Let U = (U1, U2, - - -, UN) be the finite population of N (large) units which is 
assumed to remain unchanged over two occasions. Let x (y) be the character 
under study on the first (second) occasion respectively. It is assumed that the 
information on an auxiliary variable z (stable over occasion), is readily available 
for both the occasions, whose population mean is known and it is highly 
positively correlated to x and y on the first and second occasions respectively. 
A simple random sample (without replacement) of size n units is drawn on the 
first occasion and a random sub-sample of size m = nλ units from the sample on 
the first occasion is retained (matched) for its use on the current (second) 
occasion. A fresh (un-matched) sample of size u = (n-m) = nμ units is drawn on 
the current occasion from the entire population by simple random sampling 
(without replacement) method so that the sample size on the current occasion is 
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also n. λ and μ (λ+μ =1) are the fractions of the matched and fresh samples, 
respectively, on the current occasion. We consider the following notations for 
further use:  

X , Y, Z : Population means of the variables x, y  and z respectively. 

mx , nx , uy , m y , uz , mz , nz : Sample means of the respective variables based on  
   the sample sizes shown in suffices. 

ρyx, ρyz, ρxz: Correlation coefficients between the variables shown in suffices.  
N

2 -1 2
x i

i = 1
S  = (N-1) (x -X)∑ : Population mean square of x. 

2
yS , 2

ZS  : Population mean squares of y and z respectively. 

3. Formulation of the estimator 

To estimate the population mean Y on the current (second) occasion, we 
consider the following minimum variance linear unbiased estimator of Y , which 
is as follows: 

{ } { } { }1 1 u 2 m 3 m 4 n 5 u 6 m 7 n 8T  = a y + a y + a x + a x + a z + a z + a z + a Z          (1) 

where 1a , 2a , 3a , 4a , 5a , 6a , 7a
 
and 8a  are constants to be determined so that 

(i) T1  becomes an unbiased estimator of Y  and 

(ii)  the variance of T1 attains a minimum value. 

For unbiasedness condition, we must have  
 ( )1 2a +a  = 1, ( )3 4a +a  = 0  and ( )5 6 7 8a +a +a +a  = 0 . 

Substituting 1 1a = φ , 3 1a  = β  and ( )8 5 6 7a = - a + a + a , the estimator T1 

defined in equation (1) reduces to the following form 
   

( ){ } { } ( ) ( ) ( ){ }1 1 u 1 m 1 m n 5 u 6 m 7 nT  = φ y + 1-φ y +β x -x + a z -Z +a z -Z +a z -Z   

   ( ) ( ) { } ( ) ( )1 u 1 u 1 m 2 m n 3 m 4 n = φ y +k z -Z + 1-φ y +k x -x +k z -Z +k z -Z        

         ( )1 1u 1 1m= φ T + 1-φ T                        (2) 

where ( )1u u 1 uT  = y + k z -Z ; an estimator based on the fresh sample of size u 
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and ( ) ( ) ( )1m m 2 m n 3 m 4 nT = y +k x -x +k z -Z +k z -Z ; an estimator based on the 

matched sample of size m, 5
1

1

ak  = 
φ

, 1
2

1

βk  = 
1-φ

, 6
3

1

ak  = 
1-φ

, 7
4

1

ak  = 
1-φ

 and 

1φ  are  the unknown constants to be determined under certain criterions. 

Remark 3.1. For estimating the population mean on each occasion the estimator 
T1u is suitable, which implies that more belief on T1u could be shown by choosing 

1φ  as 1 (or close to 1), while for estimating the change over the occasions, the 
estimator T1m could be more useful and hence 1φ  might be chosen as 0 (or close 
to 0). For asserting both the problems simultaneously, the suitable (optimum) 
choice of 1φ  is desired. 

4. Properties of the estimator T1 

1T  is an unbiased estimator of Y whose variance, ignoring finite population 
corrections, is derived in the following theorem.  
Theorem 4.1. Variance of the estimator T1 is obtained as   

( ) ( ) ( )22
1 1 1u 1 1mV( T ) = φ  V T + 1-φ V T               (3) 

where  2
1u 1 y

1V(T ) = η S
u

                      (4) 

   2
1m 2 3 4 y 

1 1 1 1V(T )  = η + - η + η S
m m n n
  

    
                (5) 

 ( )2
1 1 1 yzη = 1+k +2k ρ , ( )2

2 3 3 yzη = 1+k +2k ρ ,  

 ( )2
3 2 2 yx 2 3 xzη = k +2k ρ +2k k ρ  and ( )2

4 4 4 yz 3 4η = k +2k ρ +2k k . 

Proof: It is obvious that the variance of the estimator T1 is given by    

            ( ) ( )( ) 22

1 1 1 1u 1 1mV(T ) = E T -Y = E φ T -Y + 1-φ T -Y       

                        ( ) ( ) ( )22
1 1u 1 1m 1 1 11= φ  V(T ) + 1-φ V T +2φ 1-φ C                

(6) 

where 

( ) ( )( )2 2

1u 1u 1m 1m 11 1u 1mV T =E T -Y , V(T ) = E T -Y  and  C  = E T -Y T -Y           

Substituting the expressions of T1u and T1m in equation (6), taking 
expectations and ignoring finite population corrections, we have the expression of 
the variance of the estimator T1 as given in equation (3).  
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Remark 4.1. Results in equation (3) are derived under the assumption that the 
population mean squares of the variables x, y and z are almost equal. 

Remark 4.2. 1uT  and 1mT  are based on two independent samples of sizes u and 

m respectively and they are unbiased estimators of Y , hence the covariance term 
11C between 1uT  and 1mT  vanishes. 

5. Minimum variance of the estimator T1 

Since the variance of the estimator T1 in equation (3) is the function of the 
unknown constants k1, k2, k3, k4 and 1φ , therefore it is minimized with respect to 
these constants, and subsequently the optimum values of k1, k2, k3, k4 and 1φ  are 
obtained as  

*
1 yzk  = -ρ                        (7) 

yz xz yx*
2 2

xz

ρ ρ -ρ
k   = 

1-ρ
                    (8) 

yx xz yz*
3 2

xz

ρ ρ -ρ
k  = 

1-ρ
                    (9) 

( )xz yz xz yx*
4 2

xz

ρ ρ ρ -ρ
k  = 

1-ρ
                 (10)  

1m
1

1u 1m
opt

V(T )φ  = 
V(T )+V(T )

              (11) 

Substituting the values of *
1k , *

2k , *
3k  and *

4k  in equations (4) and (5), we get 
the optimum variances  of  T1u and T1m  as  

   
2

1u opt 1 y
1V(T )  = A S
u

                 (12) 

   2
1m opt 2 3 4 y 

1 1 1 1V(T )   = A + - A + A S
m m n n
  

    
        (13) 

where 2
1 yzA  = 1-ρ , 

( )
( )

2 2 2 2 2
xz xz yx yz yz yx xz yz

2 22
xz

1+ρ ρ -2+ρ +2ρ -2ρ ρ ρ -ρ
A  = 

1-ρ
, 

2*
3 2A  = -k   

and 
2*

4 4A  = -k .  
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Further, substituting the values of 1u optV(T )  and 1m optV(T )  from equations 

(12) and (13) in equation (11), we get the optimum value 1opt
φ  with respect to *

1k , 
*
2k , *

3k  and *
4k  as  

    

1m opt*
1opt

1u opt 1m opt

V(T )
φ  = 

V(T ) +V(T )              

(14) 

Again from equation (14) substituting the value of *
1optφ  in equation (3), we 

get the optimum variance of 1T  as 

    
( )

( ) ( )
( ) ( )

1m 1uopt opt
1 opt

1u 1mopt opt

V T .V T
V T  = 

V T +V T
     

     (15) 

Further, substituting the values from equations (12) and (13) in equations 
(14) and (15), the simplified values of *

1optφ and ( )1 opt
V T   are obtained as

 

     

( )1 5 1 6*
1opt 2

1 1 7 1 6

μ A +μ A
φ  = 

A +μ A +μ A
 
 
           

      (16) 

    
( )1 5 1 6 2

1 opt y2
1 1 7 1 6

A A +μ A1V(T )  = S
n A +μ A +μ A
 
 
 

              (17)  

where 5 2 4A  = A +A , 6 3 4A  = A -A , 7 5 1A  = A -A   and 1μ  is the fraction of 
fresh sample for the estimator 1T .      

6. Optimum replacement policy 

To determine the optimum value  of μ1 (fraction of a sample to be drawn 
afresh on the current occasion) so that the population mean Y  may be estimated 
with the maximum precision, we minimize the ( )1 opt

V T  given in equation (17) 

with respect to μ1, which result in a quadratic equation in μ1  and respective 
solutions of μ1  say 0

1μ  is given below: 
2

1 1 2 1 3Q μ +2Q μ +Q =0              (18) 

2
2 2 1 30

1
1

-Q ± Q -Q Q
μ =

Q
             (19) 

where 2
1 6Q  = A , 2 5 6Q  = A A  and 3 7 5 1 6Q  = A A -A A . 
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From equation (19), it is obvious that the real values of 0
1μ  exist if the 

quantity under square root is greater than or equal to zero. Two real values of 0
1μ  

are possible. Hence, while choosing the value of 0
1μ , it should be remembered 

that 0
10 μ 1≤ ≤ . All other values of 0

1μ  are inadmissible. Substituting the 

admissible value of 0
1μ  say 1μ̂  from equation (19) into equation (17), we have the 

optimum value of ( )1 opt
V T as            

        
( )1 5 1 60 2

1 opt y2
1 1 7 1 6

ˆA A +μ A1V(T )  = S
ˆ ˆn A +μ A +μ A

 
 
 

            (20) 

7. Efficiency comparison 

To study the performance of the estimator 1T  the percent relative efficiencies 
of the estimator 1T  with respect to (i) ny , when there is no matching, and (ii) the 
estimator 2T , when no auxiliary information is used at any occasion, have been 
computed for different choices of correlations. The estimator 2T  is defined under 
the same circumstances as the estimator 1T , but in the absence of the auxiliary 
variable z on both the occasions and proposed as   

{ } { }2 1 u 2 m 3 m 4 nT  = b y + b y + b x + b x        (21) 

where 1b , 2b , 3b  and 4b  are constants to be determined so that 

(i) T2  becomes an unbiased estimator of Y  and 

(ii) The variance of T2 attains a minimum value. 

For unbiasedness condition, we must have ( )1 2b +b  = 1  and ( )3 4b +b  = 0 . 

Substituting 1 2b = φ  and 3 2b  = β , the estimator T2 defined in equation (21) 
reduces to the following form 
 ( ){ } { }2 2 u 2 m 2 m nT  = φ y + 1-φ y +β x -x   

                 ( ) { }2 u 2 m 5 m n = φ y + 1-φ y +k x -x    

                  ( )2 2u 2 2m= φ T + 1-φ T                    (22)  

where 2u uT  = y ; an estimator based on the fresh sample of size u  
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and  ( )2m m 5 m nT = y +k x -x ; an estimator based on the matched sample of 

size m, 2
5

2

βk  = 
1-φ

  and 2φ  are  the unknown constants to be determined in such 

a way that they minimize the variance of the estimator 2T . Following the 
methods discussed in Sections 4, 5 and 6, the optimum values of 5k , 2μ  
(fraction of fresh sample for the estimator 2T  ), variance of ny  and optimum 
variance of 2T  for large N are given by 

 *
5 yxk  = -ρ                        (23) 

 
2
yx

2 2
yx

1± 1-ρ
μ̂  = 

ρ
                     (24) 

 ( )
2
y

n

S
V y  = 

n
                     (25) 

 

2
2 yx0 2

2 opt y2 2
2 yx

ˆ1 - μ ρ1V(T )  = S
ˆn 1 - μ ρ

 
 
  

                 (26) 

For different choices of yxρ , xzρ  and yzρ , Table 1 shows the optimum values 

of 1μ  and percent relative efficiencies 1E  and 2E  of the estimator 1T  with 
respect to the estimators ny  and 2T  respectively,  where 

 ( )
( )

n
1 0

1 opt

V y
 E  = ×100 

V T
 and 

 

( )
( )

0
2 opt

2 0
1 opt

V T
E  = ×100.

V T
 

8. Analysis of results for estimator T1  

The following conclusions can be read out from Table 1. 
 (a) For fixed values of ρxz and ρyz, the values of 1μ  and 1E  are increasing with the 
increasing values of ρyx. The values of 2E  are decreasing for the lower values of 
ρyx while increasing pattern may be seen for the higher values of ρyx. 
 (b) For fixed values of ρxz and ρyx, the values of 1μ  are decreasing with the 
increasing values of ρyz.. Values of 1E  and 2E  are increasing with the increasing 
values of ρyz..This behavior is highly desirable, since it concludes that if highly 
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correlated auxiliary variable is available, it pays in terms of enhance precision of 
the estimates as well as it reduces the cost of the survey. 
 (c) For fixed values of ρyz and ρyx, the values of 1μ  are decreasing with the 
increasing values of ρxz . Similar patterns are visible for the efficiencies 

1E and 2E . 

 (d) Minimum value of 1μ  is 0.4329, which indicates that only 43 percent of the 
total sample size is to be replaced on the current occasion for the corresponding 
choices of the correlations. 

9. Use of auxiliary variable only at the current occasion  

In section 3 we have formulated the estimator 1T  on the assumption that 
information on a stable auxiliary variable z was readily available on both the 
occasions. If the duration between two successive occasions is small then one 
may expect the stability of the auxiliary variable but the stability character of the 
auxiliary variable may not sustain if the duration between two successive 
occasions is appreciably large. In such situation it may not be wise to use the 
auxiliary information from the previous occasion. Motivated with the above 
argument, we formulate the estimator 3T  when the information on an auxiliary 
variable z is available only on the current (second) occasion. The estimator 3T  is 
formulated as 

{ } { } { }3 1 u 2 m 3 m 4 n 5 u 6 m 7T  = c y + c y + c x + c x + c z + c z + c Z        (27) 

where 1c , 2c , 3c , 4c , 5c , 6c
 
and 7c  are constants to be determined so that 

(i) T3  becomes an unbiased estimator of Y  and 

(ii) The variance of T3 attains a minimum value. 

For unbiasedness condition, we must have  

 ( )1 2c +c  = 1, ( )3 4c +c  = 0  and ( )5 6 7c +c +c  = 0 .  

Substituting 1 3c  = φ , 3 3c  = β  and ( )7 5 6c = - c + c , the estimator T3 defined 
in equation (27) reduces to the following form 
 ( ){ } { } ( ) ( ){ }3 3 u 3 m 3 m n 5 u 6 mT  = φ y + 1-φ y +β x -x + c z -Z +c z -Z   

                ( ) ( ) { } ( )3 u 1 u 3 m 2 m n 3 m = φ y +l z -Z + 1-φ y +l x -x +l z -Z        

    ( )3 3u 3 3m = φ T + 1-φ T                       (28) 
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where ( )3u u 1 uT  = y + l z -Z ; an estimator based on the fresh sample of size u 

and ( ) ( )3m m 2 m n 3 mT = y +l x -x +l z -Z ; an estimator based on the matched sample 

of size m, 5
1

3

cl  = 
φ

, 3
2

3

βl  = 
1-φ

, 6
3

3

cl  = 
1-φ

 and 3φ  are  the unknown constants to 

be determined under certain criterions. 

9.1. Properties of the estimator T3 

3T  is an unbiased estimator of Y whose variance is given in the following 
theorem. 
Theorem 9.1. Variance of the estimator T3 is obtained as   

( ) ( ) ( ) ( )22
3 3 3u 3 3mV T  = φ  V T + 1-φ V T               (29) 

 where ( ) ( )2 2
3u 1 1 yz y

1V T  = 1+l +2l ρ S
u

                 (30) 

      ( ) ( ) ( )2 2 2
3m 3 3 yz 2 2 yx 2 3 xz y 

1 1 1V T   = 1+l +2l ρ + - l +2l ρ +2l l ρ S
m m n
  

    
    (31) 

Proof: It is obvious that the variance of the estimator T3 is given by    

             ( ) ( ) ( )( ) 22

3 3 3 3u 3 3mV T = E T -Y = E φ T -Y + 1-φ T -Y       

                         ( ) ( ) ( ) ( )22
3 3u 3 3m 3 3 11= φ  V T  + 1-φ V T +2φ 1-φ R         

(32) 

where ( ) 2

3u 3uV T  = E T -Y   , ( ) 2

3m 3mV T = E T -Y    and 

( )( )11 3u 3m R  = E T -Y T -Y    

 
Substituting the expressions of 3uT  and 3mT  in equation (32), taking 

expectations and ignoring finite population corrections, we have the expression of 
the variance of T3 as given in equation (29).  

 

Remark 9.1. Results in theorem 9.1 is derived similar to the results obtained in 
theorem 4.1. 
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9.2. Minimum variance of the estimator T3 

Since the variance of the estimator T3  in equation (29) is the function of the 
unknown constants l1, l2, l3  and 3φ , therefore it is  minimized with respect to 
these constants  and subsequently the optimum values of l1, l2, l3 and 3φ  are 
obtained as  

*
1 yzl  = -ρ                     (33) 

yz xz yx*
2 2

3 xz

ρ  ρ -ρ
l   = 

1-μ ρ
                 (34) 

3 yx xz yz*
3 2

3 xz

μ ρ ρ -ρ
l  = 

1-μ ρ
                 (35) 

( )
( ) ( )

3m
3

3u 3m
opt

V T
φ  = 

V T +V T
            (36) 

Now, substituting the values of *
1l , *

2l  and *
3l  in equations (30) and (31), we 

get the optimum variances of  3uT  , 3mT  as  

( ) 2
3u 1 yopt

1V T  = B S
u

              (37)  

     ( )
( )

2
21 3 5 3 2

3m y 2opt 2
3 xz

B +μ B +μ B1V T   = S
m 1-μ ρ

 
 
 
 

       (38) 

where 2
1 yzB  = 1-ρ , ( )2 2 2

2 xz xz yx yz yx xzB  = ρ ρ +ρ -2ρ ρ ρ , 2
3 xz 1B  = -2ρ B , 

( )2

4 yz xz yxB  = - ρ ρ -ρ  and 5 3 4B  = B +B . 

Further, substituting the values of 3u optV(T )  and 3m optV(T )  from equations 

(37) and (38) in equation (36), we get the optimum value 1opt
φ  with respect to *

1l , 
*
2l  and *

3l  as  

     

( )
( ) ( )

3m opt*
3opt

3u 3mopt opt

V T
φ  = 

V T +V T
        

(39) 

Again, from equation (39) substituting the value of *
3optφ  in equation (29), we 

get the optimum variance of T3 as 
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( )

( ) ( )
( ) ( )

3m 3uopt opt
3 opt

3m 3uopt opt

V T  V T
V T  = 

V T +V T
       

(40) 

Further, substituting the values from equations (37) and (38) in equations 
(39) and (40), the simplified values of *

3optφ and ( )3 opt
V T   are obtained as

 

    

( )2
3 1 3 5 3 2*

3opt 3 2
3 6 3 7 3 3 1

μ B +μ B +μ B
φ  = 

μ B +μ B +μ B +B

 
 
          

      (41)  

      ( )
2

28 3 9 3 10
3 y3 2opt

3 6 3 7 3 3 1

B +μ B +μ B1V T  = S
n μ B +μ B +μ B +B
 
 
 

            (42)  

                                                                                 
where 4

6 2 1 xzB  = B -B ρ , 4 2
7 1 xz 1 xz 5B  = B ρ +2B ρ +B , 2

8 1B = B , 9 1 5B = B B , 

10 1 2B  = B B  and 3μ  is the fraction of fresh sample for the estimator T3.    

9.3. Optimum replacement policy 

To determine the optimum value  of μ3 (fraction of a sample to be drawn 
afresh on the current occasion) so that population mean Y  may be estimated 
with the maximum precision, we minimize the ( )3 opt

V T  given in equation (42) 

with respect to μ3, which result in fourth degree equation in μ3  and respective 
solutions of μ3  is discussed below: 

4 3 2
1 3 2 3 3 3 4 3 5Pμ +P μ +P μ +P μ +P  = 0            (43) 

where 1 6 10P  = -B B , 2 6 9P  = -2B B ,  

3 3 10 7 9 6 8P  = B B -B B -3B B , ( )4 1 10 7 8P  = 2 B B -B B ,  

5 1 9 3 8P  = B B -B B  
From equations (43) it is obvious that the four real values of 3μ  are possible. 

Hence, while choosing the values of 3μ , it should be remembered that 

30 μ 1≤ ≤ . All the other values of 3μ  are inadmissible. If more than one 
admissible values are obtained, the lowest admissible value is the best choice as it 
reduces the cost of the survey. From equation (43), substituting the admissible 
value of 3μ  say 3μ̂  into equation (42), we have the optimum value of 

( )3 opt
V T as           
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       ( ) ( )2
1 1 3 4 3 50 2

3 y3 2opt
3 6 3 7 3 8 1

ˆ ˆB B -μ B +μ B1V T  = S
ˆ ˆ ˆn μ B +μ B +μ B +B

 
 
  

          (44) 

9.4. Efficiency comparison 

To study the performance of the estimator 3T , the percent relative efficiencies 

of the estimator 3T  with respect to (i) ny , when there is no matching, and (ii) the 

estimator 2T , when no auxiliary information is used at any occasion, have been 
obtained for different choices of correlations. For different choices of yxρ , 

xzρ and yzρ , Table 2  shows  the optimum values of 3μ  and percent relative 

efficiencies 3E  and 4E  of the estimator 3T   with respect to  the estimators ny  
and 2T respectively,  where  

 ( )
( )

n
3 0

3 opt

V y
 E  = ×100 

 V T
and

( )
( )

0
2 opt

4 0
3 opt

V T
 E  = ×100.

V T
 

9.5. Analysis of results for estimator T3  

The following conclusions can be read out from Table 2: 

 (a) For fixed values of ρxz and ρyz, the values of 3μ  and 3E  are increasing with the 
increasing values of ρyx. Efficiencies 4E  are decreasing for the increasing values 
of ρyx.  

 (b) For fixed values of ρxz and ρyx, the values of 3μ  increase for the lower values 
of ρyz and decrease for the higher values of ρyz. Efficiencies 3E  and 4E  are 
increasing with the increasing values of ρyz .  

 (c) For fixed values of ρyz and ρyx, the values of 3μ  are increasing with the 
increasing values of ρxz. Efficiencies 3E  and 4E  increase for the lower values of 
ρxz while decreasing patteren may also be seen for the higher values of ρxz . 

 (d) Minimum value of 3μ  is 0.5365, which indicates that only 54 percent of the 
total sample size is to be replaced at the current occasion for the corresponding 
choices of the correlations. 
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Table 1. Optimum values of 1μ  and percent relative efficiencies of 1T  with 
respect to ny and 2T  

 Note: “*” indicates 1μ̂ do not exist.  

ρxz↓ ρyz↓ ρyx→ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.5 0.5 

1μ̂  

1E  

2E  

0.5006 

133.48 

130.41 

0.5051  

134.69 

129.07 

0.5147   

137.25 

128.06 

0.5307 

141.51 

127.35 

0.5556  

148.14 

126.97 

0.5953 

158.74 

126.99 

0.6672 

177.91 

127.72 

0.7 
1μ̂  

1E  

2E  

0.4956 

194.36 

189.88 

0.4965  

194.70 

186.58 

0.5039 

197.60 

184.36 

0.5190 

203.53 

183.17 

0.5450 

213.74 

183.18 

0.5899 

231.35 

185.08 

0.6818 

267.36 

191.95 

0.9 
1μ̂  

1E  

2E  

0.4352 

458.11 

447.55 

0.4329 

455.69 

436.67 

0.4404  

463.55 

432.49 

0.4597 

483.92 

435.53 

0.4982 

524.45 

449.49 

0.5823 

612.93 

490.35 

* 

- 

- 

0.7 0.5 
1μ̂  

1E  

2E  

0.4987 

132.97 

129.91 

0.4996 

133.22 

127.65 

0.5070 

135.19 

126.13 

0.5221 

139.22 

125.30 

0.5481 

146.16 

125.27 

0.5929 

158.11 

126.49 

0.6844 

182.51 

131.03 

0.7 
1μ̂  

1E  

2E  

0.5187 

203.39 

198.71 

0.5040   

197.62 

189.37 

0.5000 

196.09 

182.96 

0.5060 

198.41 

178.57 

0.5232 

205.17 

175.85 

0.5574 

218.58 

174.86 

0.6271 

245.91 

176.55 

0.9 
1μ̂  

1E  

2E  

0.6616 

696.46 

680.42 

0.5334 

561.47 

538.03 

0.4915 

517.36 

482.70 

0.4796 

504.86 

454.37 

0.4897 

515.52 

441.84 

0.5286 

556.42 

445.13 

0.6436 

677.46 

486.37 

0.9 0.5 
1μ̂  

1E  

2E  

0.4820 

128.54 

125.58 

0.4883    

130.20 

124.77 

0.5003 

133.43 

124.48 

0.5201 

138.68 

124.81 

0.5515 

147.07 

126.05 

0.6050 

161.33 

129.06 

0.7230 

192.78 

138.41 

0.7 
1μ̂  

1E  

2E  

0.6548   

256.79 

250.87 

0.5435   

213.15 

204.25 

0.5049 

198.01 

184.74 

0.4943 

193.85 

174.47 

0.5051 

198.07 

169.76 

0.5440 

213.33 

170.66 

0.6564 

257.41 

184.81 

0.9 
1μ̂  

1E  

2E  

* 

- 

- 

* 

- 

- 

* 

- 

- 

* 

- 

- 

0.5509 

579.85 

496.96 

0.5003 

526.68 

421.35 

0.5317 

559.70 

401.83 
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Table 2. Optimum values of 3μ  and percent relative efficiencies of 3T  with 
respect to ny and 2T  

Note: “*” indicates 3μ̂ do not exist.  

ρxz↓ ρyz↓ ρyx→ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.5 0.5 

3μ̂  

3E  

4E  

0.5365 

133.46 

130.38 

0.5410 

134.50 

128.88 

0.5505 

136.70 

127.54 

0.5663 

140.32 

126.28 

0.5907 

145.89 

125.04 

0.6294 

154.64 

123.71 

0.6983 

169.95 

122.02 

0.7 
3μ̂  

3E  

4E  

0.5367 

196.35 

191.83 

0.5367 

196.35 

188.15 

0.5434 

198.63 

185.32 

0.5580 

203.56 

183.20 

0.5834 

212.11 

181.79 

0.6273 

226.71 

181.37 

0.7163 

255.75 

183.61 

0.9 
3μ̂  

3E  

4E  

0.5572 

545.67 

533.09 

0.5381 

528.32 

506.26 

0.5381 

528.32 

492.93 

0.5572 

545.66 

491.09 

0.6065 

589.99 

505.66 

0.7550 

719.76 

575.81 

* 

- 

- 

0.7 0.5 
3μ̂  

3E  

4E  

0.5842 

133.48 

130.41 

0.5842 

133.48 

127.91 

0.5907 

134.72 

125.70 

0.6049 

137.40 

123.66 

0.6294 

141.96 

121.67 

0.6712 

149.55 

119.64 

0.7538 

163.89 

117.66 

0.7 
3μ̂  

3E  

4E  

0.6014 

201.09 

196.46 

0.5872 

197.15 

188.92 

0.5834 

196.09 

182.95 

0.5892 

197.69 

177.92 

0.6058 

202.30 

173.38 

0.6381 

211.13 

168.89 

0.7019 

227.92 

163.63 

0.9 
3μ̂  

3E  

4E  

* 

- 

- 

0.6751 

593.11 

568.34 

0.6065 

543.53 

507.12 

0.5845 

527.17 

474.45 

0.5897 

531.03 

455.13 

0.6257 

557.65 

446.12 

0.7378 

636.23 

456.78 

0.9 0.5 
3μ̂  

3E  

4E  

0.7143 

135.37 

132.25 

0.6983 

133.55 

127.97 

0.6983 

133.55 

124.60 

0.7143 

135.37 

121.83 

0.7538 

139.64 

119.68 

0.8596 

149.42 

119.54 

* 

- 

- 

0.7 
3μ̂  

3E  

4E  

* 

- 

- 

0.7730 

208.23 

199.53 

0.7163 

199.41 

186.05 

0.6974 

196.24 

176.62 

0.7019 

197.001 

68.84 

0.7325 

202.04 

161.63 

0.8217 

215.00 

154.36 

0.9 
3μ̂  

3E  

4E  

* 

- 

- 

* 

- 

- 

* 

- 

- 

* 

- 

- 

0.7378 

544.564 

66.72 

0.6967 

526.45 

421.16 

0.7226 

538.03 

386.27 
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10. General conclusions 

The estimators T1 and T3 proposed in this work are proved to be the best 
linear unbiased estimators of population mean Y  with their respective minimum 
variance. These estimators may be seen as new innovative ideas in survey 
literature as they nicely utilized the information on an auxiliary variable in order 
to improve the precision of the estimates. From the analysis of the results shown 
in Tables 1-2, the propositions of the estimators T1 and T3 are vindicated because 
it enhances the precision of estimates as well as reduces the cost of the survey. 
Therefore, the proposed estimators may be recommended to survey practitioners 
for use in real life problems. 
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ESTIMATION OF FINITE POPULATION MEAN USING 
DECILES OF AN AUXILIARY VARIABLE  

J. Subramani, G. Kumarapandiyan1 

ABSTRACT 

The present paper deals with a class of modified ratio estimators for estimation of 
population mean of the study variable when the population deciles of the 
auxiliary variable are known. The biases and the mean squared errors of the 
proposed estimators are derived and compared with that of existing modified ratio 
estimators for certain known populations. Further, we have also derived the 
conditions for which the proposed estimators perform better than the existing 
modified ratio estimators. From the numerical study it is also observed that the 
proposed modified ratio estimators perform better than the existing modified ratio 
estimators.  

Key words: mean squared error, natural populations, simple random sampling. 

1. Introduction 

Consider a finite population U = {U1, U2, … , UN} of 𝑁 distinct and identifiable 
units. Let 𝑌 be a real variable with value 𝑌𝑖 measured on Ui, i = 1,2,3, … , N giving 
a vector Y = {Y1, Y2, … , YN}. The problem is to estimate the population mean 
Y� =  1

N
∑ YiN
i=1  on the basis of a random sample selected from the population U. 

The simple random sample mean is the simplest estimator of population mean. If 
an auxiliary variable X closely related to the study variable Y is available then one 
can improve the performance of the estimator of the study variable by using the 
known values of the population parameters of the auxiliary variable. That is, when 
the population parameters of the auxiliary variable X such as Population Mean, 
Co-efficient of Variation, Co-efficient of Kurtosis, Co-efficient of Skewness, etc., 
are known, a number of estimators such as ratio, product and linear regression 
estimators and their modifications are proposed in the literature. Among these 
estimators the ratio estimator and its modifications are widely used for the 

                                                           
1 Department of Statistics, Ramanujan School of Mathematical Sciences, Pondicherry University.  
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  E-mail: drjsubramani@yahoo.co.in; kumarstat88@gmail.com. 



76                                            J. Subramani, G. Kumarapandiyan: Estimation of finite … 

 

 

estimation of the mean of the study variable. Before discussing further about the 
modified ratio estimators and the proposed modified ratio estimators the notations 
to be used in this paper are described below: 

• N − Population size 

• n − Sample size 

• f = n/N, Sampling fraction 

• Y − Study variable 

• X − Auxiliary variable 

• X � , Y � − Population means 

• x, y - Sample totals 

• x�, y� − Sample means 

• SX , Sy − Population standard deviations 

• CX , Cy − Coefficient of variations 

• ρ − Coefficient of correlation 

• β1 =  N ∑ (Xi−X�)3N
i=1

(N−1)(N−2)S3
 , Coefficient of skewness of the auxiliary variable 

• β2 =  N(N+1)∑ (Xi−X�)4N
i=1

(N−1)(N−2)(N−3)S4
−  3(N−1)2

(N−2)(N−3)
 , Coefficient of kurtosis of the auxiliary 

variable 

• B(. ) − Bias of the estimator 

• MSE(. ) − Mean squared error of the estimator 

• Y��i(Y��pi) − Existing (proposed) modified ratio estimator of Y� 

The Ratio estimator for estimating the population mean Y� of the study variable 
Y is defined as 

 Y��R = y�
x�

X� = R �X �                  (1.1) 

where  R � = y �
x�

= y
x
 is the estimate of R = Y�

X�
= Y

X
. The Ratio estimator given in (1.1) 

is used for improving the precision of estimate of the population mean compared 
to simple random sampling when there is a positive correlation between X and Y.  
Further improvements are achieved on the classical ratio estimator by introducing 
a large number of modified ratio estimators with the use of known Co-efficient of 
Variation, Co-efficient of Kurtosis, Co-efficient of Skewness, etc. The lists of 
modified ratio estimators, which are to be compared with that of the proposed 
estimators, are divided into two classes namely Class 1 and Class 2, and are given 
respectively in Table 1.1. and Table 1.2. As stated above, some of the existing 
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modified ratio estimators together with their biases, mean squared errors and 
constants available in the literature are presented in the following tables: 

Table 1.1. Existing modified ratio type estimators (Class 1) with their biases, 
mean squared errors and their constants  

Estimator Bias - 𝐁(. ) Mean squared error 𝐌𝐒𝐄(. ) Constant  𝛉𝐢 

 Y��1 = y� �
X � + Cx
x� + Cx

� 

Sisodia and Dwivedi [13] 

(1− f)
n

 Y� (θ12Cx2 − θ1CxCy ρ) 

 

(1 − f)
n

 Y�2(Cy2 + θ12Cx2 − 2θ1CxCy ρ) θ1 =
X�

X� + Cx
 

Y��2 = y� �
X � + β2
x� + β2

� 

Singh et.al [11] 

(1 − f)
n

 Y� (θ22Cx2 − θ2CxCy ρ) 

 

(1 − f)
n

 Y�2(Cy2 + θ22Cx2 − 2θ2CxCy ρ) θ2 =
X�

X� + β2
 

Y��3 = y� �
X � + β1
x� + β1

� 

Yan and Tian [15] 

(1 − f)
n

 Y� (θ32Cx2 − θ3CxCy ρ) 

 

(1 − f)
n

 Y�2(Cy2 + θ32Cx2 − 2θ3CxCy ρ) 

 
θ3 =

X�
X� + β1

 

Y��4 = y� �
X � + ρ
x� + ρ �

 

Singh and Tailor [10] 

(1 − f)
n

 Y� (θ42Cx2 − θ4CxCy ρ) 

 

(1 − f)
n

 Y�2(Cy2 + θ42Cx2 − 2θ4CxCy ρ) θ4 =
X�

X� + ρ
 

Y��5 = y� �
X �Cx + β2
x �Cx + β2

� 

Upadhyaya and Singh [14] 

(1 − f)
n

 Y� (θ52Cx2 − θ5CxCy ρ) 

 

(1 − f)
n

 Y�2(Cy2 + θ52Cx2 − 2θ5CxCy ρ) θ5 =
X �Cx

X �Cx + β2
 

Y��6 = y� �
X �β2 + Cx
x �β2 + Cx

� 

Upadhyaya and Singh [14] 

(1 − f)
n

 Y� (θ62Cx2 − θ6CxCy ρ) 

 

(1 − f)
n

 Y�2(Cy2 + θ62Cx2 − 2θ6CxCy ρ) θ6 =
X �β2

X �β2 + Cx
 

Y��7 = y� �
X �β2 + β1
x �β2 + β1

� 

Yan and Tian [15] 

(1 − f)
n

 Y� (θ72Cx2 − θ7CxCy ρ) 

 

(1 − f)
n

 Y�2(Cy2 + θ72Cx2 − 2θ7CxCy ρ) θ7 =
X �β2

X �β2 + β1
 

Y��8 = y� �
X �β1 + β2
x �β1 + β2

� 

Yan and Tian [15] 

(1 − f)
n

 Y� (θ82Cx2 − θ8CxCy ρ) 
(1 − f)

n
 Y�2(Cy2 + θ82Cx2 − 2θ8CxCy ρ) θ8 =

X �β1
X �β1 + β2

 

Y��9 = y� �
X �Cx + β1
x �Cx + β1

� 

Yan and Tian [15] 

(1− f)
n

 Y� (θ92Cx2 − θ9CxCy ρ) 
(1− f)

n
 Y�2(Cy2 + θ92Cx2 − 2θ9CxCy ρ) θ9 =

X �Cx
X �Cx + β1

 



78                                            J. Subramani, G. Kumarapandiyan: Estimation of finite … 

 

 

Table 1.2. Existing modified ratio type estimators (Class 2) with their biases, 
mean squared errors and their constants  

Estimator Bias-𝐁(. ) Mean squared error 
𝐌𝐒𝐄(. ) Constant  𝐑𝐢 

Y��10 =
y� + b(X� − x�)

x�
X� 

Kadilar and Cingi [2] 

(1− f)
n

 
Sx2

Y�
R10
2  

 

(1− f)
n

�R10
2 Sx2 + Sy2(1− ρ2)� R10 =

Y�
X�

 

Y��11 =
y� + b(X� − x�)

(x� + Cx)
(X� + Cx) 

Kadilar and Cingi [2] 

(1− f)
n

 
Sx2

Y�
R11
2  

 

(1− f)
n

�R11
2 Sx2 + Sy2(1− ρ2)� R11 =

Y�
X� + Cx

 

Y��12 =
y� + b(X� − x�)

(x� + β2)
(X� + β2) 

Kadilar and Cingi [2] 

(1− f)
n

 
Sx2

Y�
R12
2  

 

(1− f)
n

�R12
2 Sx2 + Sy2(1− ρ2)� R12 =

Y�
X� + β2

 

Y��13 =
y� + b(X� − x�)
(x �β2 + Cx)

(X �β2 + Cx) 

Kadilar and Cingi [2] 

(1− f)
n

 
Sx2

Y�
R13
2  

 

(1− f)
n

�R13
2 Sx2 + Sy2(1− ρ2)� R13 =

Y�β2
X�β2 + Cx

 

Y��14 =
y� + b(X� − x�)
(x �Cx + β2)

(X �Cx + β2) 

Kadilar and Cingi [2] 

(1− f)
n

 
Sx2

Y�
R14
2  

 

(1− f)
n

�R14
2 Sx2 + Sy2(1− ρ2)� R14 =

Y�Cx
X�Cx + β2

 

Y��15 =
y� + b(X� − x�)

(x� + β1)
(X�+ β1) 

Yan and Tian [15] 

(1− f)
n

 
Sx2

Y�
R15
2  

 

(1− f)
n

�R15
2 Sx2 + Sy2(1− ρ2)� R15 =

Y�
X� + β1

 

Y��16 =
y� + b(X� − x�)
(x �β1 + β2)

(X �β1 + β2) 

Yan and Tian [15] 

(1− f)
n

 
Sx2

Y�
R16
2  

 

(1− f)
n

�R16
2 Sx2 + Sy2(1− ρ2)� R16 =

Y�β1
X�β1 + β2

 

Y��17 =
y� + b(X� − x�)

(x� + ρ)
(X� + ρ) 

Kadilar and Cingi [3] 

(1− f)
n

 
Sx2

Y�
R17
2  

 

(1− f)
n

�R17
2 Sx2 + Sy2(1− ρ2)� R17 =

Y�
X� + ρ

 

Y��18 =
y� + b(X� − x�)

(x�Cx + ρ)
(X�Cx + ρ) 

Kadilar and Cingi [3] 

(1− f)
n

 
Sx2

Y�
R18
2  

 

(1− f)
n

�R18
2 Sx2 + Sy2(1− ρ2)� R18 =

Y�Cx
X�Cx + ρ

 

Y��19 =
y� + b(X� − x�)

(x�ρ + Cx)
(X�ρ + Cx) 

Kadilar and Cingi [3] 

(1− f)
n

 
Sx2

Y�
R19
2  

 

(1− f)
n

�R19
2 Sx2 + Sy2(1− ρ2)� R19 =

Y�ρ
X�ρ + Cx

 

Y��20 =
y� + b(X� − x�)

(x�β2 + ρ)
(X�β2 + ρ) 

Kadilar and Cingi [3] 

(1 − f)
n

 
Sx2

Y�
R20
2  

 

(1 − f)
n

�R20
2 Sx2 + Sy2(1− ρ2)� R20 =

Y�β2
X�β2 + ρ

 

Y��21 =
y� + b(X� − x�)

(x�ρ + β2)
(X�ρ + β2) 

Kadilar and Cingi [3] 

(1 − f)
n

 
Sx2

Y�
R21
2  

 

(1 − f)
n

�R21
2 Sx2 + Sy2(1− ρ2)� R21 =

Y�ρ
X�ρ + β2
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It is to be noted that “the existing modified ratio estimators” mean the list of 
modified ratio estimators to be considered in this paper unless otherwise stated. It 
does not mean the entire list of modified ratio type estimators available in the 
literature. For a more detailed discussion on the ratio estimator and its 
modifications one may refer to Cochran [1], Kadilar and Cingi [2, 3], Koyuncu 
and Kadilar [4], Murthy [5], Prasad [6], Rao [7], Singh [9], Singh and Tailor 
[10,12], Singh et.al [11], Sisodia and Dwivedi [13], Upadhyaya and Singh [14], 
Yan and Tian [15] and the references cited therein. 

The modified ratio type estimators discussed above are biased but have 
minimum mean squared errors compared to the classical ratio estimator. The list 
of estimators given in Table 1.1. and Table 1.2. uses the known values of the 
parameters like X � ,  Cx,  β1,  β2, ρ  and their linear combinations. However, it 
seems no attempt is made to use the known values of the population deciles of the 
auxiliary variable to improve the ratio estimator. Further, we know that the value 
of deciles is unaffected and robustness by the extreme values or the presence of 
outliers in the population values unlike the other parameters like the mean, 
coefficient of variation, coefficient of skewness and coefficient of kurtosis, etc. 
The points discussed above have motivated us to introduce modified ratio 
estimators using the known value of the population deciles of the auxiliary 
variable. It is observed that the proposed estimators perform better than the 
existing modified ratio type estimators listed in Table 1.1. and Table 1.2. The 
materials of this paper are arranged as follows: The proposed modified ratio 
estimators with known population deciles of an auxiliary variable are presented in 
section 2 whereas the conditions in which the proposed estimators perform better 
than the existing modified ratio estimators are derived in section 3. The 
performances of the proposed modified ratio estimators compared to the existing 
modified ratio estimators are assessed for certain natural populations in section 4 
and the conclusion is presented in section 5.  

2. Proposed modified ratio type estimators using deciles of the 
auxiliary variable 

As we stated earlier one can always improve the performance of the estimator 
of the study variable by using the known population parameters of the auxiliary 
variable, which are positively correlated with that of study variable. In this 
section, we have suggested a class of modified ratio type estimators using the 
population deciles, denoted by Dj ; j = 1, 2, 3, . . . , 10 of the auxiliary variable. The 
proposed modified ratio type estimators  Y��pj , j = 1,2, … ,10 for estimating the 
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population mean  Y �  together with the first degree of approximation, the biases, 
mean squared errors and the constants are given below: 

Table 2.1. Proposed modified ratio type estimators (Class 3) with their biases, 
mean squared errors and their constants  

Estimator Bias - 𝐁(. ) Mean squared error 𝐌𝐒𝐄(. ) Constant  
𝛉𝐢 

 Y��p1 = y� �
X � + D1

x� + D1
� 

(1− f)
n

 Y� (θp12 Cx2 − θp1CxCy ρ) 
(1 − f)

n
 Y�2(Cy2 + θp12 Cx2 − 2θp1CxCy ρ) θp1 =

X�
X� + D1

 

 Y��p2 = y� �
X � + D2

x� + D2
� (1− f)

n
 Y� (θp22 Cx2 − θp2CxCy ρ) 

(1 − f)
n

 Y�2(Cy2 + θp22 Cx2 − 2θp2CxCy ρ) θp2 =
X�

X� + D2
 

 Y��p3 = y� �
X � + D3

x� + D3
� (1− f)

n
 Y� (θp32 Cx2 − θp3CxCy ρ) 

(1 − f)
n

 Y�2(Cy2 + θp32 Cx2 − 2θp3CxCy ρ) θp3 =
X�

X� + D3
 

 Y��p4 = y� �
X � + D4

x� + D4
� 

(1− f)
n

 Y� (θp42 Cx2 − θp4CxCy ρ) 
(1 − f)

n
 Y�2(Cy2 + θp42 Cx2 − 2θp4CxCy ρ) θp4 =

X�
X� + D4

 

 Y��p5 = y� �
X � + D5

x� + D5
� 

(1− f)
n

 Y� (θp52 Cx2 − θ5CxCy ρ) 
(1 − f)

n
 Y�2(Cy2 + θp52 Cx2 − 2θp5CxCy ρ) θp5 =

X�
X� + D5

 

 Y��p6 = y� �
X � + D6

x� + D6
� 

(1− f)
n

 Y� (θp62 Cx2 − θp6CxCy ρ) 
(1 − f)

n
 Y�2(Cy2 + θp62 Cx2 − 2θp6CxCy ρ) θp6 =

X�
X� + D6

 

 Y��p7 = y� �
X � + D7

x� + D7
� 

(1− f)
n

 Y� (θp72 Cx2 − θp7CxCy ρ) 
(1 − f)

n
 Y�2(Cy2 + θp72 Cx2 − 2θp7CxCy ρ) θp7 =

X�
X� + D7

 

 Y��p8 = y� �
X � + D8

x� + D8
� 

(1− f)
n

 Y� (θp82 Cx2 − θp8CxCy ρ) 
(1 − f)

n
 Y�2(Cy2 + θp82 Cx2 − 2θp8CxCy ρ) θp8 =

X�
X� + D8

 

 Y��p9 = y� �
X � + D9

x� + D9
� 

(1− f)
n

 Y� (θp92 Cx2 − θp9CxCy ρ) 
(1− f)

n
 Y�2(Cy2 + θp92 Cx2 − 2θp9CxCy ρ) θp9 =

X�
X� + D9

 

 Y��p10 = y� �
X � + D10

x� + D10
� 

(1 − f)
n

 Y� (θp102 Cx2 − θp10CxCy ρ) 
(1 − f)

n
 Y�2(Cy2 + θp102 Cx2 − 2θp10CxCy ρ) θp10 =

X�
X� + D10

 

3. Efficiency of the proposed estimators  

For want of space, for the sake of convenience to the readers and for the ease 
of comparisons, the modified ratio type estimators given in Table 1.1, Table 1.2 
and the proposed modified ratio estimators given in Table 2.1 are represented into 
three classes as given below:  
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Class 1: The biases, the mean squared errors and the constants of the modified 
ratio type estimators  Y��1 to  Y��9 listed in the Table 1.1 are represented in a single 
class (say Class 1), which will be very much useful for comparing with that of 
proposed modified ratio estimators, and are given below: 

B�Y��i� =
(1 − f)

n
 Y� (θi2Cx2 − θiCxCy ρ) 

MSE�Y��i� = (1−f)
n

 Y�2�Cy2 + θi2Cx2 − 2θiCxCy ρ� i = 1, 2, 3, . . . , 9          (3.1) 

where  θ1 = X�

X�+Cx
, θ2 = X�

X�+β2
, θ3 = X�

X�+β1
, θ4 = X�

X�+ρ
 , θ5 = X �Cx

X �Cx+β2
 ,θ6 = X �β2

X �β2+Cx
, 

θ7 = X �β2
X �β2+β1

, θ8 = X �β1
X �β1+β2

 and θ9 = X �Cx
X �Cx+β1

  

 
Class 2: The biases, the mean squared errors and the constants of the 12 modified 
ratio estimators  Y��10 to  Y��21 listed in the Table 1.2. are represented in a single 
class (say Class 2), which will be very much useful for comparing with that of 
proposed modified ratio estimators, and are given below: 

B�Y��i� =  
(1 − f)

n
 
Sx2

Y�
Ri
2 

MSE�Y��i� = (1−f)
n

�Ri
2Sx2 + Sy2(1 − ρ2)�  i =  10, 11, 12, . . . , 21          (3.2) 

where  
R10 = Y�

X�
, R11 = Y�

X�+Cx
, R12 = Y�

X�+β2
, R13 = Y�β2

X�β2+Cx
, R14 = Y�Cx

X�Cx+β2
, R15 =

Y�

X�+β1
, R16 = Y�β1

X�β1+β2
,  

R17 = Y�

X�+ρ
, R18 = Y�Cx

X�Cx+ρ
, R19 = Y�ρ

X�ρ+Cx
, R20 = Y�β2

X�β2+ρ
 and R21 = Y�ρ

X�ρ+β2
   

 
Class 3: The biases, the mean squared errors and the constants of the 10 proposed 
modified ratio estimators   𝑌��𝑝1 𝑡𝑜  𝑌��𝑝10 listed in the Table 2.1. are represented in a 
single class (say Class 3), which will be very much useful for comparing with that 
of existing modified ratio estimators given in Class1 and Class 2, and are given 
below: 

B�Y��pj� =
(1 − f)

n
 Y� (θpj2 Cx2 − θpjCxCy ρ) 

MSE�Y��pj� = (1−f)
n

 Y�2�Cy2 + θpj2 Cx2 − 2θpjCxCy ρ�,    j = 1, 2, 3, . . . , 10   (3.3) 
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where  θp1 = X�

X�+D1
, θp2 = X�

X�+D2
 , θp3 = X�

X�+D3
 , θp4 = X�

X�+D4
, θp5 = X�

X�+D5
, θp6 =

X�

X�+D6
, 

θp7 =
X�

X� + D7
, θp8 =

X�
X� + D8

, θp9 =
X�

X� + D9
 and θp10 =

X�
X� + D10

 

From the expressions given in (3.1) and (3.3) we have derived the conditions 
for which the proposed estimator 𝑌��𝑝𝑗 is more efficient than the existing modified 
ratio type estimators given in Class 1, Y��i ; i = 1, 2, 3, . . . , 9 , and which are given 
below. 

MSE�Y��pj� < MSE�Y��i� if ρ < �θpj+θi�
2

Cx
Cy

 ; i = 1, 2, 3, . . . , 9, j = 1, 2, 3, . . . , 10       

 (3.4) 
From the expressions given in (3.2) and (3.3) we have derived the conditions 

for which the proposed estimator 𝑌��𝑝𝑗 is more efficient than the existing modified 
ratio estimators given in Class 2, Y��i ; i =  10, 11, 12, . . . , 21  , and which are given 
below: 

 MSE�Y��pj� < MSE�Y��i� if  θpjCx−Ri
∗Sx

Cy
< 𝜌 < Ri

∗Sx+θpjCx
Cy

 or  Ri
∗Sx+θpjCx

Cy
< 𝜌 <

θpjCx−Ri
∗Sx

Cy
             (3.5) 

i =  10, 11, 12, . . . , 21 ,   j = 1, 2, 3, . . . , 10 

where Ri
∗ = Ri

Y�
 . 

4. Empirical study 

The performances of the proposed modified ratio estimators listed in Table 
2.1. are assessed with that of existing modified ratio estimators listed in Table 1.1. 
and Table 1.2. for certain natural populations. In this connection, we have 
considered three natural populations for the assessment of the performances of the 
proposed modified ratio estimators with that of existing modified ratio estimators. 
They are: Population 1 is the closing price of the industry ACC in the National 
Stock Exchange from 2, January 2012 to 27, February 2012 [16]; Population 2 
and Population 3 are taken from Singh and Chaudhary [8] given in page 177. The 
population parameters and the constants computed from the above populations are 
given below: 
 

Parameters Population 1 Population 2 Population 3 
N     40 34 34 
n     20 20 20 
Y� 5141.5363 856.4117 856.4117 
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Parameters Population 1 Population 2 Population 3 
X� 1221.6463 208.8823 199.4412 
ρ       0.9244     0.4491     0.4453 
Sy   256.1464 733.1407 733.1407 
Cy       0.0557     0.8561     0.8561 
Sx   102.5494 150.5059 150.2150 
Cx       0.0839     0.7205     0.7531 
β2      -1.5154     0.0978     1.0445 
β1    0.3761     0.9782     1.1823 
D1 1111.8150   70.3000   60.6000 
D2 1119.4800   76.8000   83.0000 
D3 1139.2000 108.2000 102.7000 
D4 1159.8400 129.4000 111.2000 
D5 1184.2250 150.0000 142.5000 
D6 1252.5500 227.2000 210.2000 
D7 1307.1000 250.4000 264.5000 
D8 1345.7200 335.6000 304.4000 
D9 1366.7850 436.1000 373.2000 
D10 1389.3000 564.0000 634.0000 

 
The constants, the biases and the mean squared errors of the existing and 

proposed modified ratio estimators for the above populations are respectively 
given in the Tables 4.1. to 4.3. 

Table 4.1. The constants of the existing and proposed modified ratio type 
estimators  

Estimator Constants  𝛉𝐢 𝐨𝐫 𝐑𝐢 
Population 1 Population 2 Population 3 

Y��1Sisodia and Dwivedi [13] 0.9999 0.9966 0.9962 
Y��2 Singh et.al [11] 1.0012 0.9995 0.9948 
Y��3 Yan and Tian [15] 0.9997 0.9953 0.9941 
Y��4 Singh and Tailor [10] 0.9992 0.9979 0.9978 
Y��5 Upadhyaya and Singh [14] 1.0150 0.9994 0.9931 
Y��6 Upadhyaya and Singh [14] 1.0000 0.9658 0.9964 
Y��7 Yan and Tian [15] 1.0002 0.9542 0.9944 
Y��8 Yan and Tian [15] 1.0033 0.9995 0.9956 
Y��9Yan and Tian [15] 0.9963 0.9935 0.9922 
Y��10 Kadilar and Cingi [2] 4.2087 4.1000 4.2941 
Y��11 Kadilar and Cingi [2] 4.2084 4.0859 4.2779 
Y��12 Kadilar and Cingi [2] 4.2139 4.0981 4.2717 
Y��13 Kadilar and Cingi [2] 4.2089 3.9598 4.2786 
Y��14 Kadilar and Cingi [2] 4.2718 4.0973 4.2644 
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Table 4.1. The constants of the existing and proposed modified ratio type 
estimators  (cont.) 

Estimator Constants  𝛉𝐢 𝐨𝐫 𝐑𝐢 
Population 1 Population 2 Population 3 

Y��15 Yan and Tian [15] 4.2074 4.0809 4.2688 
Y��16 Yan and Tian [15] 4.2226 4.0980 4.2751 
Y��17 Kadilar and Cingi [3] 4.2055 4.0912 4.2845 
Y��18 Kadilar and Cingi [3] 4.1711 4.0878 4.2814 
Y��19 Kadilar and Cingi [3] 4.2084 4.0687 4.2579 
Y��20 Kadilar and Cingi [3] 4.2108 4.0115 4.2849 
Y��21 Kadilar and Cingi [3] 4.2143 4.0957 4.2441 
Y��p1(Proposed estimator) 0.5235 0.7482 0.7670 

Y��p2(Proposed estimator) 0.5218 0.7312 0.7061 

Y��p3(Proposed estimator) 0.5175 0.6588 0.6601 

Y��p4(Proposed estimator) 0.5130 0.6175 0.6420 
Y��p5(Proposed estimator) 0.5078 0.5820 0.5833 
Y��p6(Proposed estimator) 0.4938 0.4790 0.4869 
Y��p7(Proposed estimator) 0.4831 0.4548 0.4299 
Y��p8(Proposed estimator) 0.4758 0.3836 0.3958 

Y��p9(Proposed estimator) 0.4720 0.3239 0.3483 

Y��p10(Proposed estimator) 0.4679 0.2703 0.2393 
 
 

Table 4.2. The biases of the existing and proposed modified ratio type estimators  

Estimator Bias 𝐁(. ) 
Population 1 Population 2 Population 3 

Y��1Sisodia and Dwivedi [13] 0.3505 4.2233   4.8836   
Y��2 Singh et.al [11] 0.3522 4.2631   4.8621   
Y��3 Yan and Tian [15] 0.3502 4.2070   4.8519   
Y��4 Singh and Tailor [10] 0.3497 4.2406   4.9064   
Y��5 Upadhyaya and Singh [14] 0.3697 4.2607   4.8369   
Y��6 Upadhyaya and Singh [14] 0.3507 3.8212   4.8860   
Y��7 Yan and Tian [15] 0.3509 3.6732   4.8556   
Y��8 Yan and Tian [15] 0.3548 4.2630   4.8739   
Y��9Yan and Tian [15] 0.3460 4.1831   4.8236 
Y��10 Kadilar and Cingi [2] 0.9058 9.1539   10.0023 
Y��11 Kadilar and Cingi [2] 0.9056 9.0911   9.9272   
Y��12 Kadilar and Cingi [2] 0.9080 9.1454   9.8983   
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Table 4.2. The biases of the existing and proposed modified ratio type 
 estimators (cont.) 

Estimator Bias 𝐁(. ) 
Population 1 Population 2 Population 3 

Y��13 Kadilar and Cingi [2] 0.9058 8.5387   9.9303   
Y��14 Kadilar and Cingi [2] 0.9331 9.1420   9.8646   
Y��15 Yan and Tian [15] 0.9052 9.0688 9.8847 
Y��16 Yan and Tian [15] 0.9118 9.1452   9.9143   
Y��17 Kadilar and Cingi [3] 0.9044 9.1147   9.9578   
Y��18 Kadilar and Cingi [3] 0.8896 9.0995   9.9432   
Y��19 Kadilar and Cingi [3] 0.9056 9.0149   9.8348   
Y��20 Kadilar and Cingi [3] 0.9066 8.7630   9.9597   
Y��21 Kadilar and Cingi [3] 0.9081 9.1349 9.7711 
Y��p1(Proposed estimator) 0.0424 1.4697   2.0008   
Y��p2(Proposed estimator) 0.0430 1.3223   1.4125   
Y��p3(Proposed estimator) 0.0447 0.7548   1.0164   

Y��p4(Proposed estimator) 0.0464 0.4741    0.8726   

Y��p5(Proposed estimator) 0.0483 0.2581 0.4499 

Y��p6(Proposed estimator) 0.0533 0.2394 0.0939 
Y��p7(Proposed estimator) 0.0568 0.3281 0.3279 
Y��p8(Proposed estimator) 0.0591 0.5266 0.4367 
Y��p9(Proposed estimator) 0.0602 0.6218 0.5499 
Y��p10(Proposed estimator) 0.0614 0.6515 0.6387 
 

Table 4.3. The mean squared errors of the existing and proposed modified ratio 
type estimators  

Estimator Mean Squared Error 𝐌𝐒𝐄(. ) 
Population 1 Population 2 Population 3 

Y��1Sisodia and Dwivedi [13]   995.2787 10514.2250 10929.0458 
Y��2 Singh et.al [11] 1000.0116   10535.8620 10916.9080 
Y��3 Yan and Tian [15]   994.4171   10505.3563 10911.1914 
Y��4 Singh and Tailor [10]   992.8028   10523.6171   10941.9491   
Y��5 Upadhyaya and Singh [14] 1050.6525   10534.5417 10902.7384 
Y��6 Upadhyaya and Singh [14]   995.6899 10298.4432   10930.3879   
Y��7 Yan and Tian [15]   996.2592 10220.4736 10913.2804 
Y��8 Yan and Tian [15] 1007.5083   10535.7860 10923.6103 
Y��9Yan and Tian [15]   982.4136 10492.3779 10895.2039 
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Table 4.3. The mean squared errors of the existing and proposed modified ratio 
type estimators (cont.) 

Estimator Mean Squared Error 𝐌𝐒𝐄(. ) 
Population 1 Population 2 Population 3 

Y��10 Kadilar and Cingi [2] 4954.6195 16673.4489 17437.6451 
Y��11 Kadilar and Cingi [2] 4953.9796 16619.6435 17373.3111 
Y��12 Kadilar and Cingi [2] 4966.1946 16666.1389 17348.6192 
Y��13 Kadilar and Cingi [2] 4955.0419 16146.6142 17376.0389 
Y��14 Kadilar and Cingi [2] 5095.3661 16663.3064 17319.7468 
Y��15 Yan and Tian [15] 4951.7534 16600.5393 17336.9770 
Y��16 Yan and Tian [15] 4985.4911 16665.9758 17362.2582 
Y��17 Kadilar and Cingi [3] 4947.5796 16639.8457 17399.5196 
Y��18 Kadilar and Cingi [3] 4871.7809 16626.8702 17387.0811 
Y��19 Kadilar and Cingi [3] 4953.9273 16554.4002 17294.1864 
Y��20 Kadilar and Cingi [3] 4959.2739 16338.6465 17401.1397 
Y��21 Kadilar and Cingi [3] 4967.1427 16657.1867 17239.6579 
Y��p1(Proposed estimator)   334.8577   9194.9620   9454.2668 

Y��p2(Proposed estimator)   336.2980   9139.9570   9214.1709 

Y��p3(Proposed estimator)   340.0837   8956.7638   9074.5845 
Y��p4(Proposed estimator)   344.1636   8889.1069   9029.7423 
Y��p5(Proposed estimator)   349.1280     8852.3417   8922.5155 
Y��p6(Proposed estimator)   363.7720   8857.3224   8874.7609 
Y��p7(Proposed estimator)   376.1193   8882.6263   8921.3976 

Y��p8(Proposed estimator)   385.1501   9010.2560   8975.8044 

Y��p9(Proposed estimator)   390.1632   9178.8233   9085.0541 

Y��p10(Proposed estimator)   395.5824   9377.5847   9481.5539 
 

From the values of Table 4.2 it is observed that the biases of the proposed 
modified ratio estimators are lower than the biases of all the 21 existing modified 
ratio estimators. Similarly, from the values of Table 4.3, it is observed that the 
mean squared errors of the proposed modified ratio estimators are lower than the 
mean squared errors of all the 21 existing modified ratio estimators.  

5. Conclusion 

In this paper we have proposed a class of modified ratio type estimators using 
known values of population deciles of the auxiliary variable. The biases and mean 
squared errors of the proposed estimators are obtained and compared with that of 
existing modified ratio estimators. Further, we have derived the conditions for 
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which the proposed estimators are more efficient than the existing modified ratio 
estimators. We have also assessed the performances of the proposed estimators 
for some known populations. It is observed that the biases and mean squared 
errors of the proposed estimators are lower than the biases and mean squared 
errors of the existing modified ratio estimators for certain known populations. 
Hence, we strongly recommend that the proposed modified estimators may be 
preferred over the existing modified ratio estimators for the use of practical 
applications.  
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SAMPLE SURVEYS OF HOUSEHOLDS IN BELARUS: 
STATE AND PERSPECTIVES 

Natalia Bokun1 

ABSTRACT 

The main principles, characteristics and problems of three sample surveys of 
households (HH), conducted by the State Statistics of Belarus are considered: 
1) The Household Sample Surveys (on expenses and incomes), 2) Private 
Subsidiary Plots in rural areas (PSP) and 3) Labour Force Survey (LFS). For each 
of them the purpose, sampling plan, sample design, data collection mode, the 
methods of estimation and possible ways to improve the surveys are discussed. 

Key words: sample fraction, territorial probabilistic multistage sampling, 
weighting, non-responses, private subsidiary plots, Labour Force Survey. 

1. Introduction 

Over 70% of Belarus's population of 9.49 million resides in urban areas. 
According to the Census (2009) there were 2.5 million households in rural areas 
and 1.1 million in urban areas. There is a big income inequality. About 20% of 
the population have incomes below the minimum consumer budget which is set to 
1171.6 thousands of Belarusian rubles or 144.6$ for a single person. The biggest 
part of the household expenditures is spent on purchasing foodstuffs (37–40%). 
Expenditures on clothing, footwear, textiles, furniture, and household goods make 
up 17–18%, housing and utility are about 7–8%, and costs for education, health, 
culture, recreation and sport amount to 7–9%. Almost all rural residents have 
personal subsidiary plots. Thus, households produce about 30–35% of all 
agricultural products, about 89–90% of all potatoes, more than 80% of vegetables, 
32–33% of eggs and 13–19% of all milk. The main information source about the 
household status is the census but it is complemented by three nation-wide sample 
surveys: the Household Sample Survey, the sampling of subsidiary plots and the 
Labour Force Survey. They will be described in three separate sections below, 
which are followed by a discussion of the future development of sample surveys 
and statistics in Belarus. 

                                                           
1 Belarus State Economic University, Minsk. E-mail: nataliabokun@rambler.ru. 
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In addition, in Belarus a number of experimental surveys of health care are 
held (Institute of Statistics, 2005), the living standards of certain categories of 
workers (Institute of Statistics, 2006), consumption of alcoholic beverages 
(Institute of Statistics, 1999, Belarus National Academy of Sciences, 2009-2011) 
and public opinion polls. They are of small size and they are held irregularly. In 
2005 and 2012 Multiple Indicator Cluster Surveys were held (MICS 3 and MICS 
4). These surveys were conducted under the auspices of UNICEF. Despite the 
extensive program, the questions about illness and health are not detailed enough. 
For the information in the field of small businesses development, retail trade, 
wages in the context of professions and positions can only be obtained on the 
basis of industry enterprises sample surveys.  

The implementation process of sampling methods in practical statistics is 
extremely slow. The survey of reproductive health and marketing surveys are not 
conducted; sample surveys of enterprises cover a limited range of issues. The 
priority is given to the continuous reporting. 

2. Household Sample Survey 

Until 1995 a survey of family budgets of working people was conducted in 
Belarus. The sample size was 3.5 thousand persons. Two-stage sample design was 
used: at the first stage the enterprises were selected within branches and then 
employees were selected. This principle of selection ensured representativeness of 
data about employees’ incomes,  but due to development of market relations and 
liberalization of labor activity the statistics of family budgets has ceased to 
provide objective information about amounts and sources of income. In this 
regard a new model for Household Surveys was developed and implemented in 
the statistical practice. It was based on the international standards in sample 
design, development tools, data processing (Metodicheskie ukazania, 1997). In 
accordance with the proposed methodology Household Sample Survey (HSS) has 
been conducted since January, 1995. 

HSS is the only information basis for studying living standards. Its main 
purpose is to get information about the welfare of all population and particular 
demographic groups, detailed income and expenditure data. 

The information obtained is actively used by the government, research 
institutes and other users. The data are used for analysis and publication to assess 
living standards, development of the social policy, billing the household sector 
SNA, in the CPI and other economical and statistical calculations. 

The survey is carried out in all regions and separately in Minsk. Private 
households are sampled. The participation in the survey is voluntary.  

The household (HH) is a group of people living together and maintaining a 
joint unit. Persons not belonging to any HH and living and managing a household 
are considered as single person HHs. 
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Sampling plan. The sample size is approximately 0.2% or 6000 HHs. The 
survey covers 49 cities and 53 rural soviets. 

The sampling frame is based on the Census data. The sample design is 
multistage sampling. Territorial three-stage probability sampling is used: 

1) at the first stage sample units are cities and rural soviets (village 
councils); 

2) at the second stage sample units are local polling districts in cities and 
settlements (villages and hamlets) listed in the registers of the rural 
soviets (village councils); 

3) at the third stage sample units are households.  
At the first stage large cities are fully observed (over 72 thousands of people); 

small cities are selected through the sampling step, which is proportional to the 
population of each region. At the second and third stage systematic sampling is 
also used. The first unit is determined randomly. 

The procedure of cities and rural soviets selection is repeated once in ten 
years, selection of polling districts and HHs is carried out annually. 

Weighting procedure. The methodology of weighing and extrapolation data 
on a general population is based on assignment to each unit (HH) the 
corresponding weight (Вi): 

321

1
ppp

Bi ⋅⋅
= ,       (2.1) 

where 1p  - the probability of selecting a city or a rural soviet; 2p  - the 
probability of a polling district in a city, zone or rural soviet; 3p  - the probability 
of selecting a household within a polling district or zone. 

Base HH weights are corrected for uninhabited apartments and non-responses 
by using overweighting procedures. Weighted cells are constructed with the usage 
of the following characteristics: region, type of a settlement, type of housing, size 
of HH. Each cell includes at least 20 HHs. On the basis of the modified cells new 
weights are calculated: 
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where  *kiV - weight of HH, which fell in the kth cell, corrected for non-responses;  

kiV  - weight of HH, which fell in the kth cell, corrected for non-residential 
apartments; Mk - number of non-responses in the kth cell; Nk - number of 
responses in the kth cell; liB  - base weight for the ith HH in the lth region; liV  - 
base weight for the ith HH in the lth region, corrected for non-residential 
apartments; 7,1=l  - number of the region; L – number of  non-residential 
apartments in lth region; M - number of HHs left in the lth region. 

Data collection. Data are collected with the use of face-to-face interviews 
using paper and pencil (PAPI). The field staff comprises 150 interviewers. Before 
visiting the HH the interviewer sends a copy of a letter-appeal to each selected 
address with the request to take part in the survey. The letter briefly describes the 
procedure of examination and the date of the first visit.  

The sample program assumes filling in some questionnaires (living 
conditions, personal subsidiary plots, education, health, and employment), daily 
and quarterly questionnaires: expenditures on foodstuffs and nonfood products, 
payment of services, etc.  

The main components of the survey are: the main interview (a questionnaire, 
which is to be filled at the beginning of the survey); four quarterly interviews 
(conducted in April, July, October and January); four two-weeks diaries, which 
the households get once every quarter and in which they have to indicate their 
expenditures on foodstuffs and non-food products separately for each day. More 
than 10 000 variables are observed in the survey.  

The average response rate is 70-80%. Refusals are 1-2% of the total non-
response; remaining 98% are “impossible to contact”, “not at home”, “unable to 
answer”, “incapacity”, “unreturned questionnaire”. State statistics bodies ensure 
the confidentiality of the information provided by households. This information is 
used exclusively for the compilation of summary statistics. 

Dissemination of the HH data to users is carried out by the publication of 
statistical books, bulletins and with the help of the Belstat website. The main 
publications are: Incomes and expenditures of the population in the Republic of 
Belarus; Social status and living standards of the population of the Republic of 
Belarus; Statistical Yearbook of the Republic of Belarus. 



STATISTICS IN TRANSITION-new series, Spring 2013 

 

93 

Problems. The mechanism of quarterly HH survey samples is sufficiently 
worked out. Nevertheless, the survey process has such problems as: high non-
response rate (up to 30%), the need of building regional and demographic sub-
samples, usage of more sophisticated models of imputation, in addition the 
replacement of non-response data by neighboring units etc. The solutions can be: 
to increase the number of weighted variables, to increase the number of 
interviewers, and to use ratio imputation and regression imputation. 

3. Sampling of Subsidiary Plots 

A Personal Subsidiary Plot (PSP) is a small plot of land around the house that 
is worked by the holder. In Belarus the sample survey of Personal Subsidiary 
Plots (PSP) has been conducted since June, 2010. Its main purposes are: 
- to obtain data on the output of plant growing and livestock products, the number 

of livestock and poultry, the size of sown areas, the amount of feed consumption 
of livestock and poultry, and the amount of sales;  

- to calculate the gross output in agriculture;  
- to develop food balance sheets and funds for personal food consumption.  

Survey objects are HHs, personal subsidiary households of citizens in rural 
areas. These households are examined for each region. Participation in the survey 
is voluntary. 

PSP data and results are used extensively by Belstat and other government 
bodies to estimate total agricultural output in Belarus and in each region, to 
develop regional economic policy taking into account trends in agricultural 
production, output of PSP. 

Sampling plan. The sample size is approximately 3600 PSPs, the sample 
fraction is 0.32%, and the maximum relative error is 5–10%.  

The sampling frame is based on the last Census data and household register. 
The sampling frames consist of: 
- a set of districts in each region;  
- a set of village councils (rural soviets) in each selected area;  
- villages (settlements) in each selected village council; 
- the totality of the households in each village (data household register). 

Two indicators are recorded for each unit: the size of the total land area and 
the number of conventional livestock.  

Territorial four-stage probability sampling is used (Bokun, N., (2010); 
Nauchno-obosnovannoe metodologicheskoe obespechenie, 2010). 

At the first stage sample units are districts within the region; at the second 
stage – village councils within selected districts; at the third – villages within 
selected rural councils; at the fourth – private household farms in the selected 
villages. 
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At each stage the selection of units is based on the probability that is 
proportional to the sample indicators (total land area, number of conventional 
livestock). 

The first stage. Districts are selected. In Belarus a district is an administrative 
unit in rural areas, providing statistical data. Therefore, in the frames of HH 
survey sample their maximal representativeness is desirable. The maximum 
sampling rate that exceeds the normal or mean can range from 50% to 90%. For 
the area selection it is reasonable to use the middle of the interval, i.e. sampling 
rate 70%. 80 districts are selected from the 118 districts (118⋅0.7 ≈ 80), which 
are distributed over the regions (Table 1). A systematic sampling algorithm is 
used: districts are ranked by the number of households. For each district the 
values of indicators "total area of land" and "amount of conditional livestock" are 
calculated for the private plots. 

Table 1. The composition of district sample  

Regions 

Number of districts 

District 
sampling 
rate, d1 

Number of households 

in 
region, 

N1 

in 
sample, 

n1 
total, N 

in 
selected 
districts, 

N11 

selected, 
(n), 

distribution 
by regions 

Brest 16 11 0.687 210606 147614 495 
Vitebsk 21 14 0.667 161100 117648 630 
Gomel 21 14 0.667 174159 140204 630 
Grodno 17 12 0.706 166640 127045 540 
Minsk 22 15 0.682 273061 209715 675 
Mogilev 21 14 0.667 128692 100381 630 
TOTAL 118 80 0.678 1114258 842607 3600 

 
The second stage. One village council is randomly chosen in each of the 

selected districts, which leads to a certain degree of uncertainty in the 
representativeness of the district. But since summary information is presented 
only by regions, and not by districts, it is neglected. In addition, every interviewer 
is assigned to one village council. The interviewer does not need to make long 
journeys to conduct surveys in other areas. Averages, totals, figures for the 
oscillation of the analyzed characteristics are estimated. Then village council of 
medium size with minimal values of deviations from the mean values in a district 
is selected.  

The third stage. The list of settlements ranked by the number of households is 
composed for each selected village council. The settlements consisting of a small 
number of households (1, 2, 3 etc. HHs) are excluded. Unit selection is 
determined by a random number generator or by a table of random numbers.  
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The fourth stage. The number of subsidiary plots is determined. The 
disproportionate approach is used. This means that 45 households are sampled for 
each selected locality settlement. Household selection is done in a mechanical 
way using the accumulated amount of the parameters "total area of land" and 
"conditional livestock”. 

Weighting procedure. The extrapolating (here and in the following you 
should replace extrapolation/extrapolate by estimation/estimate) of mean and total 
values of sowing and harvesting areas, and all kinds of cultures, the total land 
area, the number of cattle, the gross collection of crops, livestock production, feed 
consumption of livestock and poultry and others are provided. 

Extrapolation is carried out by the following methods: 
1) by simplified method; 
2) by the probability of selection for each of the four stages of selection; 
3) by ratio estimation. 

Simplified method. The methodology of weighing and estimations is based on 
assigning to each unit (PSP) the corresponding weight (Be): 

qncp
e pppp

B
⋅⋅⋅

=
1

,          (3.1) 

where pp  – probability of selection of region in a district; cp  – probability of 

selection of village council in the selected district; np  – probability of selecting a 

point in the selected village council; qp  – the probability of selection of each 
household within a sampled settlement. 

The investigator has to take into account variability of the studied parameters. 
Therefore, for each HH several basic weights are calculated (for crop, livestock, 
etc.). 

Taking into account the variability of the studied indicators some basic 
weights are calculated for each HH (for the extrapolation of indicators for crops, 
livestock, etc.). For the calculation of the selection probability the size of PSP is 
estimated by land area and livestock. For example, the estimation of the crop base 
weight is determined by the formula: 
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where pp′ , cp′ , np′ , qp′  are selection probabilities of district, village council, 
village, HH, calculated taking into account the land area of PSP in the region, 
district, village council, village, separate HH respectively. SPj is land area of PSP 
in the selected j-th district (1st stage); Si - total area of PSP land in the i-th region; 
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n1i  - the number of districts selected in the i-th region; n4j - the number of 
households selected in the j-th village council; Sej - land area in the selected e-th 
household (4 stage); Scj - total land area of PSP in the selected village hall j-th 
district (2nd stage); Snj - the total land area of PSP in the selected village j-th 
district (3rd stage).  

Data extrapolation on the probability of selection for each of the four stages 
of sampling. At each stage of the selection the value of the average and total 
values of a characteristic are extrapolated. The calculation is made separately for 
livestock and crop.  

IV stage. Estimation of each characteristic for the crop is carried out by the 
following weight: 

e

n
ep S

SB =
4

,          (3.4) 

where Bep4 is the reciprocal of the probability of selecting PSP from the totality of human 
settlements on indicators of crop at stage 4; nS  – the area of PSP land in all selected 
locations; Se – the land area in the e-th HH included in the sample. 

III stage. For  estimation of  crop characteristics the weight of  a  settlement  
is  calculated as follows: 

 

nj

c
ep S

SB =
3

,           (3.5) 

where Bep3 – is the reciprocal of the probability of selecting a settlement in a 
village council selected at the stage 2; cS  – the area of PSP land in selected 
village council; Snj – the area of PSP village council land in the selected village j-
th region.  

II stage. Weighting of the village council (for plants): 
 

cj

p
ep S

S
B =

2
,          (3.6) 

where pS  – the area of household land in all selected districts of a region; Scj  – 
the area of land in the selected council in the j-th district. 

I stage. The area weights are calculated as follows: 
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- livestock    
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where Si  – the area of PSP land in the i-th region; Yi – conventional livestock in 
PSP of i-th region; Spj and Ypj – the area of land and conventional livestock in the 
selected j-th district in the i-th region respectively. 

Extrapolated total value of a characteristic is defined as a product of the 
average value of the trait and the number of households in the region, or as a sum 
of weighted values of a variable at the first stage. 

Ratio estimation. The sample population for each region is formed. Average 
and total values are extrapolated using of the raising coefficients (Kp):  
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Selection of the optimal extrapolation method depends on the initial data and 
is determined by the minimal standard sample error. We use the classical formula 
for calculating the variance for multi-stage sample, as well as the variance of ratio 
estimators (Bokun, N., Chernysheva, T (1997); Cochran, W (1997)).  

Non-response adjustment is based on the donor imputation: selection of 
values with replacement from the set of respondents. 

The results of subsidiary plots sample survey held in Belarus in 2010 are 
shown in Table 2, where: X1 is gross harvest of grains and legumes (quintals); X2  
is gross harvest of potatoes (quintals); X3 is gross harvest of vegetables (quintals); 
X4 is the number of cows; X5 is the number of pigs. 

Table 2.  Sample survey of subsidiary plots in Belarus, 2010  

Indicators  
Total value of parameter  

Sample error, %  
sample  general  estimated value 

1. Simplified extrapolation method  

X1  409  27209  23858.5  9.8  

X2  1020  80306  91629.1  14.1 

X3  6231.34  799409.3  945701.2  18.3  

X4  33426.31  4604302.6  5460922.4  3.1  

X5  6124.32  1104521.2  1129925.1  2.3  
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Table 2.  Sample survey of subsidiary plots in Belarus, 2010  (cont.) 

Indicators  
Total value of parameter  

Sample error, %  
sample  general  estimated value 

2. Data extrapolating on the probability of selection for each of the four stages  

X3  6231.34  799409.3  815397.48  2.0  

X4  33426.31  4604302.6  4765453.1  3.5  

X5  6124.32  1104521.2  1158893.6  3.9  

3. Ratio estimated  

X1  409  27209  32786.8  20.5  

X2  1020  80306  81831.8  1.9 

X3  6231.34  799409.3  945701.2  18.3  

X4  33426.31  4604302.6  4415526.2  4.1  

X5  6124.32  1104521.2  976396.8  11.6  

Data presented in Table 2 are examples of different estimation methods used 
in subsidiary plots sample surveys held in Belarus. The most preferred 
extrapolation methods are based on using base weights, which take into account 
the sizes of cultivated areas and livestock. In some cases ratio estimators are 
better. Additional usage of extrapolation over probabilities at each of the four 
selection stages is also possible (in the case of high error in the first two methods, 
for example, when evaluating the total yield of vegetables). 

Preliminary assessment of the acceptable degree of accuracy shows that the 
standard relative error for the whole Belarus is 1-2%; for the regions it is 5-6%; 
for small-size areas it is 8-15%. The standard relative error of the sample for sown 
area is 5-6%; for land area – 0.1-0.5%; for the number of livestock – 5-10%; for 
the planted area with potatoes and vegetables – 5-5.6%. 

Data collection. Face-to-face interviews are used to survey the items of 
interest in the questionnaire. According to the national specificities the optimal 
interviewer load is nearly 45 households. The data are collected by 80 field 
workers using paper questionnaires. Respondents maintain their accounting 
records of the volume of crop production, livestock, provide information about 
the presence and movement of poultry livestock, acreage size of family members, 
etc. 

Five questionnaires are used: basic questionnaire (as of 1 January), 
questionnaire on the crop area (as of 1 June), on the presence and movement of 
livestock and poultry (quarterly), diary registration of crop production (5 times a 
year, June-October), diary of livestock products registration and feeds accounting 
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(monthly). The collected information is confidential and it is used for the 
aggregate indicators calculation.  

The average response rate is 85-90%. Refusals make 60-65% of the total non-
response. Main publications are: Agriculture in the Republic of Belarus; 
Statistical Yearbook of the Republic of Belarus. Survey results are also presented 
on the website www.belstat.gov.by. 

Problems. The results of surveys in 2010-2011 have shown: 1) real response 
rate was higher than the planned one (85-90% versus 80%). This fact indicates a 
positive attitude of respondents to the survey; 2) at the regional level for the 
investigated variables (land area, crop area, number of pigs, etc.), the discrepancy 
between the estimates and the data of households recording are within an 
acceptable range (10-15%); an exception is the number of indicators of cattle, for 
which estimates are much lower than the continuous data records; this may be due 
to errors in the sampling frame: in some areas the number of livestock is 
overestimated, and it needs updating; 3) relative standard errors for most 
indicators of questionnaires did not exceed the permissible level; 4) it is quite 
difficult to select any option of extrapolation for various indicators of the 
questionnaire. Further improvement of the survey methodology may be related, 
firstly, to updating household recording, secondly, to the development of 
algorithm of choosing the optimal method for extrapolating the individual 
indicators (sections) of the questionnaire, and, thirdly, to study the possible 
application of the iterative weighting. 

4. Labour force survey 

Nowadays, the National Statistical Committee of the Republic of Belarus 
together with some foreign and national experts makes the preparatory work on 
implementation of the Labour Force Survey (LFS). In November 2011 a test 
sample survey was conducted. Since 2012 LFS has been provided on a regular 
basis. 

The purposes are: 
 to obtain empirical statistics on the labour force, economically active 

population, employed, unemployed; 
 to obtain empirical statistics on labour force, employed, unemployed by sex, 

regions, rural, urban; 
 to determine real labour force demand and supply. 

Frequency of the results: quarterly and annual. 
LFS data will be widely used for the labour market analysis, assess the actual 

level of unemployment, making optimal management decisions in the field of 
employment. 

The survey covers the whole country: urban and rural areas in each region. 
Private households are surveyed. Participation in the survey is voluntary. 

The target population comprises all residents aged 15-74. 
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Sampling plan. The size of the sample is perhaps the most important 
parameter of the sample design, as it affects the precision, cost and duration of the 
survey more than any other factors. 

To calculate the sample size, with the usage of the appropriate formula, 
recommended strategy for calculating the sample size is to take into account 
several factors, connected with sample precision, design-effect (deff), household 
size and non-responses. These factors are: 
 the precision, needed relative sample error; 
 desired confidence level; 
 estimated (or known) proportion of the population in the specified target 

group; 
 predicted coverage rate, or prevalence for the specified indicator; 
 sample deff; 
 average household size; 
 adjustment for potential loss of sampled households due to non-response. 

Design-effect (deff) is a ratio of sample variances of the actual stratified 
cluster sample ( 2

aσ ) and of a simple random sample of the same overall sample 

size ( 2σ ): 
 

22 σσ adeff = .         (4.1) 
 

Two sets of problems arise at this stage. First, the value of deff can be easily 
calculated after the survey, it is not often known before the survey. Second, the 
value of deff is different for each indicator and each target group. Consequently, it 
is necessary to choose one more important key indicator. International statistical 
practice has shown that the optimal value of deff is 1.5 (Multiple Indicator Cluster 
Survey Manual (2009), p. 4.3-4.8) (which may be sometimes high). Therefore, the 
sample size will be large enough to measure all main indicators. 

Key indicator is the most important indicator that will yield the largest sample 
size. 

Selection of the target group and key indicator includes the following stages: 
1. Selection of two or three target populations that comprise small percentages of 

the total population (1-year, 2-year, 5-year age groups) (Multiple Indicator 
Cluster Survey Manual (2009), p. 4.8). 

2. Review of important indicator based on these groups, ignoring indicators that 
have very low (less than 5%) or very high (more than 50%) prevalence. 

3. Maximal indicator value, calculated for target group (10-15% of the 
population) is 15-20% [6; 7]. 

4. Do not pick from desirable low coverage indicators an indicator that is already 
acceptably low. 
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Key indicator, used in Belorussian LFS, is the real unemployment rate (by the 
Census results). Target groups are economically active populations (rural, urban, 
by regions, 5-year groups). 

The sample size formula is used (Bokun, N., Chernysheva, T (1997), p. 44-53; 
Multiple Indicator Cluster Survey Manual (2009), p. 4.5-4.8, 4.11): 

 

hnpr
frrn
⋅⋅
⋅⋅−

= 2)12.0(
2.1)1(4

,         (4.2) 

where n   – required size for the key indicator; 4 – the factor to achieve 95% level 
of confidence, t-criteria; r  – predicted prevalence for the key indicator; 1.2 – 
essential factor in order to raise the sample size by 20% for non-response; f  – 
the symbol for deff (1.5); 0.12 – recommended relative sample error (95% level 
of confidence); p  – proportion of the total population upon which the indicator 

(r) is based; hn  – average household size. 

Several types of the sample size calculations were executed: 
1) random selection for rural and urban population for each region; 
2) random selection for Belarus (for target groups); 
3) random selection for each region; 
4) stratified sampling for each region. 

The examples of sample size determination are given in Tables 3 and 4. 

Table 3. Sample size for LFS. Variant 2 

Target group 

Real 
unemployment 

rate 
Target group size  

Average 
household 
size, 

hn  

Number 
of 

persons 
aged 
15-74 

on 
average, 
falling 
to one 
HH, 

hn′  

Predicted sample size 

persons %, r 
to total 

population, 
р 

to 15-
74 

years 
age 

group, 
р/ 

hnpr
frrn
⋅⋅
⋅⋅−

= 21 )12.0(
2.1)1(4  

hnpr
rrn

′⋅′⋅
⋅⋅−

= 22 )12.0(
2.15.1)1(4  

Economically 
active 
population 
aged 20-24 
(565833 
persons) 

60627 10.7 5.95 7.5 2.43 1.94 28860 28860 

Economically 
active 
population 
aged 15-74 in 
rural area 
(1051627 
persons) 

69346 6.6 11.06 14.0 2.43 1.94 26328 26052 
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Table 4. Sample size for LFS. Variant 3 

Regions 

Population 
aged 15-

74, N, 
persons 

Number of 
unemployment, 

persons 

Proportion 
unemployed 

in the 
population 
aged 15-74, 

w 

Number 
of persons 
aged 15-

74 on 
average, 
falling to 
one HH, 

hn′  

Sample size, n , number 
of households 

Relative 
standard 
error µ
=0,06, 
relative 
limited 
error∆
=0,12, 

(without  
deff) 

Relative 
standard 
error µ
=0,075, 
relative 
limited 
error ∆
=0,15, 

(with deff ) 

Brest region 1073227 50065 0.047 1.92 3502 3380 

Vitebsk 
region 979845 37108 0.038 1.87 4480 4312 

Gomel 
region 1132928 46840 0.041 1.89 4102 3946 

Grodno 
region 829263 31757 0.038 1.87 4474 4308 

Minsk 1513844 56293 0.037 2.06 4191 4043 
Minsk region 1113871 37345 0.033 1.94 4997 4811 
Mogilev 
region 868907 38511 0.044 1.97 3651 3513 

Total 7511885 297919 0.040 1.94 29397 28313 
 
Calculation results by different variants have shown that required annual 

sample size is 26-29 thousand of households, or in average – 28 thousand. 
Without taking into account non-responses the sample size is 22 thousand. 
Therefore, predicted sample fraction is 0.6%, or 22 000 HHs. It is planned to 
examine 7 000 HHs on a quarterly basis. 

Sample frame is based on the 2009 Census and includes: 
 set of cities in each region; 
 set of village councils in each region; 
 census enumeration districts in each selected city; 
 villages (settlements) in each selected village council; 
 the household totality in each census enumeration district and village. 

Annual updating of the lists of enumeration areas and HHs is assumed. 
Sample design. The territorial three-stage sample is used: primary unit – city 

or village council; secondary unit – census enumeration district or village (zone); 
final sampling unit – household. 

There are 25 census enumeration districts in cities and 16 village councils 
(zones). 

At each stage units are selected with systematic sampling with the probability 
that is proportional to population size or to the number of households. Variables 
used for the stratification are: administrative districts, urban/rural. 
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Weighting procedure is connected with HH weights and individual’s weights. 
HH weights are calculated as reciprocal of overall sample probabilities: 

321

1
ppp

Bi ⋅⋅
= ,         (4.3) 

where 1p  - the probability of selecting a city or a rural soviet; 2p  - the 
probability of selecting each polling district in cities, zones and rural soviets; 3p  - 
the probability of selecting each household within the Census enumerated district 
or zone. 

For the case of non-response an additional array of HHs is reserved within not 
less than 20% of the total sample ( 60002,028000 ≈⋅ ). 

Individual’s weights are based on iterative weighting (Multiple Indicator 
Cluster Survey Manual (2009); Metodika provedenia bazovyh obsledovanij 
naselenija (1997)):  
Iteration I: 
a) weights are calculated separately by sex within 5-year age groups; 
b) the first correction coefficient (k1) is calculated; weighted variables are: region, 

sex, rural/urban; 
c) the second correction coefficient (k2) is calculated; variables are: region, sex, 

eleven 5-year age groups . 
Individual weights are equal within each region, 5-year age groups, one kind 

of a settlement. 
Iteration II: 

At the second iteration the operations are implemented on the subsequent 
adjustment of the basic weight and intermediate extrapolated data on the same 
criteria as for the first iteration. 

Final individual weights for each 5-year age group: 
 

321 kkkBK bi ⋅⋅⋅= ,        (4.4) 

where: 
j

j
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S
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Sk =1 ; 
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S
S

k = ; Sj, sj – population size in j-th sex-age 

group based on the result of the Census and survey; St – population size in t-th 
group by rural (urban), sex (on the Census data); SE – extrapolated population size 
in t-th group (by Bb); Sjt – population size in jt-th sex-age rural (urban) group; SE2 

– extrapolated population size in jt-th group (by Bb and k1); k3 − generic correction 

coefficient, calculated in the second iteration ( nkkkk 332313 ... ⋅⋅⋅= ). 
Preliminary results of iterative weighting for unemployment rate and 

employment rate, calculated for Mogilev region (Table 5) have shown that 
received sample population is representative. Relative errors for the region do not 
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exceed 7-8%: for the number of unemployed – 6%, the number of employed – 
1.8%, the unemployment rate – 6.6%. 

Table 5.  Indicators of sample representativeness. Mogilev region. Iterative 
weighting 

Indicators 

Characteristic value Error 

extrapolated,  
Эх 

in the 
general 

population,  
х 

in absolute 
terms, 

ха х Э∆ = −  

in % 

x
Эx x−

=∆  

Number of employed, 
persons 506231.11 515876 9644.89 1.87 

Urban area 402333.2 412962 10628.8 2.57 
- Male 194657.81 205508 10850.2 5.28 
- Female 207675.39 207454 221.39 0.11 
Rural area 103897.91 102914 983.91 0.96 
- Male 55227.66 55228 0.34 0.0006 
- Female 48670.25 47686 984.25 2.06 
Total number of 
employed, persons     

- Male 249885.05 260736 10851 4.16 
- Female 256345.64 255140 1205.64 0.47 
Number of unemployed, 
persons 40510.33 38511 1899.33 4.19 

Urban area 32094.01 29332 2762.01 9.42 
- Male 20045.51 18381 1664.51 9.06 
- Female 12048.50 10951 997.5 9.10 
Rural area 8416.32 9179 762.68 8.31 
- Male 5931.53 6572 640.47 9.75 
- Female 2484.79 2607 122.21 4.69 
Number of unemployed 
(persons) among     
- Male 25977.04 24953 1024.04 4.10 
- Female 14533.29 13558 975.29 7.19 
Unemployment rate, % 7.41 6.95 0.46 6.62 
Urban area 7.39 6.63 0.76 10.46 
- Male 9.34 8.21 1.13 13.76 
- Female 5.48 5.01 0.47 9.38 
Rural area 7.49 8.19 0.7 8.55 
- Male 9.70 10.63 0.93 8.75 
- Female 4.86 5.18 0.32 6.18 
Unemployment rate (%) 
among:     

- Male 9.42 8.73 0.69 7.90 
- Female 5.37 5.05 0.32 6.34 

 
The results of trial calculations and testing of the first version of 

methodological and software sampling have shown that the main difficulties are 
associated with the use of different weighting schemes, determining the number 
of iterations steps, evaluation of structural indicators of employment and 
unemployment, the presence of atypical employment on the level of primary units 
(cities, districts). 
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Data collection. The data are collected by 200 field workers with face-to-face 
interviews using paper questionnaires. The optimal interviewer’s load in the cities 
is 40 HHs, in rural areas – 30 HHs. The predicted response rate is 80%. The 
reference week is the week before the interview. 

The main component of the survey is “The questionnaire on studying 
employment for the surveyed week”. It includes 57 questions, which are combined 
into seven sections, and includes the details about the respondent, basic and 
additional paid work, self-employment, unemployment, employment in the PSPs. 

Preliminary results of the survey are to be presented on the website of Belstat. 
Problems. Under a given load and a limited number of interviewers (200), it 

is not possible to question the estimated number of HHs (28 000) on a quarterly 
basis. On the basis of the selected annual array of HHs (28 000), built by regions, 
for each quarter, randomly generated four sub-samples are formed (each includes 
7 000 HHs). If the annual array of information makes it possible to obtain 
sufficiently representative data at the level of the republic and regions on most 
indicators (number of employed, unemployed, the economically active 
population, employment, unemployment, and in the context of all sex-age groups, 
urban and rural areas), the quarterly array makes it possible to design and evaluate 
the indicators with an acceptable degree of accuracy (10-12%) only at the level of 
the country. To improve the representativeness by region the indicators of the 
survey can be formed on the basis of the three samples – the average for three 
consecutive quarters. In addition, improving the quality of sample data is possible 
due to testing and using various schemes of the iterative weighting. 

5. Concluding remarks 

The household surveys make it possible to get the information on living 
standards of the population, actual employment and unemployment and products 
produced in PSPs.  

The sample units are HHs and target population groups (for example, persons 
aged 15-74), Personal Subsidiary Plots of citizens in rural areas. The surveys 
cover the whole country: the regions and Minsk city. The sample fraction is at the 
level of 0.2-0.6% of HHs, sample frames are Census and additional databases 
(household survey for the PSPs). Face-to-face paper assisted interview is used. 

The experience of household sample survey construction in Belarus has 
shown that the most applicable form of HH selection is multi-stage territorial 
probability sampling. The population can be stratified by the group of indicators: 
the administrative center, the type of housing, the size and composition of the 
HH. For the survey of PSPs the additional stratification variables are: the area of 
land, conventional livestock, and for LFS - gender and age groups of those aged 
15-74. Weighting and extrapolation are carried out both on the basis of individual 
weights that are calculated with the usage of linear functions (e. g., the reciprocal 
product of the probability of selection units at various stages of the sample), and 
with the usage of sophisticated estimates (ratio estimators are applied for 
estimation of some parameters of the PSP population).  
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The main problems for researchers and practitioners of statistics are: the 
issues of sample localization, the construction of regional (district) samples, non-
sampling errors, non-response (20-30%), presence of atypical units, not 
appropriate extrapolation, the use of different weighting schemes, the assessment 
of structural employment and unemployment indicators (for LFS), improving the 
representativeness of the quarterly data.  

Possible directions for improvement of the surveys are connected with using 
ratio and regression imputation, demographic and territorial sub-samples, usage of 
combined estimation methods for each indicator, presented in questionnaire 
(PSP), clarifying the steps and subsequent realization of iterative weighting 
scheme (LFS). It would be interesting to evaluate the goodness of sample strategy 
by means of Monte Carlo simulation from the census data (LFS) and household 
register data (PSP). 
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ABSTRACT 

Apart from breast-feeding, socio-economic and biological factors, maternal health 
also influences the length or distribution of waiting time to conception. The main 
objective of this paper is to examine the linkages between maternal nutritional 
status (measured by body mass index-BMI) and postpartum amenorrhea among 
currently breast-feeding women in India and its region. Further, the probability to 
remain amenorrheic through simulative approach has been estimated to get better 
understanding of the impact of maternal nutritional status on postpartum 
amenorrhea. Using National Family Health Survey-2 data, women who were not 
pregnant, who were breast-feeding and who were not using any hormonal 
contraceptives at the time of the survey were included in the analysis. Missing 
cases for body mass index and child nutritional status were imputed by fitting the 
linear regression equation. There was no significant difference existing between 
mean BMI of each region of India before and after imputation of missing cases. 
The interaction term between maternal nutritional status and duration of breast-
feeding (child’s age) was significantly associated with the likelihood of having 
resumed menstruation after controlling for breast-feeding practices, child 
nutritional status and socio-economic and demographic covariates. The effect of 
maternal nutritional status on lactational amenorrhea was not found to be 
significant when women were breast-feeding since last 12 months except in the 
northern region of India. However, after 12 months of breast-feeding, the 
probability of undernourished women to remain amenorrheic was likely to be 
greater and this trend was highly consistent across all the six regions included in 
the analysis. 

Key words: simulative approach, maternal nutritional status, body mass index, 
postpartum amenorrhea, India. 
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1. Introduction 

The interval between birth of a child and subsequent return of menstrual cycle 
is known as lactational amenorrhea. There are number of important factors which 
affect lactational amenorrhea either directly or through breast-feeding and its 
complete understanding is somewhat a complex phenomenon. Apart from breast-
feeding, socio-economic and biological factors, maternal health also influences 
the length or distribution of waiting time to conception. It is easily visualized that 
maternal health affects the duration/frequency of breast-feeding. For instance, an 
undernourished woman might think that her milk is not sufficient and/or 
nutritious or she will not be competent enough to breast-feed for a longer duration 
and ultimately it adversely affects the duration of amenorrhea. The other 
possibility is that an undernourished woman may prefer to increase the frequency 
as well as duration of breast-feeding because she might be not capable to produce 
sufficient nutritious milk for her child.  

However, nutritionists argued that the nutritional status of woman is also 
directly linked with the quality and duration of breast-feeding. Frisch (1983) 
found that nutritional intake influences fecundity. Further, Frisch et al. (1973) and 
Frisch and McArthur (1974) investigated the effect of nutrition on ovarian 
function and they have formulated the “critical body composition hypothesis.” 
This hypothesis suggests that a minimal amount of fat as percentage of body 
weight is necessary for attaining menarche and for maintaining ovarian cycles. 
However, it still remains controversial and some researchers have suggested that 
nutritional status of women has a strong impact on postpartum amenorrhea (PPA). 

The arguments that shorter duration of breast-feeding results in short duration 
of birth interval may deteriorate the nutritional status of mother. The term 
‘maternal depletion syndrome’ in the literature refers to “the effect of a rapid 
succession of pregnancies and periods of lactation which erode the nutritional 
status of the mother” (Cleland and Sathar, 1984). There have been a few studies 
dealing with the effects of birth interval on maternal mortality (measurement of 
maternal health) due to non-availability of data. It is very difficult to measure the 
health effect of high fertility or short birth intervals on mothers. However, it is 
also argued that longer duration of breast-feeding has a negative impact on health. 
It is not easy to measure maternal health due to intense and longer breast-feeding 
in the analyses of reproductive performance and health from currently available 
data. 

India and the central region in particular are well known for high fertility 
leading to the burden on women who already have poor nutritional status. 
Therefore, it is felt that the duration of amenorrhea might change for well-
nourished and undernourished women. Huffman et al. (1987) suggested maternal 
nutrition is not likely to shorten the length of PPA significantly. Moreover, the 
relationship between maternal nutritional status and lactational amenorrhea is not 
clearly understood. Some researchers have argued that undernourished women 
have less chance of maintaining the ovarian cycle (Frisch et al., 1973; Frisch and 
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McArthur, 1974). But some researchers have also argued that this relationship is 
biologically insignificant (Diaz et al., 1988). Therefore, the specific objective of 
this chapter is to examine the independent impact of maternal nutritional status on 
lactational amenorrhea among breast-feeding women.  

2. Method and materials 

This study uses National Family Health Survey (NFHS) data conducted in the 
years 1998-99. The analysis was carried out for India and its six regions, namely - 
the northern region includes Delhi, Haryana, Himachal Pradesh, Jammu and 
Kashmir, Punjab and Rajasthan; the central region consists of Chhattisgarh, 
Madhya Pradesh, Uttaranchal and Uttar Pradesh; the eastern region comprises of 
Bihar, Jharkhand, Orissa and West Bengal; the northeastern region consists of 
Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim 
and Tripura; the western region includes Goa, Gujarat and Maharashtra; and 
finally the southern region includes Andhra Pradesh, Karnataka, Kerala and Tamil 
Nadu. 

Regions follow the classification scheme contained in the NFHS published 
report (IIPS and ORC Macro, 2000). Region specific analysis was carried out 
after assigning a proper weight to adjust for the differences in sample size across 
states. Sample weights were calculated to provide region-wide estimates, for 
example, for the northeastern region (which contains eight states): 

      1/[8*(ns/ np)] where ns is the sample size for each state and np is the sample 
size for pooled data. Whenever it is required, values for missing cases have been 
imputed using linear regression equation and results have compared before and 
after imputing the missing values. 

Women who were not pregnant, not using any hormonal contraceptives and 
were currently breast-feeding at the time of the survey were selected for the study. 
The NFHS-2 data obtained information from 90,303 ever married women in the 
age group of 15-49 years. There were 22,597 women who were currently breast-
feeding at the time of the survey, of whom 959 women who were currently 
pregnant and 737 women who were using modern contraceptive pills were 
dropped from the analysis. The analysis was carried out for 20,901 currently 
breast-feeding women. At the time of the survey, women were asked if their 
menstruation had returned since the birth of their youngest child. The lactational 
amenorrhea is defined as a dichotomous variable. The dependent variable was the 
women who reported not to have resumed menstruation after the delivery of the 
last child and were coded as amenorrheic or as non-amenorrheic if women 
resumed menstruation.  

An anthropometric measurement, body mass index (BMI) has been used as an 
indicator for measuring nutritional status of women. Chronic energy deficiency in 
women is usually indicated by BMI of less than 18.5 kg/m2. BMI is a valid 
indicator for assessment of nutritional status of women as literature suggests that 
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BMI is consistently highly correlated with body weight and is relatively 
independent of the stature or height of the individual. Such type of measurement 
is very highly reliable than the measurement which is solely based on reporting. 
However, child weight-for-age is identified as an indicator for child’s nutritional 
status. 

The combined variables, namely maternal nutrition and duration of breast-
feeding (equivalent to the age of the child) is considered as an independent 
variable. The four categories of this variable are: 

undernourished  (BMI<18.5 kg/m2) women and child aged <=12 months; 
undernourished (BMI<18.5 kg/m2) women and child aged 13-35 months; 
well-nourished  (BMI>=18.5 kg/m2) women and child aged <=12 months;  
and well-nourished  (BMI>=18.5 kg/m2) women and child aged 13-35 months. 
The other independent variables are: region 

(north/central/east/northeast/west/south); place of residence (rural/urban); 
respondent’s education (illiterate/middle school complete/high school complete 
and above); standard of living (low/medium/high); sex of index child 
(female/male); maternal age (in years) (15-24/25-34/35-49); parity (1/2/>=3); 
child’s weight-for-age Z-score (>=-2/<-2); and breast-feeding status (breast-
feeding with supplements/exclusive breast-feeding/breast-feeding with plain 
water only). Analyses were also carried out in India and for six regions, 
separately.  

The information on maternal body mass index (BMI) for 1795 women and 
child’s weight-for-age for 4130 cases was found to be missing. The missing 
values of maternal BMI and child’s weight-for-age were imputed with the help of 
multiple linear regression analysis. The significance level of coefficients in the 
multivariate framework was compared before and after imputing the missing 
values. The independent variables used for imputing the missing values of 
maternal BMI are region (north/central/east/northeast/west/south), place of 
residence (rural/urban), respondent’s education (illiterate/middle school 
complete/high school complete and above), standard of living 
(low/medium/high), parity (continuous), current age of woman (continuous), and 
breast-feeding status (breast-feeding with supplements/exclusive breast-
feeding/breast-feeding with plain water only). In addition to the above mentioned 
covariates, current age of child was also included for imputing the missing values 
of child weight-for-age in the regression analysis. 

The mean value of maternal nutritional status (BMI) was computed by 
selected characteristics of women. Further, the survival probability of the pattern 
of PPA was estimated using the non-parametric method of Kaplan-Meier (K-M). 
Log-rank test has been applied to determine whether there were significant 
differences in the median duration of PPA between undernourished and well-
nourished women. 

Since we have controlled the duration of breast-feeding by creating the 
combined variable of maternal nutritional status and duration of breast-feeding, 
we have preferred multiple logistic regression analysis over Cox hazards model. 
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A simulative approach has been adopted in this paper to find out the adjusted 
effects of maternal nutritional status on lactational amenorrhea. It is decided to 
compute the adjusted proportion of amenorrheic women by maternal nutritional 
status on the assumption that all women in the sample were having 
undernourished child and also by considering all women in the sample were 
having well-nourished child, separately. From this approach, an attempt was made 
to obtain the important information of proportion of remaining amenorrheic for a 
particular variable by keeping other variables at the mean level. Similarly, these 
probabilities for a particular combination of variables may also be computed by 
holding the remaining variables at the mean level (Dwivedi, 2006; Dwivedi et al., 
2007). 

3. Results 

3.1. Kaplan-Meier (K-M) survival analysis  

Kaplan-Meier (K-M) survival analysis was carried out to find the median 
duration of PPA according to maternal nutritional status. The technique also helps 
in proper categorization of duration of breast-feeding (child’s age) as a categorical 
predictor in the multivariate analysis. 

The results of K-M survival probability of PPA in relation to BMI for those 
women who were currently breast-feeding, not pregnant and were not using any 
hormonal contraceptives at the time of the survey for India and its regions are 
presented in the Figure 1. It is evident that at the first month of PPA period, 88 
percent of better-nourished women and 90 percent of malnourished women in 
case of India were still amenorrheic, whereas at the end of six months, 57 percent 
of better-nourished and 63 percent of malnourished women in case of all India 
were still amenorrheic. However, at the end of 12 months, these rates for two 
different categories of women declined to about half of the previous values, i.e., 
to 26 percent and 32 percent, respectively. Later, at the end of 32 months, the 
corresponding figures were eight percent and six percent, respectively. It is clear 
from the present analysis that undernourished women were more likely to be 
found in amenorrheic state than better-nourished women (Figure 1).  

In the case of better-nourished women, the percentage of women who were 
still amenorrheic at the end of first month was highest in the northeastern region 
and lowest in the northern region. But for undernourished women, the percentage 
of women who were still amenorrheic at the end of first month was highest in the 
southern region and lowest in the northern region. The percentage of women who 
remained amenorrheic at the end of first month was found to be relatively higher 
among malnourished women in the entire region except in the northeastern region 
where the corresponding percentage was equal for both better-nourished and 
malnourished women. But, the percentage of women who were amenorrheic at 
the end of 12 months was considerably higher among malnourished in the entire 
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region of India. At the end of 20 months also, a similar pattern was observed. But, 
the difference in percentages to remain amenorrheic between better-nourished and 
malnourished women was remarkably higher in the western and southern regions. 
For example, at the end of 12 months, the percentages of women remaining 
amenorrheic among undernourished was 31 percent compared to 18 percent who 
were well-nourished in the western region of India. Kaplan-Meier estimates show 
that there has been a sharp decline in the percentages of amenorrheic women 
during 11 to 12 month of the postpartum period in all the regions of India, 
irrespective of maternal nutritional status.  

The median duration of PPA and its 95 percent confidence interval estimates 
for women who were currently breast-feeding, not pregnant and were not using 
any hormonal contraceptives at the time of the survey with respect to their body 
mass index in case of India and its regions have also been calculated and are 
presented in Table 1. Log-rank test showed that there was a significant difference 
in the duration of amenorrhea between the two groups under study. 
Undernourished women had a significantly longer duration of PPA than well-
nourished women in India (p<0.00001).  

Table 1. Median duration of postpartum amenorrhea and its 95% confidence 
interval (CI) estimates for women who were currently breast-feeding, not 
pregnant and were not using any hormonal contraceptives at the time of the 
survey with respect to body mass index of women in India and its regions-1998-
99. 

Country/Regions 

BMI>=18.5 kg/m2 BMI<18.5 kg/m2 

Log-rank test 

Test-statistic 
Median 

95% CI 

     L               U 
Median 

95% CI 

      L             U 

India 9.00 8.68 9.32 11.00 10.79 11.21 76.90* 

North 7.00 6.49 7.51 8.00 7.14 8.86 5.38*** 

Central 12.00 11.73 12.27 12.00 11.85 12.15 2.86 

East 10.00 9.56 10.44 12.00 11.59 12.41 14.18** 

Northeast 8.00 7.48 8.52 9.00 8.01 9.99 3.64 

West 6.00 5.36 6.64 11.00 10.39 11.61 45.53* 

South 7.00 6.54 7.46 9.00 8.16 9.84 35.62* 

Note: *p<=0.00001; ** p<=0.0002; ***p<=0.0204 
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Figure 1. Survival curve based on Kaplan-Meier method for India 
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The median duration of PPA was significantly longer for undernourished 
women in the northern, eastern, western and southern regions and difference was 
significantly more apparent in the western and southern regions. However, there 
was no significant difference in the median duration of PPA between better-
nourished and malnourished women in the central and northeastern regions. The 
survival curves based on Kaplan-Meier method for all the regions of India 
presented in the figures, also indicates more clearly the same findings (Figure 1). 

Cont… 

Figure 1.1. Survival curve based on Kaplan-Meier method for Northern region of 
India 
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Cont… 

Figure 1.2. Survival curve based on Kaplan-Meier method for Central region of 
India 
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Cont… 

Figure 1.3. Survival curve based on Kaplan-Meier method for Eastern region of 
India 
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Cont… 

Figure 1.4. Survival curve based on Kaplan-Meier method for Northeastern 
region of India 
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Cont… 

Figure 1.5. Survival curve based on Kaplan-Meier method for Western region of 
India 
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Cont… 

Figure 1.6. Survival curve based on Kaplan-Meier method for Southern region of 
India 
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3.2. Multivariate analysis  

To identify the independent effect of maternal nutritional status on lactational 
amenorrhea among breast-feeding women, all the important determinants were 
considered in the multivariate logistic regression analysis. The choice of the 
explanatory variables included in the logistic model was governed by two 
considerations: first, its relation with the dependent variable should be statistically 
significant in the bivariate analysis; and second, the inclusion of that variable 
could also be theoretically justified.  

The adjusted odds ratio and its 95 percent confidence interval estimates of 
amenorrheic versus non-amenorrheic women who were currently breast-feeding, 
not pregnant and were not using any hormonal contraceptives at the time of the 
survey for India by selected characteristics are presented in Table 2. The results 
presented in the table clearly show that the adjusted chance to remain amenorrheic 
was more evident among women of all regions of India except in the southern 
region, although the odds ratio was found to be significant only in the central and 
eastern regions. There was no variation in the magnitude as well as significance 
level of odds ratio after imputing the missing values. However, the magnitude of 
the adjusted odds ratio increased slightly compared to the unadjusted odds ratio in 
the eastern region. This indicates that after controlling the other important factors, 
women from the eastern region had strong positive tendency to remain 
amenorrheic than those in the northern region of India.  

Women who were from urban areas belonged to educated category and had 
medium or high standard of living, were significantly less likely to be 
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amenorrheic. This pattern was almost similar after imputing the missing values. 
Women with a male child were more likely to be amenorrheic, but the 
relationship was not statistically significant. Maternal age was also inversely 
associated with lactational amenorrhea. However, parity was positively associated 
with the chance that the woman will be in the state of PPA. The adjusted chance 
to remain amenorrheic increases significantly with an increase in parity. For 
example, women who were at parity three or above had greater likelihood of 
being found in amenorrheic state at the time of the survey; the chance was double 
than that for women of parity one. The result was statistically significant. After 
imputing the missing values of maternal BMI and child weight-for-age, the 
magnitude of odds ratio for parity and maternal age remained unchanged for the 
same level of significance. Women who had undernourished children were 
significantly less likely to remain amenorrheic than women with well nourished 
children. The likelihood was almost similar but the level of significance was 
changed after imputing the missing values. Among women who did not report 
their child’s weight-for-age the chances to remain amenorrheic increased 
significantly. Further, the direction of the regression coefficient was the same as it 
was in the case of unadjusted coefficient. Women who were exclusively breast-
feeding or breast-feeding as well as giving plain water were significantly more 
likely to remain amenorrheic, but the odds ratio was relatively higher among 
those women who were exclusively breast-feeding. 
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Table 2. Adjusted odds ratio and 95% confidence interval (CI) estimates of 
amenorrheic versus non-amenorrheic women who were currently breast-feeding, 
not pregnant and were not using any hormonal contraceptives at the time of the 
survey, India by selected characteristics-1998-99. 

Variables 

India India* 

Exp (β) 
95% CI for 

Exp (β) Exp (β) 
95% CI for 

Exp (β) 
Lower Upper L U 

Region of residence 
North® 
Central 
East 
Northeast 
West 
South 

 
1.00 
1.15 
1.28 
1.06 
1.05 
0.94 

 
- 

1.03 
1.15 
0.94 
0.93 
0.83 

 
- 

1.27 
1.43 
1.20 
1.20 
1.06 

 
1.00 
1.15 
1.30 
1.04 
1.05 
0.94 

 
- 

1.04 
1.16 
0.92 
0.92 
0.83 

 
- 

1.28 
1.45 
1.17 
1.20 
1.06 

Place of residence 
Rural® 
Urban 

 
1.00 
0.81 

 
- 

0.75 

 
- 

0.89 

 
1.00 
0.79 

 
- 

0.73 

 
- 

0.87 
Respondent’s education 
Illiterate® 
Middle school complete 
High school complete and above 

 
1.00 
0.79 
0.74 

 
- 

0.73 
0.66 

 
- 

0.86 
0.84 

 
1.00 
0.77 
0.72 

 
- 

0.71 
0.64 

 
- 

0.84 
0.82 

Standard of living 
Low® 
Medium 
High 

 
1.00 
0.74 
0.54 

 
- 

0.69 
0.48 

 
- 

0.80 
0.61 

 
1.00 
0.72 
0.52 

 
- 

0.67 
0.46 

 
- 

0.78 
0.59 

Sex of child 
Female® 
Male 

 
1.00 
1.06 

 
- 

1.00 

 
- 

1.14 

 
1.00 
1.07 

 
- 

1.00 

 
- 

1.14 
Maternal age (in years) 
15-24® 
25-34 
35-49 

 
1.00 
0.88 
0.77 

 
- 

0.81 
0.66 

 
- 

0.96 
0.88 

 
1.00 
0.89 
0.78 

 
- 

0.82 
0.67 

 
- 

0.97 
0.90 

Parity 
1 Child 
2 Children 
>=3 Children 

 
1.00 
1.44 
2.11 

 
- 

1.31 
1.91 

 
- 

1.58 
2.34 

 
1.00 
1.44 
2.16 

 
- 

1.31 
1.95 

 
- 

1.59 
2.39 

Child wt-for-age 
Z-score >=-2® 
Z-score < -2 
Missing 

 
1.00 
0.99 
1.25 

 
- 

0.91 
1.12 

 
- 

1.08 
1.40 

 
1.00 
0.91 
NA 

 
- 

0.84 
NA 

 
- 

0.99 
NA 

Breast-feeding status 
Breast-feeding+supplements®  
Exclusive breast-feeding 
Breast-feeding+ plain water only 

 
1.00 
5.32 
2.45 

 
- 

4.74 
2.22 

 
- 

5.98 
2.69 

 
1.00 
4.51 
2.27 

 
- 

4.01 
2.06 

 
- 

5.08 
2.51 

Maternal BMI & Child age 
<18.5Kg/m2 and 13-35 months® 
<18.5Kg/m2 and <=12 months 
>=18.5Kg/m2 and <=12 months 
>=18.5Kg/m2 and 13-35 months 
Missing BMI and 0-35 months 

 
1.00 
6.10 
6.71 
0.76 
1.91 

 
- 

5.43 
6.01 
0.68 
1.63 

 
- 

6.86 
7.49 
0.86 
2.25 

 
1.00 
6.14 
6.78 
0.77 
NA 

 
- 

5.46 
6.08 
0.70 
NA 

 
- 

6.90 
7.57 
0.86 
NA 

      Note: *Odds ratio includes imputed values for missing cases of body mass index and child wt-for-age. 
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Table 3. Adjusted odds ratio and 95% confidence interval (CI) estimates of 
amenorrheic versus non-amenorrheic women who were currently breast-feeding, 
not pregnant and were not using any hormonal contraceptives at the time of the 
survey for India and its regions by maternal body mass index (BMI) & child age-
1998-99. 

Variables 

India India* North* Central* 

Exp 
(β) 

95% CI for 
Exp (β) Exp 

(β) 

95% CI for 
Exp (β) Exp 

(β) 

95% CI for 
Exp (β) Exp 

(β) 

95% CI for 
Exp (β) 

Lower Upper Lower Upper Lower Upper Lower Upper 
Maternal BMI & 
Child age 
<18.5Kg/m2 and 
<=12 months® 
<18.5Kg/m2 and 
13-35 months 
>=18.5Kg/m2 and 
<=12 months 
>=18.5Kg/m2 and 
13-35 months 
Missing BMI and 
0-35 months 

 
 
 

1.00 
 

0.16 
 

1.10 
 

0.13 
 

0.31 

 
 
 
- 
 

0.15 
 

1.00 
 

0.11 
 

0.27 

 
 
 
- 
 

0.18 
 

1.21 
 

0.14 
 

0.37 

 
 

 
1.00 

 
0.16 

 
1.11** 

 
0.13 

 
NA 

 
 
 

- 
 

0.15 
 

1.00 
 

0.11 
 

NA 

 
 
 

- 
 

0.18 
 

1.22 
 

0.14 
 

NA 

 
 
 

1.00 
 

0.17 
 

1.34 
 

0.14 
 

NA 

 
 
 
- 
 

0.13 
 

1.10 
 

0.11 
 

NA 

 
 
 
- 
 

0.22 
 

1.64 
 

0.18 
 

NA 

 
 
 

1.00 
 

0.15 
 

1.02 
 

0.14 
 

NA 

 
 
 
- 
 

0.12 
 

0.83 
 

0.11 
 

NA 

 
 
 
- 
 

0.20 
 

1.26 
 

0.18 
 

NA 

Note: *Odds ratio includes imputed values for missing cases of body mass index and child wt-for-age. 
          ** Results significant at P<=0.05. It includes 1 in 95% confidence interval because of rounding. 
          All other considered variables in the Table 2 have been controlled. 
 

Cont… 

Table 3.1. Adjusted odds ratio and 95% confidence interval (CI) estimates of 
amenorrheic versus non-amenorrheic women who were currently breast-feeding, 
not pregnant and were not using any hormonal contraceptives at the time of the 
survey for different regions of India by maternal body mass index (BMI) & child 
age-1998-99. 

Variables 

East Northeast West South 

Exp 
(β) 

95% CI for 
Exp (β) Exp 

(β) 

95% CI for 
Exp (β) Exp 

(β) 

95% CI for 
Exp (β) Exp 

(β) 

95% CI for 
Exp (β) 

Lower Upper Lower Upper Lower Upper Lower Upper 
Maternal BMI & Child 
age 
<18.5Kg/m2 and <=12 
months® 
<18.5Kg/m2 and 13-35 
months 
>=18.5Kg/m2 and <=12 
months 
>=18.5Kg/m2 and 13-35 
months 

 
 
 

1.00 
 

0.20 
 

1.16 
 

0.15 

 
 
 
- 
 

0.16 
 

0.92 
 

0.12 

 
 
 
- 
 

0.26 
 

1.46 
 

0.19 

 
 
 
1.00 

 
0.18 

 
1.23 

 
0.12 

 
 
 

- 
 

0.12 
 

0.93 
 

0.09 

 
 
 

- 
 

0.26 
 

1.62 
 

0.17 

 
 
 

1.00 
 

0.15 
 

0.81 
 

0.09 

 
 
 
- 
 

0.11 
 

0.60 
 

0.06 

 
 
 
- 
 

0.22 
 

1.09 
 

0.13 

 
 
 

1.00 
 

0.11 
 

0.96 
 

0.07 

 
 
 
- 
 

0.08 
 

0.74 
 

0.05 

 
 
 
- 
 

0.16 
 

1.24 
 

0.10 

Note: Odds ratio includes imputed values for missing cases of body mass index and child wt-for-age. 
          All other considered variables in the Table 3.5.1 have been controlled. 
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Women who had a child of age less than 13 months were significantly more 
likely to remain amenorrheic, irrespective of their nutritional status, than 
undernourished women who had a child of age 13 to 35 months and the odds ratio 
was found to be similar after imputing the missing values. On the other hand, the 
adjusted chance to remain amenorrheic was found to be lower among women who 
were better-nourished and had a child of age 13 to 35 months compared to their 
undernourished counterparts who had a child of the same age. The result was 
consistent after imputation of missing values of maternal BMI and child weight-
for-age.  

A possible reason for this finding may be that the duration of breast-feeding 
(child’s age) is one of the important predictors in determining the lactational 
amenorrhea among breast-feeding women. Therefore, for comparison purpose, we 
have taken undernourished women with the age of the child less than 13 months 
as a reference category in the multivariate analysis (Table 3). Results clearly 
revealed that there was no significant difference in postponing the return of 
ovulation after birth of a child between undernourished and better-nourished 
women with the age of the child less than 13 months in all the regions of India 
except the northern region. In the northern region, the probability to remain 
amenorrheic was high among better-nourished women with the age of the child 
less than 13 months as opposed to undernourished women with the same age of 
the child.  

3.3. Simulation analysis 

The predicted probabilities to remain amenorrheic were calculated for a 
particular variable by holding all remaining variables at their average level in the 
model. These results are presented in the Table 4. 

Some selected variables and a combination of variables considered in the 
present prediction analysis are: (i) breast-feeding status, (ii) place of residence, 
(iii) respondent’s education, (iv) standard of living, (v) sex of child, (vi) child 
nutritional status, (vii) maternal BMI and child age (duration of breast-feeding), 
(viii) maternal BMI and child age with breast-feeding status, (ix) maternal BMI 
and child age with child nutritional status, (x) maternal BMI and child’s age with 
breast-feeding status and child’s nutritional status. 

The results indicate that the probability to remain amenorrheic was 
comparatively higher among those women who were exclusively breast-feeding. 
By assuming that all women in India were exclusively breast-feeding, the chance 
to remain amenorrheic has increased to around 13 percent than among those 
women who were breast-feeding and giving only plain water. The probability to 
remain amenorrheic was more than average among those women who were 
breast-feeding and giving only plain water, whereas the corresponding probability 
for women who were breast-feeding as well as giving supplements was lower in 
comparison to the average value (0.418). 
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A similar pattern was found in all the regions of India where the percentage of 
amenorrheic women who were breast-feeding and giving some supplements was 
lower than the average value of the respective regions. The gain in terms of 
percentage of women who continued PPA period due to practice of exclusive 
breast-feeding was high in the western region followed by the eastern and the 
southern parts of the country and it was lowest in the northeastern region.  

Living in urban areas was inversely associated with amenorrhea compared 
with living in rural areas and the rural-urban differentials were more pronounced 
in the northern and the eastern parts of the country. The probability to remain 
amenorrheic among rural women was comparatively high in the western regions 
followed by those in the eastern and central regions and was lowest in the 
southern region. As education and standard of living increases, the percentage of 
amenorrheic women decreases. However, the pattern was not consistent with 
respect to education of women in the western and the eastern regions of India. By 
assuming that all women in the sample were educated up to high school and 
above, the chance to remain amenorrheic has reduced considerably in all the 
regions of India except the northeastern, the southern and the western regions of 
the country. This change in the probability was more apparent in the western 
region followed by the north and the northeast regions of India. Similarly, the 
chance to remain amenorrheic has reduced in the entire region on the assumption 
that all women have a higher standard of living, and this change was more 
manifested in the central and eastern regions. Women with male child were 
slightly more likely to be amenorrheic than women with girl child except in the 
western region. However, if it is assumed that all women in India had only male 
child, the percentage of women with lactational amenorrhea has reduced by 
around five percent from the mean value.  

The percentage of amenorrheic women was higher among those with 
malnourished children than their counterparts with well-nourished children in all 
the regions of India except the south India. However, this difference was almost 
negligible in the southern region. The probability to remain amenorrheic was 
highest among those women who were better-nourished and had a child of age 
less than 13 months in the central, east, north and northeast regions of India, 
whereas in the southern and western regions, the chance was found to be highest 
among those women who were undernourished and had a child of age less than 13 
months. Further, more undernourished women with a child of age 13-35 months 
were amenorrheic than better-nourished women with a child of the same age in all 
the regions of India. If it is assumed that all women in the sample had a child of 
age less than 13 months, the probability to remain amenorrheic was higher than 
the average value, irrespective of their maternal nutritional status. This result is 
true for all the regions of India. In addition, there was a substantial reduction in 
the percentage of amenorrheic women among better-nourished women with a 
child of age 13-35 months in all the regions of India from their respective mean 
values. The reduction in probability was more apparent in the central parts of the 
country followed by the southern region.  
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The percentage of amenorrheic women was found to be highest among those 
who were exclusively breast-feeding regardless of their BMI and child’s age. 
Further, the probability to remain amenorrheic was found to be highest in the 
western region among those undernourished women who had a child of age less 
than 13 months. If it is assumed that all women in the sample were exclusively 
breast-feeding a child of age 13-35 months then the probability to remain 
amenorrheic increases from the average value among undernourished women in 
all the regions of India. Whereas, this probability was lower than the average 
value among better-nourished women with a child at the same age of 13-35 
months in all the regions of India except the central, eastern and western parts of 
the country. Moreover, after keeping the age of the child as 13-35 months, the 
probability to remain amenorrheic was high among undernourished women than 
their well-nourished counterparts in all the regions of India. 

If it is assumed that all women were exclusively breast-feeding a child of age 
less than 13 months, the probability to remain amenorrheic was higher among 
those women who were malnourished than well-nourished women with a child of 
the same age in the southern and western regions. The result has become inverted 
in other regions of India. However, after making unvarying the age of a child as 
less than 13 months, the chance to remain amenorrheic was not consistent across 
the different regions of India by maternal nutritional status.  

The percentage of amenorrheic women was found to be relatively higher 
among those who were breast-feeding and giving plain water compared to those 
women who were breast-feeding and giving supplements, irrespective of maternal 
BMI and child’s age, in all the regions of India. If it is considered that all women 
were breast-feeding with plain water only, the probability to remain amenorrheic 
increases from the average value when women had a child of age less than 13 
months regardless of their BMI in the entire region. However, it decreases from 
the average value when women had a child of age 13-35 months in all the regions 
of India. On the other hand, the level of corresponding probability decreases but 
the pattern was the same if it is considered that all women were breast-feeding 
and giving supplements. With regard to women who were breast-feeding with 
plain water or any supplements, the probability was relatively higher for well-
nourished women who had a child of age less than 13 months in the entire region 
except in the southern and western regions where the corresponding highest figure 
was for undernourished women with the age of the child less than 13 months.  

When child’s weight-for-age and maternal BMI with child age are taken into 
consideration, it is evident that the chance of remaining amenorrheic was 
comparatively higher among women whose children were better-nourished, 
regardless of maternal BMI and child’s age except in the southern region. On 
assuming the age of the child as 13-35 months, the percentage of amenorrheic 
women was found highest among those undernourished who had a well-nourished 
child in all the regions of India. If it is considered that all women in India had 
malnourished children of age less than 12 months, the probability of remaining 
amenorrheic increases from the average value among all women regardless of 
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their nutritional status. This pattern was consistent in all the regions of India 
(table not shown). 

Once child’s weight-for-age, maternal BMI with child’s age and breast-
feeding status are considered together, the probability was found to be highest 
among women who were exclusively breast-feeding and had better-nourished 
children regardless of their BMI and child’s age. The pattern was found to be the 
same in all the regions except in the southern region where the chance was 
comparatively higher among women who were exclusively breast-feeding and 
had undernourished children regardless of their BMI and child’s age. The chance 
of remaining amenorrheic was highest among better-nourished women who were 
exclusively breast-feeding and had better-nourished children of less than 13 
months in all the regions of India except the southern region, and lowest among 
better-nourished women who were breast-feeding and giving supplements and 
had better-nourished children of age 13-35 months in all the regions of India. 
When it is assumed that all women in India were undernourished with 
malnourished children of age 13-35 months and were exclusively breast-feeding, 
the probability of remaining amenorrheic increases around four points from the 
average value. This increase in probability was found to be highest (13 points) in 
the eastern region and lowest in the northern region (one point). However, for the 
central and northeastern regions, the figure was lower than the average value of 
the respective regions (table not shown).  
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Table 4. Estimated probabilities of remaining amenorrheic by selected 
combinations of characteristics for India and its regions-1998-99. 

Variable 

Probability ± Standard Deviation 

India North Central East Northeast West South 

Average 0.418±0.282 0.388±0.284 0.457±0.283 0.445±0.275 0.392±0.266 0.406±0.301 0.394±0.296 
Breast-feeding status 
Breast-
feeding+supplements  
Exclusive breast-feeding 
Breast-feeding+ plain 
water only 

 
 

0.359±0.222 
0.642±0.222 

 
0.514±0.240 

 
 

0.329±0.220 
0.620±0.235 

 
0.486±0.248 

 
 

0.399±0.232 
0.619±0.226 

 
0.536±0.239 

 
 

0.390±0.216 
0.688±0.189 

 
0.533±0.221 

 
 
0.357±0.228 
0.590±0.246 
 
0.495±0.253 

 
 

0.320±0.213 
0.702±0.219 

 
0.555±0.246 

 
 

0.321±0.217 
0.652±0.245 

 
0.471±0.257 

Place of residence 
Rural 
Urban 

 
0.524±0.239 
0.479±0.239 

 
0.505±0.246 
0.431±0.241 

 
0.541±0.238 
0.512±0.240 

 
0.542±0.219 
0.474±0.222 

 
0.503±0.253 
0.459±0.250 

 
0.562±0.245 
0.548±0.246 

 
0.476±0.258 
0.458±0.255 

Respondent’s 
education 
Illiterate 
Middle school complete 
High school complete 
and above 

 
 

0.502±0.238 
0.452±0.236 

 
0.439±0.235 

 
 

0.450±0.242 
0.409±0.236 

 
0.340±0.233 

 
 

0.529±0.237 
0.480±0.238 

 
0.436±0.234 

 
 

0.494±0.219 
0.427±0.216 

 
0.437±0.217 

 
 

0.476±0.253 
0.449±0.250 

 
0.439±0.248 

 
 

0.582±0.242 
0.511±0.245 

 
0.540±0.245 

 
 

0.499±0.261 
0.442±0.252 

 
0.410±0.244 

Standard of living 
Low 
Medium 
High 

 
0.490±0.237 
0.427±0.231 
0.364±0.217 

 
0.466±0.242 
0.407±0.233 
0.336±0.213 

 
0.490±0.236 
0.419±0.229 
0.347±0.211 

 
0.460±0.218 
0.416±0.214 
0.363±0.205 

 
0.473±0.253 
0.417±0.244 
0.409±0.242 

 
0.607±0.238 
0.533±0.244 
0.455±0.239 

 
0.459±0.256 
0.393±0.238 
0.351±0.223 

Sex of child 
Female 
Male 

 
0.357±0.215 
0.369±0.218 

 
0.326±0.209 
0.344±0.216 

 
0.338±0.208 
0.354±0.213 

 
0.358±0.203 
0.369±0.206 

 
0.397±0.240 
0.420±0.245 

 
0.476±0.241 
0.437±0.236 

 
0.339±0.217 
0.362±0.227 

Child wt-for-age 
Z-score >=-2 
Z-score < -2 

 
0.375±0.217 
0.358±0.212 

 
0.351±0.214 
0.326±0.205 

 
0.368±0.210 
0.334±0.199 

 
0.370±0.206 
0.367±0.205 

 
0.425±0.243 
0.398±0.237 

 
0.454±0.231 
0.407±0.222 

 
0.362±0.227 
0.364±0.228 

Maternal BMI & Child 
age 
<18.5Kg/m2 and 13-
35months 
<18.5Kg/m2 and <=12 
months 
>=18.5Kg/m2 and <=12 
months 
>=18.5Kg/m2 and 13-35 
months 

 
 
 

0.169±0.043 
 

0.546±0.078 
 

0.570±0.077 
 

0.136±0.036 

 
 
 

0.132±0.033 
 

0.472±0.076 
 

0.543±0.077 
 

0.112±0.028 

 
 
 

0.148±0.034 
 

0.525±0.072 
 

0.530±0.072 
 

0.140±0.033 

 
 
 

0.215±0.048 
 

0.566±0.071 
 

0.601±0.070 
 

0.170±0.040 

 
 
 

0.204±0.049 
 

0.580±0.075 
 

0.628±0.073 
 

0.150±0.038 

 
 
 

0.216±0.068 
 

0.627±0.100 
 

0.578±0.103 
 

0.134±0.046 

 
 
 

0.134±0.028 
 

0.569±0.060 
 

0.560±0.060 
 

0.088±0.020 
Maternal BMI & Child 
age  
with Breast-feeding 
status  
Breast-feeding with 
supplements  
+ <18.5Kg/m2 and 13-
35months 
+  <18.5Kg/m2 and <=12 
months 
+  >=18.5Kg/m2 and 
<=12 months 
+ >=18.5Kg/m2 and 13-
35 months 
  Exclusive breast-
feeding 
+ <18.5Kg/m2 and 13-
35months 
+  <18.5Kg/m2 and <=12 
months 
+  >=18.5Kg/m2 and 
<=12 months 

 
 
 
 
 
 
 

0.176±0.072 
 

0.543±0.129 
 

0.566±0.128 
 

0.143±0.061 
 
 
 

0.471±0.128 
 

0.831±0.079 
 

0.844±0.074 

 
 
 
 
 
 
 

0.140±0.062 
 

0.472±0.133 
 

0.540±0.134 
 

0.120±0.054 
 
 
 

0.422±0.129 
 

0.796±0.095 
 

0.837±0.081 

 
 
 
 
 
 
 

0.202±0.073 
 

0.600±0.119 
 

0.605±0.118 
 

0.191±0.070 
 
 
 

0.433±0.116 
 

0.818±0.080 
 

0.821±0.079 

 
 
 
 
 
 
 

0.240±0.080 
 

0.589±0.115 
 

0.623±0.113 
 

0.192±0.068 
 
 
 

0.576±0.116 
 

0.861±0.064 
 

0.877±0.059 

 
 
 
 
 
 
 

0.173±0.058 
 

0.525±0.102 
 

0.573±0.100 
 

0.127±0.045 
 
 
 

0.416±0.099 
 

0.789±0.070 
 

0.820±0.063 

 
 
 
 
 
 
 

0.154±0.080 
 

0.509±0.150 
 

0.461±0.149 
 

0.094±0.052 
 
 
 

0.561±0.149 
 

0.880±0.067 
 

0.857±0.077 

 
 
 
 
 
 
 

0.116±0.050 
 

0.510±0.122 
 

0.500±0.122 
 

0.076±0.034 
 
 
 

0.438±0.120 
 

0.859±0.062 
 

0.854±0.064 
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Variable 

Probability ± Standard Deviation 

India North Central East Northeast West South 

+ >=18.5Kg/m2 and 13-
35 months 
 Breast-feeding with 
plain water only 
+ <18.5Kg/m2 and 13-
35months 
+  <18.5Kg/m2 and <=12 
months 
+  >=18.5Kg/m2 and 
<=12 months 
+ >=18.5Kg/m2 and 13-
35 months 

 
0.412±0.123 
 
 
 
0.319±0.109 

 
0.719±0.109 

 
0.738±0.105 

 
0.269±0.099 

 
0.380±0.124 
 
 
 
0.271±0.102 

 
0.665±0.124 

 
0.723±0.114 

 
0.237±0.093 

 
0.417±0.114 
 
 
 
0.335±0.103 

 
0.748±0.099 

 
0.752±0.098 

 
0.321±0.101 

 
0.508±0.116 
 
 
 
0.387±0.107 

 
0.740±0.097 

 
0.766±0.092 

 
0.324±0.098 

 
0.333±0.090 
 
 
 
0.302±0.086 

 
0.694±0.088 

 
0.734±0.082 

 
0.232±0.072 

 
0.428±0.147 
 
 
 
0.374±0.141 

 
0.770±0.110 

 
0.733±0.120 

 
0.258±0.116 

 
0.332±0.108 
 
 
 
0.227±0.085 

 
0.696±0.105 

 
0.688±0.107 

 
0.157±0.065 

4. Discussion and conclusions 

Analyses are very much in line with the previous finding that breast-feeding 
practices affect the likelihood of resumption of menstrual cycle after birth. 
Mothers who breast-feed their child exclusively were less likely to have resumed 
menstruation. Socio-economic status and education of women were found to be 
inversely associated with duration of lactational amenorrhea. Living in urban 
areas of the north and the east regions and higher level of maternal education 
except the east, northeast and west regions were all associated with a lower 
likelihood of remaining amenorrheic. It is clear that mother needs a balanced diet 
based on a variety of nutritious food items especially during pregnancy and 
lactation. Women from low socio-economic status will not be able to manage the 
nutritious food. Thus, they may breast-feed their child more frequently or spend 
more time per day doing it, and as a result have a higher likelihood of remaining 
amenorrheic. Parity was found to be positively associated with the likelihood of 
remaining amenorrheic. The reason may be that higher parities women preferred 
longer duration of breast-feeding as compared to those women who were at lower 
parities. Mothers who had underweight children were poorly (p>0.05) associated 
with lactational amenorrhea except in the central region. Moreover, mothers who 
had underweight children were more likely to remain amenorrheic in the central 
region. There is a possibility that poorly nourished children are those who are not 
receiving adequate weaning foods after six months of age and are more likely to 
breast-feeding more intensively (Kurz et al., 1993; Dewey et al., 1997). Child 
gender did not have significant impact on the return of ovulation period. It shows 
that there is no change in the breast-feeding behaviour of mothers by sex of the 
child. 

The interaction term between maternal nutritional status and duration of 
breast-feeding (child’s age) was significantly associated with the likelihood of 
having resumed menstruation after controlling for breast-feeding practices, child 
nutritional status and socio-economic and demographic covariates. The effect of 
maternal nutritional status on lactational amenorrhea was not found to be 
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significant when women were breast-feeding since last 12 months except in the 
northern region of India. However, after 12 months of breast-feeding, the 
probability of undernourished women remaining amenorrheic was likely to be 
greater and this trend was highly consistent across all the six regions included in 
the analysis. The possibility is that undernourished women have less body fat to 
support the return of menses after giving birth. As Kurz et al. (1993) came out 
with the findings that poorly nourished women may experience greater inhibition 
of the ovulatory hormones than better-nourished women, given the same amount 
of suckling, and so they were found to be more amenorrheic. At the same time, 
other researchers have also argued that undernourished women produce less milk 
per nourishing episode (Delgado et al., 1982 and Lunn et al., 1984), and their 
children need to suck longer or more intensely than children of better-nourished 
mothers to obtain the amount of milk that they require. This increase in sucking 
frequency or intensity might be associated with an increase in plasma prolactin 
level and thus increase the likelihood of being amenorrheic (Loudon et al., 1983). 

Thus, the result clearly shows that maternal nutritional status has not had an 
independent impact on lactational amenorrhea. Gournis et al. (1997) have tried to 
explain the specific biological mechanisms that explain such type of findings. 
They found that unrestricted access to food (well-nourished) to ovariectomized 
rats during lactation was associated with higher levels of luteinizing hormone and 
follicle stimulating hormone. Therefore, these rats had shorter postpartum 
anestrus period. However, in this seminal study, it was not possible to separate the 
influence of maternal body composition from behaviours leading to less sucking 
behaviour on the metabolic/physiologic changes determining the duration of the 
anestrus period. 

In addition to human epidemiologic studies, there is accumulating evidence 
strongly suggesting that maternal nutritional status does exercise an independent 
role in the return of menstruation. Leptin, a protein hormone released from 
adipocytes, appears to play an important role in reproductive performance 
(Frübeck, 1997). Studies show that there is a crucial link in leptin, maternal 
nutritional status and postpartum amenorrhea (Kopp et al., 1997). Kurz et al. 
(1993) reported a significant negative relation between maternal nutritional status 
and postpartum amenorrhea. Further, they have stated that after controlling the 
infant supplementation, the association became only marginally significant and 
this study has little biological importance.  

However, Loudon et al. (1983) has suggested that changes in sucking 
behaviour are more likely than maternal nutrition per se to influence the duration 
of postpartum amenorrhea. This study also supports the argument; otherwise the 
results should be very much consistent across all the six regions of India. 
Moreover, NFHS-3 data shows that the mean number of day and night time feeds 
was found to be low in the north and the central regions as compared to rest of the 
regions of the country. Further, the biologically significant role of maternal 
nutritional status on postpartum amenorrhea has never been contested, but it is 
argued that when undernourished women had certain level of duration and 
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intensity of breast-feeding then they were found to be more likely to remain 
amenorrheic. 

Moreover, one could not fully breakdown the effect of socio-economic status 
on all intermediate and proximate determinants explaining lactational 
amenorrhea. The fact that socio-economic status remained significantly associated 
with lactational amenorrhea in India and in countries` all six regions has been 
considered. It is important for future studies to include the factors such as breast-
feeding duration, that is, minutes breast-feeding per day and intensity in the 
analysis of postpartum amenorrhea, which is not available in NFHS. An attempt 
should also be made to collect the duration of PPA from those women who were 
not interested to breast-feed their child but they could not do so because of child 
loss. 
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A PROBABILISTIC SCHEME WITH UNIFORM 
CORRELATION STRUCTURE 

Raffaella Calabrese1 

ABSTRACT 

The probabilistic schemes with independence between the trials show different 
dispersion characteristics depending on the behaviour of the probabilities of the 
binary event in the trials. This work proposes a probabilistic scheme with 
uniform correlation structure that leads to different dispersion characteristics 
depending on the sign of the linear correlation. Finally, a hypothesis test is 
proposed to identify the type of the dispersion of the probabilistic scheme. 

Key words: probabilistic scheme, uniform correlation, binary event. 

1. Introduction 

Binary events clustered into groups are analysed by the probabilistic 
schemes (Feller, 1968, p.146). Under the assumption of the independence 
between the trials, by changing the characteristics of the probabilities of the 
binary events the Bernoulli, Poisson, Lexis and Coolidge probabilistic schemes 
(Kendall, 1994, p.164) are defined. In this paper the above-mentioned schemes 
are analysed by highlighting how the different characteristic of the probabilities of 
the binary events lead to different dispersion properties. By removing the 
assumption of the independence of the trials, a probabilistic scheme with 
uniform correlation structure is proposed in this paper. 

Analogously to the previous schemes, the dispersion of the proposed scheme 
can be normal, subnormal and supernormal, depending on whether the correlation 
is zero, negative or positive, respectively. Finally, a hypothesis test is proposed 
to verify the assumption of binomial dispersion. 

The present paper is organized as follows. In the next section the probabilistic 
schemes with independence between the trials is analysed. In the following 
section a probabilistic scheme with unform correlation is proposed. Section 
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4 suggests a hypothesis test to identify the kind of dispersion of a probabilistic 
scheme. Finally, the last section contains some concluding remarks. 

2. The probabilistic schemes with independence between the trials 

Let us assume to be interested in attaining an event A (success) in k series of nj 
trials each with j = 1, 2, …, k. For the subsequent results the assumption of 
independence between both the k series and the nj trials of each series will be 
essential. Thus, let Aji be the Bernoulli random variable associated to the i-th trial 
of the j-th series, with i = 1, 2, ..., nj and j = 1, 2, ..., k 

𝐴𝑗𝑖 ={ 
1   the event A occurs in the i-th trial of the j-th series 
0   otherwise 

 (2.1) 
having the following success and failure probabilities 
 

       P{Aji = 1} = pji                             P{Aji = 0} = 1 − pji = qji. 
 

In addition, let us define the random variables Xj = ∑ 𝐴𝑗𝑖
𝑛𝑗
𝑖=1   which indicates 

the number of times the event A occurs in the nj trials of the j-th series and  
X = ∑ ∑ 𝐴𝑗𝑖

𝑛𝑗
𝑖=1

𝑘
𝑗=1   which represents the number of times the event A occurs in the 

n = ∑ 𝑛𝑗𝑘
𝑗=1  trials. For the previous assumptions the n indicator random variables 

Aji are thus mutually independent. 
The relative frequency of the event A in the nj trials of the j-th series can be 

represented through the random variable 𝑝̂j = 𝑋𝑗
𝑛𝑗

; while the relative frequency of 

the event A on the total of the n trials is 𝑝̂ = 𝑋
𝑛
 = 1

𝑛
 ∑ 𝑝̂𝑘

𝑗=1 j nj; which coincides with 
the weighted arithmetic mean of the relative frequencies of the k series with 
weights equal to nj . 

The variables defined in this way show therefore the following expectations 
and variances: 
 

(2.2) 
 
 

(2.3) 
 
 

(2.4) 
  

(2.5) 



STATISTICS IN TRANSITION-new series, Spring 2013 

 

131 

Thus, probabilistic schemes with independence between both the trials and the 
series require carrying out k series of nj trials each. 

These schemes can be classified according to the conditions under which 
these trials are performed, which influence the probability of success pji. 

2.1. The Bernoulli probabilistic scheme 

In the Bernoulli probabilistic scheme the assumption is made that the 
probability of success is constant from trial to trial and from series to series 

    pji = p        with    i = 1, 2, ..., nj    and    j = 1, 2, ..., k. 

Under such conditions the indicator random variables Aji are independent and 
identically distributed with common parameter p. 

The expectation and the variance of the relative frequency  𝑝̂, for the 
calculation of which it is advisable to determine the mathematical expectation and 
the variance of 𝑝̂𝑗, in a Bernoulli scheme are 
 

 (2.6) 

 
 (2.7) 

 
To analyse the dispersion of the Bernoulli scheme, the following quantity is 

computed 

                           (2.8) 

The Bernoulli scheme is defined as normal dispersion scheme (Feller, 1968, 
p.146). 

In this probabilistic scheme the relative frequency 𝑝̂𝑗 of the j-th series can be 
approximated with a normal having mean and variance given by the (2.6). This 
means that the random quantity 

                       (2.9) 

approximates, as nj diverges, to a chi-square with k degree of freedom. Similar 
considerations applied to the relative frequency  𝑝̂, having expectancy and 



132                                                                        R. Calabrese: A probabilistic scheme … 

 

 

variance given by the equations (2.7), enable one to state that the following 
random variable 

                        (2.10) 
can be approximated, as n diverges, to a chi-square with one degree of freedom. 
In the random quantities defined by the expressions (2.9) and (2.10) the 
probability of success p, whose value is usually unknown, is included. For this 
reason, it is advisable to modify the above said random quantities so that they 
become functions of known parameters.  

The following relation is deduced from the decomposition of the deviance 

        
Dividing both members of the previous equation by the factor pq we obtain 

      
Because of the associative property of the random variable chi-square, we can 

deduce that the following expression 

               (2.11) 
can be approximated, as the number of occurrences nj diverges, to a chi-square 
with (k − 1) degrees of freedom. From the convergence in probability of the 
relative frequency  𝑝̂ to the unknown parameter p and by applying Slutsky’s 
theorem (Cramer, 1996, pp. 254-255) we observe that the random quantity 
 

                   (2.12)  
 
converges in distribution, as the number of occurrences nj diverges, to a chi-square 
random variable with (k − 1) degrees of freedom. 

2.2. The Poisson probabilistic scheme 

In 1830 Poisson formalized the scheme of repeated trials in conditions of 
independence with probabilities of success pji varying from trial to trial within the 
same series. The probabilistic scheme called after this author considers constant 
from series to series both the partial means 
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 with j = 1, 2, …, k, and the variances 

       
between the probabilities of the trials of each series1, with j =1, 2, …, k. 

By considering the deviation 𝜆ji between the probability of success of the i-th 
trial of the j-th series and the overall mean 

 

        (2.13) 
we obtain 

  
Like in the case of the Bernoulli scheme, to analyse the dispersion we 

calculate the expectation of the weighted sum of the deviations squared between 
the relative frequencies 𝑝̂j and the overall average probability  𝑝̅, with weight 
equal to the number of occurrences nj 

      (2.14) 

Comparing this result with the outcome obtained (2.8) in the Bernoulli 
scheme with constant success probability equal to 𝑝̅, we understand why the 
Poisson scheme is defined as subnormal dispersion scheme (Kendall, 1996, 
p.166). The dispersion of the Poisson scheme, therefore, depends on the 
variability 𝜎2(p) among the probabilities of a series, in particular, the higher it is, 
the lower will the expectation of the ’deviation’ of the relative frequencies 𝑝̂j be. 

2.3. The Lexis probabilistic scheme 

In 1876 Lexis proposed the following probabilistic scheme that was named 
after him, in which the probabilities of success pji stay constant within the same 
series pji = pj, with i = 1, 2, ..., nj and j = 1, 2, …, k, but vary from series to series2.  

                                                           
1 The features of Poisson’s probabilistic scheme coincide with those of a stratified 

sampling scheme in which a single sample unit is extracted from each population layer 
(Cochran, 1953, chapter 5). 

2 A. Lexis probabilistic scheme represents a particular sampling scheme in two stages 
(Cochran, 1953, p. 274). 
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Thus, let 

         
be the average probability of success, obtained as the arithmetic mean of the 
probabilities of success of the individual series with weights equal to the number 
of occurrences nj , and let 

        
be the variance among the probabilities of the different series.  

In order to compare the dispersion of the Bernoulli scheme with constant 
probability of success equal to 𝑝̅ with the one of the Lexis scheme, the following 
deviation is considered. We obtain   
 

 

Defining  as the simple (not weighted) mean of the probabilities of 
success of the various series, we can rewrite the previous equation 

 
(2.15) 

As the number of occurrences nj diverges, the last summation tends to 
infinity. Now, it is possible to compare the result obtained with that (2.8) obtained 
previously in the Bernoulli scheme with constant probability of success equal to 
𝑝̅. Therefore, the Lexis scheme shows a supernormal dispersion (Kendall, 1996, 
p. 166). 

2.4. The Coolidge probabilistic scheme 

Finally, let us consider the probabilistic scheme proposed by Coolidge in 
1921, which represents a generalization of the schemes of repeated trials 
examined before, since the probabilities of success pji are free to vary both from 
trial to trial and from series to series. 

To determine the properties of the random variable X associated to the 
Coolidge scheme we associate to each series the random variable Xj of the 
Poisson probabilistic scheme and then go ahead with mixing the k variables 
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determined with weights nj. This method enables to use some of the results 
obtained previously. 

Following the same method used for the Poisson probabilistic scheme, the 
deviation (2.13) is used to obtain the following result 

 
At this point we calculate the expectation of the mixture of the k random 

variables 𝑝̂j with weights nj by obtaining 

        (2.16) 

Depending on various assumptions of different probabilistic schemes, the 
previous expression includes as special cases the results obtained for the 
Bernoulli, Poisson and Lexis schemes.  

To be able to make some considerations on the above result we should 
consider a Coolidge scheme made up of k series, all having a constant number of 
occurrences equal to m; under such circumstances the quantity (2.16) becomes 

 
In the Coolidge scheme, the last two addenda of the previous equation are 

both not equal to zero, but since the two summations 
 have the same magnitude, as m diverges, the 

positive component prevails on the negative one, thus obtaining a supernormal 
dispersion scheme, also in the case in which the assumptions of the Lexis 
probabilistic scheme are not met. Therefore, in order for a phenomenon with 
subnormal dispersion to manifest itself, both the assumptions of the Poisson 
scheme need to be met, i.e. the probabilities must vary within the same series, 
while the average probabilities 𝑝̅𝑗 and the variances 𝜎𝑗2(p) have to remain constant 
from series to series. To find supernormal dispersion instead, it is not necessary 
that the probabilities of success remain constant from trial to trial in each series, 
as long as they vary from series to series. 

Since, in empirical terms, the average probabilities 𝑝̅j and the variances 𝜎𝑗2(p) 
are seldom constant from series to series, it is obvious why a minor number of 
phenomena displays hypo-binomial dispersion, a property of the Poisson scheme, 
if compared to those with hyperbinomial dispersion, which mostly follow the 
Coolidge probabilistic scheme and only to a small extent the Lexis scheme. 
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3. A probabilistic scheme with uniform correlation between the trials 

Into a probabilistic scheme, in which the goal is always that of obtaining an 
event A (success) in k series of nj trials each with j = 1, 2, …, k, we introduce at 
this point the assumption of dependence between the nj trials of each series, 
maintaining the assumption of independence between the k series, though. 

Since the following analysis focuses on the relationships of dependence 
between the variables, we assume to simplify matters that the probability of 
success p is constant from trial to trial and from series to series. Let us consider 
the case in which the (linear) dependence between each pair of random variables 
Aji and Ajl, with i ≠ l, of the j-th series, manifests itself in a uniform way 

r(Aji, Ajl) = ρ    i ≠ l;    i, l = 1, 2, …, nj   and   j = 1, 2, …, k, 
 

by obtaining 
Cov(Ajl, Aji) = ρ(1 − p)p. 

 
From the assumption of independence between the series we deduce that 
 

       r(Aji, Asl) = 0    j ≠ s;   j, s = 1, 2, …, k  and  i = 1, 2, …, nj ;  l = 1, 2, …, ns. 
 

As for the case of independence between the trials, the following variance is 
computed 
                        V(Xj) = njp(1 – p) + nj(nj – 1) ρp(1 – p)        j = 1, 2, …, k. 

It follows that 

              (3.1) 
 
Comparing this result to those determined previously in the various 

probabilistic schemes with independence between trials, we obtain the following 
relation between the linear correlation coefficient ρ and the dispersion of the 
probabilistic scheme considered: 

• if ρ > 0 the dispersion is supernormal, same behaviour as for the Lexis 
scheme; 

• if ρ = 0 the dispersion is normal, same behaviour as for the  Bernoulli 
scheme; 

• if ρ < 0 the dispersion is subnormal, same behaviour as for the Poisson 
scheme. 

An estimator of the linear correlation coefficient ρ is 
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If the number of trials n is very high in comparison to k, we can approximate 
the previous equation as follows 

         
It should be noted that the numerator of this proportion represents the 

variability of the relative frequencies 𝑝̂j, whereas the denominator consists of the 
variability of the indicator random variable Aji in the Bernoulli probabilistic 
scheme with constant probability of success equal to p. 

4. A hypothesis test for the dispersion of a probabilistic scheme 

To find out whether a test meets the assumptions of the Bernoulli scheme we 
propose to consider the following ratio 

                  (4.1) 
As already previously mentioned, the numerator of the ratio (4.1) represents 

the variability of the relative frequencies 𝑝̂j, and, as we can see from the result 
(2.8), in Bernoulli’s probabilistic scheme the expectation of the numerator and the 
denominator coincide. This means that if the ratio (4.1) is close to unity, then the 
test taken into consideration meets the assumptions of the Bernoulli probabilistic 
scheme1. Since from the equation (3.1) the expectation of the numerator of the 
ratio (4.1) appears to be smaller than the denominator, we deduce that if this 
proportion is sizeably smaller than one, we should, instead, be inclined to use a 
probabilistic scheme with subnormal dispersion, that is the Poisson scheme, or a 
scheme with uniform negative correlation between the indicator random variables 
of each series. If, finally, this proportion is sizeably bigger than one, for the 
relations (2.15) and (3.1), a scheme with supernormal dispersion is preferred, 
namely the Lexis scheme or a scheme with uniform positive correlation between 
the trials of each series. It has to be pointed out that in the latter case, in which the 
value of the Lexis divergence quotient obtained is considerably higher than one, 
we might also take into consideration the Coolidge scheme, since it 
approximately displays supernormal dispersion as the number of tests of each 
series diverges. 

Defining a significance level equal to α, we observe that if the value obtained 
by the test statistics  

           
                                                           
1 It has to be pointed out that in this case we might also consider a probabilistic scheme 

with dependence and uncorrelation (ρ = 0) between the trials, which means that between 
the indicator random variables of each series there is a tie of dependence of the non-
linear kind, but given the rarity of the case we prefer to disregard this possibility. 
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is included within the values assumed by the quantiles of the α/2 and (1 – α/2) 
orders of a random variable chi-square with (k – 1) degrees of freedom, then we 
accept the null hypothesis that the test considered fits the Bernoulli scheme. If 
instead the value assumed by the test statistics is higher than the quantile of the  
(1 - α/2) order of a random variable chi-square with (k - 1) degrees of freedom, 
then we accept the alternative hypothesis and choose either a Lexis scheme or 
a positive (uniform) correlation scheme between the trials of each series. In the 
latter case, in which the value assumed by the aforementioned test statistics is 
lower than the quantile of the α/2 order of a random variable chi-square with 
(k - 1) degrees of freedom, we always accept the alternative hypothesis which, 
however, consists in the Poisson scheme or in a scheme with negative (uniform) 
correlation between the trials of each series. 

5. Conclusion remarks 

The probabilistic schemes (Bernoulli, Poisson, Lexis and Coolidge) with 
independence between the trials show different dispersion properties. By 
introducing a uniform correlation structure between the trials, a new probabilistic 
scheme is proposed. By changing the type of correlation, the suggested scheme 
shows the same dispersion characteristics of the probabilistic schemes analysed in 
the literature. To identify the type of the dispersion of the probabilistic scheme, 
a hypothesis test is proposed. 
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BIAS REDUCTION OF FINITE POPULATION 
IMPUTATION BY KERNEL METHODS 

Nicklas Pettersson1 

ABSTRACT 

Missing data is a nuisance in statistics. Real donor imputation can be used with 
item nonresponse. A pool of donor units with similar values on auxiliary 
variables is matched to each unit with missing values. The missing value is then 
replaced by a copy of the corresponding observed value from a randomly drawn 
donor. Such methods can to some extent protect against nonresponse bias. But 
bias also depends on the estimator and the nature of the data. We adopt 
techniques from kernel estimation to combat this bias. Motivated by Pólya urn 
sampling, we sequentially update the set of potential donors with units already 
imputed, and use multiple imputations via Bayesian bootstrap to account for 
imputation uncertainty. Simulations with a single auxiliary variable show that our 
imputation method performs almost as well as competing methods with linear 
data, but better when data is nonlinear, especially with large samples. 

Key words: bayesian bootstrap, boundary and nonresponse bias, missing data, 
multiple imputation, Pólya urn models, real donor imputation. 

1. Introduction 

In sample surveys missing data often has to be dealt with. Imputation is a 
standard treatment for sporadically missing values in the sample data due to item 
nonresponse. Given observed auxiliary variable(s) X related to the incomplete 
study variable Y, an imputation model is usually estimated from units where both 
x and y values are observed, modelled by the missing at random (MAR) 
mechanism which assumes that the probability of missingness only depends on 
observed values. The missing y values are then replaced by imputed values, and 
multiple imputation can account for the fact that imputed values differs from the 
true ones, so that standard methods can be used (Rubin, 1987). Imputed values 
may be non-observable values derived from a model, or real-donor values derived 
from observed values (Laaksonen, 2000). Donors to each donee (or recipient) are 
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usually found by selecting units close to the donee according to some distance 
measure on X. 

Imputation methods employing parametric models may be effective (Schafer, 
1997), but their benefits diminish with sample size and can lead to severe bias if 
the underlying assumptions are violated. Methods based on nonparametric models 
can then provide robustness to nonresponse bias at the cost of some efficiency. 
Bias of methods based on nonparametric models also depends on the derivation of 
the imputed values, and the nature of the bounded data. The bias of a mean 
estimate of y is related to the individual unit bias of x, the expectation over donor 
x’s minus the actual x, through individual unit bias of y. When X is continuous, 
the asymptotic bias of x for an interior donee can easily be set to zero. This is 
more difficult for donees that lie on the boundary of the data. By viewing 
imputation as pointwise kernel smoothing, and adopting bias reduction techniques 
from that area, we propose a real donor method which aims at mitigating such 
bias of individual x as to implicitly reduce bias of the mean estimator of y. 

Our method starts out from the popular hot deck imputation; see Little and 
Andridge (2010) for a review. For each donee unit where y is missing, a pool 
consisting of k potential donor units with observed y-values is identified. The 
missing y value of the donee is then filled in by a copy of the observed y value 
from a unit in the donor pool. Adjustment cells imputation bring together all zero 
distance donors and donees, having the same categorized x, creating an illusion 
that individual x’s are unbiased. Cells may therefore only contain donees. This is 
avoided by non-categorizing distance measures, which produce donor pools that 
can be better matched to the donee, but the number of k nearest neighbour (kNN) 
donors has to be decided. Justified by Bayesian exchangeability through Pólya 
sampling (Feller, 1971), we extend the set of potential donors to include 
previously imputed donees, and handle imputation uncertainty through multiple 
imputation. 

Individual bias in x is first addressed by relating distances between the donee 
and the donors to the donor selection probabilities, giving closer donors higher 
donation probability. Siddique and Belin (2008) set selection probabilities 
inversely proportional to the distance between predictive means of donor and 
donee units, while Conti, Marella and Scanu (2008) let a Gaussian kernel decide 
the selection probabilities. We propose to use an Epanechnikov (1969) kernel, 
which asymptotically can minimize mean squared error of an estimate. We expect 
reduction of variance in general and boundary donee bias of x. 

Boundary bias can also be reduced by letting the selection probabilities be 
found from local linearization (Simonoff, 1996). Aerts, Claeskens, Hens and 
Molenberghs (2002) use non-negative constrained weights asymptotically 
equivalent to kernel weights as selection probabilities. We calibrate our selection 
probabilities by a Lagrange function, similar to calibration of design weights 
(Deville and Särndal, 1992), but on a pointwise level. 

Our third bias reduction method is inspired by Rice (1984), who tightened the 
kernel at the boundary. By reducing k for boundary donees, on average closer but 
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fewer donors are obtained compared to interior donees, which contribute to the 
bias reduction of x. 

The paper is structured as follows: Section 2 presents real donor imputation 
with Pólya urn sampling and multiple imputation. Our proposed methods are 
described in Section 3, and further studied by simulations in Section 4. The paper 
is then concluded in Section 5. 

2. Background on real donor and multiple imputation  

A simple random sample (SRS) of i=1, …, n units from a population of N units 
is drawn with the aim to estimate the mean Nyy i /∑=  of the study variable Y, 
and the value yi is observed in the sample. The indicator Ri=1 for the r units where 
yi is observed, while Ri=0 for nonresponding units. In real donor imputation, each 
donee i should have a donor pool of ki units. Denote by qi the number of units that 
possibly could enter pool i. Given our SRS design, we simply set ki=qi=r for all i, 
and use all respondents as potential donors. Later we allow ki, qi, and r to differ, 
and may omit index i when it is dispensable. 

For each donee i, a donor j is selected with probability ijλ , and the imputed 
value iŷ  is a copy of yj. When all n-r missing values have been imputed, an 
estimate of y  is 
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Since the expectation of an imputed value is  

 ( ) ∑
=

=
q

j
jiji yyE

1

ˆ λ , (2) 

the individual bias of iŷ  is 

 ( ) ( ) iii yyEyB −= ˆˆ . (3) 

Due to the SRS design it follows that ( ) yyE i = . The bias of (1) is therefore 

 ( ) ( ) ( ) ( ) ( )∑∑∑
+=+==

=−








+=−=
n

ri
i

n

ri
i

r

i
i yB

n
yyEyE

n
yyEyB

111

ˆ1ˆ1ˆˆ . (4) 

Now, assume a known auxiliary variable X and a MAR mechanism, so that 
the response probability does not depend on y; P(R=1|Y,X)=P(R=1|X). We further 
assume that the expected value of Y does not depend on R, E(Y|X)=g(X), which is 
another consequence of MAR. Denote the x-value of the donor selected for donee 
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i by ix̂ . Its expectation is ( ) ∑
=

=
q

j
jiji xxE

1

ˆ λ . We may expect to reduce (3), and 

thereby (4), by reducing the bias of xi 

 ( ) ( ) i

q

j
jijiii xxxxExB −=−= ∑

=1

ˆˆ λ . (5) 

2.1. Adjustment cells and k-nearest neighbour imputation 

As a background we first describe two common methods for imputation, 
adjustment cells and nearest neighbour imputation. Our suggested method in 
Subsection 3.3 is based on the latter. All methods are illustrated on the simple 
dataset in Table 1, where x is observed on all n=7 units, while y is only observed 
on r=5 units. Table 1 is ordered after x. The cut off between the two adjustment 
cells is set to x=0. Let iij k1=λ  for donee i=3, 6 and donor j. Since donor pools 
are determined from x, we usually have that ki<qi. 

Example 1. Imputation within adjustment cells. Only units within the same 
adjustment cell may be used as donors. Thus, although q3=r=5, the k3=4 potential 
donors for Unit 3 are Units 1, 2, 4 and 5, and ( ) 013.0ˆ3 −≈xB . We randomly draw 
one of them, say Unit 4, and impute the missing y-value as 022.0ˆ3 =y . Unit 7 is 
the only (k6=1) potential donor to Unit 6, so ( ) 231.0ˆ6 =xB  and we impute 

099.0ˆ6 −=y . If single donor situations are not allowed, a common solution is to 
collapse adjustment cells. Units 1, 2, 4, 5 and 7 are then the (k3=q3=5) potential 
donors to Unit 3, and ( ) 107.0ˆ3 −≈xB . Assume again we draw Unit 4. Unit 6 has 
the same donors, so ( ) 247.0ˆ6 −≈xB . If the imputed Unit 3 also had been allowed 
to act as a donor (so that k6=q6=r+1=6) we would have had ( ) .265.0ˆ6 −=xB  

Table 1. Data in Examples 1-5, with x and y generated by model NO in    
 Subsection 4.1. 

Unit no. 1 2 3 4 5 6 7 
x-cat. 1 1 1 1 1 2 2 
x -0.413 -0.381 -0.255 -0.152 -0.125 0.099 0.330 
y -0.555 -0.476 Missing (-0.136) 0.022 0.349 Missing (0.335) -0.099 

Note: (the true but unknown value in parenthesis is given here for illustrative purposes.) 

Example 2. Imputation by kNN. We now discard the categorization of x, and 
use 4NN imputation (i.e. k3=k6=4). Since Units 1, 2, 4 and 5 are the closest 
(among the q3=5) units to donee Unit 3, ( ) 013.0ˆ3 −≈xB  as in Example 1. Assume 
unit 4 was drawn. Unit 6 then has Units 2, 4, 5 and 7 as donors with 
( ) 181.0ˆ6 −=xB . By allowing the imputed Unit 3 as a donor (so that q6=r+1=6) we 

get ( ) 150.0ˆ6 −≈xB  based on Units 3, 4, 5, and 7. 
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Adjustment cells imputation effectively matches donors to a donee and is 
widely used. But having a single donor can severely affect variances, as explained 
in Subsection 2.3. Collapsing cells is a simple solution, but kNN can provide 
better matching. Since Unit 3 has half of its donors on each side (as k3=4) we call 
it an interior unit, while Unit 6 with only a single donor on the right is called a 
boundary unit. We will make use of this distinction in Subsection 3.3, where we 
suggest how to further improve kNN matching and try to reduce bias. Allowing 
imputed donees to act as donors for subsequent donees differs from usual donor 
imputation, but a Bayesian justification based on Exchangeability and Pólya urns 
is given in Subsection 2.2. 

2.2. Imputation by Pólya urn sampling and Bayesian bootstrap 

Descriptions of imputation methods which use previously imputed values in 
subsequent imputations can be found in Rubin (1987) and Kong, Liu and Wong 
(1994). These methods attempt to impute the missing values by draws from their 
posterior predictive distributions, and rely on a Bayesian motivation going back to 
de Finetti’s (1931) theorem on exchangeable sequences. If the probability 
distribution for any finite sequence of n random variables drawn from an infinite 
series of random variables is the same, then any such infinite series is 
exchangeable. A sequence of independent and identically distributed (iid) random 
variables is always exchangeable, but the opposite is not true. But under some 
assumptions any exchangeable sequence is distributed as a sequence that is iid, 
given some parameters which in turn have a prior distribution. Hewitt and Savage 
(1955) generalized de Finetti’s theorem to non-binary variables, and Diaconis and 
Freedman (1980) showed that it is approximately true for long but finite 
sequences of variables, implying finite exchangeability. 

Pólya urn sampling produces an exchangeable but non-iid series, see Feller 
(1971). Assume a sample of n units where we have observed either the value 0 or 
1 on variable Y. Then, 1) draw a single unit at random from the sample, 2) 
duplicate the drawn unit, and 3) replace both the drawn and the duplicated unit 
into the sample. The procedure is then repeated, but now with the updated sample 
of size n+1. By repeating the procedure ad infinitum, the generated sequence of 
values on the units is then an infinite exchangeable sequence. Blackwell and 
MacQueen (1973) generalized Pólya urn sampling to allow for more than two 
categories, and Ferguson (1973) extended to continuous variables. 

Finite population Bayesian bootstrap (FPBB) (Lo, 1988) is based on Pólya urn 
sampling from a sample (of size n) to a large finite population (of size N). If a 
sample is drawn by SRS and the observed units are randomly drawn from the 
sample itself by SRS, then the observed units may be treated as a part of an 
exchangeable series of variables. In our example (Table 1) we may treat the 
sample as the population, and the five observed units as our sample. Pólya 
sampling may then be applied to reconstruct the remaining n-r units from the r 
observed ones, corresponding to imputation within the collapsed adjustment cells 
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using Unit 3 as potential donor to Unit 6 in Example 1 (where k6=q6= r+1=6). 
Knowing the full population size, Pólya sampling can be done to the whole 
population, starting from the r observed units, and sequentially impute all N-r 
units. An estimate of y  is then simply the mean of the bootstrap population. 

As ∞→N , FPBB approaches the model based Bayesian bootstrap by Rubin 
(1981). They raise two objections to bootstrap methods in connection to the 
exchangeability assumption. First, they ask whether it is reasonable to assume that 
all possible distinct values of a variable have been observed in a sample. The 
objection is definitely valid with the continuous and very small sample in Table 1. 
Assuming unlimited precision all realized values of a continuous variable are 
unique, so we will not observe all values until we have observed the whole 
population. But our ability to grasp the data distribution should improve with the 
sample size, unless data is censored or if missingness in other ways is 
concentrated to certain regions of the data. This (strong) dependence on sample 
size is a characteristic common to nonparametric methods, simply because they 
refrain from parametric assumptions. 

Assuming all possible distinct values are observed, Rubin’s second objection 
is that the probabilities of occurrences for similar values might be dependent. This 
calls for smoothing of probabilities, but bootstrapping assumes strict 
independence. If the distribution of realized or bootstrap samples differs much 
from the true population, some estimators might perform poorly. As for the first 
objection, the larger the sample, the more likely we are to observe the distribution 
of the true data, so benefits from smoothing should, in general, diminish. 

2.3. Bayesian bootstrap and multiple imputation 

Imputation by FPBB basically corresponds to multiple imputation (Rubin, 
1987). A general overview of variance estimation with single imputation is given 
in Little and Rubin (2002), and an overview for hot deck imputation in Andridge 
and Little (2010). 

Assume a sample from a finite population of exchangeable units with n-r 
missing values on variable Y imputed d=1, …, D times. The distribution of the 
estimates 
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then reflects the imputation uncertainty due to that imputed values for the same unit 
differs between the imputed datasets. A point estimate of y  is given by 
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and the variance of nŷ  is estimated as 
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is the estimated variance within a bootstrap set. The term 
1−

−
N

nN  is the finite 

population correction. If both the n-r non-responding and the N-n non-sampled 
units in each bootstrap set had been imputed, then a population estimate similar to (7) 
would have been 
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Sampling uncertainty vanishes with a completely imputed population, so (8) 

simplifies to 
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With missing values deterministically imputed, as in the uncollapsed cell in 

Example 1 with a single donor (k6=1), all imputed bootstrap sets will have the 
same value imputed, so BN (or Bn) will be underestimated. In particular, if all 
values are deterministically imputed, then NNDN yyy ˆˆ...ˆ

,,1 === , implying that 

0=NB , so that ( ) 0ˆˆ =NyV  in (11). 

3. Kernel estimation and kernel imputation 

One may look at donor imputation from the view of kernel estimation. We 
give a brief introduction to the area, describe the connections to imputation, and 
suggest how to improve estimation and achieve bias reduction of (7) or (10) using 
auxiliary variable X. 
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3.1. Short background on kernel estimation 

Kernel estimation is a method to estimate density. Assume that q values are 
observed on x and the density f(x) at a point xi is to be estimated. Denote the 
distance xi-xj by ijx~ . Given a kernel function K, the pointwise kernel estimate of f 
at xi is then 
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where K is typically symmetric, unimodal and integrates to 1. We confine our 
considerations to situations where K is proportional to the indicator function 
( )hxI ij <
~ , which is 1 if the statement is true. Function Kh is K scaled by the 

bandwidth (or smoothing) parameter h, which determines that K is positive if 
hxij <

~ , and zero if hxij ≥
~ . The choice of h is usually more important than K. If 

h is fixed for all i, the number of units ki≥0 within the range hxi ±  is random. 
Instead, if the number of units ki is fixed at k, the bandwidth hi will be random. 
Methods to select a fixed h or k range from subjective judgement of plots and 
simple automatic rules of thumb, to more sophisticated methods based on cross-
validation and plug-in estimates (Wand and Jones, 1995). Fixing h is more 
frequent, and a fixed k is best used when the exact size is noncritical, typically 
with 21qk ≈  (Silverman, 1986). 

A commonly used measure of accuracy is the mean integrated squared error 
(MISE) 

 ( ) ( ) ( )( ) ( ){ }( ) ( ){ }dxxfVdxxfBdxxfxfEfMISE ∫∫∫ +=−= ˆˆˆˆ 22
, (12) 

where a pointwise approximation of the bias component is given by 
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and an approximation of the variance with independent xj is given by 

 ( ){ } ( ){ }ijh
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i xKV
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Given that K is symmetric and h (or k) is reduced, bias in (13) will decrease 
while variance in (14) will increase. The variance goes to zero as ∞→qh  (or 

∞→k ), while bias depends on the curvature of f and is asymptotically unrelated 
to q, unless 0→h  (or 0/ →qk ) as ∞→q . Bias then converge to zero if xi lies 
in the interior (unbounded) part of x, while if xi lies within a bandwidth h from the 
boundary of x, the bias will not vanish. Given an optimal choice of h, MISE in 
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(12) is approximately minimized if K is set to the unimodal Epanechnikov (1969) 
function 

 ( ) ( ){ } ( )hxIxxK ijijij
Ep
h <−= ~~1

4
3~ 2 . (15) 

3.2. Kernel imputation 

Assume Kh is a positive function scaled so that ( ) 1~
1

=∑
=

q

j
ijh xK , where 

jiij xxx −=~  and the sum is over the donor pool described in Subsection 2.1. 
When the selection probabilities are given by ( )ijhij xK ~=λ  we call the technique 
kernel imputation. The expectation of iŷ  in (2) thus becomes the Nadaraya-
Watson (1964) estimator 
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With a uniform kernel ( ) ( )hxIxK ijij
Un
h <∝ ~~ , the donee i has k potential donor 

units within the range hxi ±  with selection probabilities ( ) kxK ij
Un
hij 1~ ==λ , and 

q-k units outside the range with 0=ijλ . When donor data at xi is sparse, fixing k 
instead of h will cover more distant donors, which avoids situations with no or 
few donors. With donors densely located in a vicinity of xi, using an adaptable 
parameter hi (caused by the fixed k) will in general result in donor pools that are 
better matched to donee i. 

3.3. Kernel imputation with bias reduction 

We suggest the use of multiple kernel imputation but also add three special 
devices, mainly to decrease imputation bias, but also to decrease the random 
errors. The bias ( )iyB ˆ  in (4) is related to ( )ixB ˆ  in (5) and ( ){ }ixfB ˆ  in (13) 
through ( )iyB ˆ  in (3) and ( )ijhij xK ~∝λ . Given a model E(Y|X)=g(X) and a response 

mechanism P(R=1|X), we will probably reduce ( )iyB ˆ  by reducing ( ){ }ixfB ˆ  or 
( )ixB ˆ . Examples 3 to 5 are in line with this, and each presents one of our three 

proposed devices. 
Example 3. Imputation with Epanechnikov selection probabilities. It is easy to 

believe that giving donors close to the donee higher probabilities is better than 
using a uniform kernel function. This is the idea behind this example. Due to the 
optimality properties shown by the non-negative Epanechnikov function in Kernel 
estimation, we suggest to use it here. In Example 2, donee 3 had k=4 donors, with 
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( ) 013.0ˆ3 −≈xB  and ( ) 176.0ˆ3 −=yE . With Epanechnikov probabilities 
( )j

Ep
h

Ep
j xK 33

~=λ  from (15), the closer (furthest) donor is more (less) likely to 
donate. With h3=0.3715, Units 1, 2, 4 and 5 are assigned probabilities 0.238, 
0.252, 0.260 and 0.250, so ( ) 010.0ˆ3 −≈xB  and ( ) 170.0ˆ3 −=yE . Suppose that we 
draw Unit 4. If h6=0.417 units 3, 4, 5 and 7 will get the probabilities Ep

j6λ  at 0.125, 
0.274, 0.304 and 0.297, so that ( ) 113.0ˆ6 −=xB  and ( ) 068.0ˆ6 =yE , compared to 
( ) 150.0ˆ6 −≈xB  and ( ) 052.0ˆ6 ≈yE  in Example 2. 

Given a symmetric kernel function the expected bias of interior donees is 
zero, so we only expect a reduction of variance by the change from KUn to KEp. 
But given the same bandwidth h (or k), we do expect some reduction of bias for 
boundary donees since we switch from KUn to the parabolic shaped KEp. 

Example 4. Imputation with adjusted selection probabilities. A technique 
which fully eliminates ( )ixB ˆ  is to adjust the probabilities given by the kernel so 
that the expectation over the x-values equals the donee xi. More technically we 
propose to replace ijλ  by 'ijλ  as close as possible but such that ( ) ii xxE =ˆ  holds. 

'ijλ  is easily found by Lagrange minimisation as the solution to 
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where ( )'ijijL λλ −  is a distance function and 1Λ  and 2Λ  are Lagrange 
multipliers.  

For the data in Table 1 and using Euclidean distances we get 217.0'31 ≈Epλ , 

235.0'32 ≈Epλ , 277.0'34 ≈Epλ  and 272.0'35 ≈Epλ , with ( ) 143.0ˆ3 −≈yE . Assuming 
Unit 4 is drawn, we get 011.0'6 ≈Ep

jλ , 217.0'6 ≈Ep
jλ , 263.0'6 ≈Ep

jλ  and 508.0'6 ≈Ep
jλ , 

with ( ) 036.0ˆ6 ≈yE . Both ( )ixB ˆ  are zero. 
By solving (16) it is possible to obtain 'ijλ  that results in ( ) 0ˆ =ixB  for both 

interior and boundary donees, as long as there are possible donors at both sides of 
xi. (Other restrictions, for example, deterministic situations, may also prohibit 
unbiased solutions). The proposed adjustment of selection probabilities resembles 
the use of approximate kernel regression weights in imputation (Aerts, Claeskens, 
Hens, and Molenberghs, 2002), or calibration of design weights (Deville and 
Särndal, 1992) but on a pointwise level. 

Example 5. Imputation with fewer donors at the boundary. Problems occur at 
the boundaries since there may be none or only few possible donor x-values at one 
side of xi. We suggest that the width of the kernel then should be decreased. With 
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multidimensional x one could also use an oblong donor pool instead of a spherical 
(quadratic) one. 

Consider only boundary Unit 6. Setting k=2 shrinks the bandwidth from 
h6=0.417 to h6=0.241, which results in selection probabilities 624.065 ≈Epλ  and 

376.067 ≈Epλ  for donors 5 and 7, with ( ) 053.0ˆ6 −≈xB  and ( ) 181.0ˆ6 ≈yE , 
compared to ( ) 150.0ˆ6 −≈xB  and ( ) 052.0ˆ6 ≈yE  from Example 3. Applying the 
Lagrange adjustment in (16) results in 508.0'65 ≈Epλ  and 492.0'67 ≈Epλ , with 
( ) 0ˆ6 =xB  and ( ) 128.0ˆ6 ≈yE . 

The expected bias of boundary units is directly related to the bandwidth and 
the reduction of ( )6x̂B  from shrinking k is in line with this. But this bias 
reduction is expected to come at the cost of higher ( )6x̂V  since we use fewer 
possible donors.  

4. Simulation study 

Here we use our suggested bias reduction methods from Subsection 3.3 in a 
design-based simulation study with simulated data, and compare with other 
imputation methods. 

4.1. Setup of simulation study 

We construct two related populations. First N=1 600 values are simulated 
from a Un(0,1) distribution (u) and a standard normal distribution (e) using R (R 
Development Core Team, 2009). The populations are then constructed, one with a 
linear (LI) relationship  (xLI=u-1/2; yLI=u+e/7-1/2) and one with a nonlinear (NO) 
relationship (xLI=u-1/2; yNO=sin(uπ)+e/7-2/π). From each population we draw 
1 000 samples of size n=100, 400 and 900. In each sample we create 50% 
nonresponse on y-, using the MAR mechanism P(y- is observed)∝ 1-u1/4. 

Table 2. Bias correction in kernel imputation 

ID for kernel imputation methods U E L S EL ES LS ELS 

Epanechnikov selection probabilities No Yes No No Yes Yes No Yes 

Lagrange adjustment of biased units  No No Yes No Yes No Yes Yes 

Shrinkage to k=k5/6 at boundary No No No Yes No Yes Yes Yes 

The missing data in the sample or the population were imputed by all 
combinations of the three bias correction methods: Epanechnikov (E) selection 
probabilities, Lagrange (L) adjustment, and shrinkage (S) of the donor pool for 
boundary biased units. The methods’ initial letters are used for notation as 
displayed in Table 2. The k potential donors were found using Euclidian distance 
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and a square root rule ½qk = , where q is the number of eligible (observed and 
imputed) donor units. 

Mean estimates of LIy  and NOy  from our methods are compared to estimates 

based on complete data (CD) and complete cases (CC). Estimates _ˆ
ny  based on 

imputed samples are also compared to estimates from ten single imputation 
methods, SIi i=1,…,10, and thirteen multiple imputation methods, MIi i=1,…,13. 
Estimates −

Nŷ  based on fully imputed populations are only compared to the MIi 
methods. All MIi and SIi methods are derived from the R-packages described in 
Appendix 1. Appendix 2 and 3 contain results for estimates of LIy  and NOy  with 
the comparison methods. 

The SIi point and variance estimates −
nŷ  and ( )−nyV ˆˆ  are calculated as in (6) 

and (9), while all multiple imputation estimates −
nŷ  and −

Nŷ  are calculated as in 

(7) and (10), with variance estimates ( )−−yV ˆˆ  given by (8) and (11). We used either 
D=5 or D=20 replicates for all multiple imputation methods. To simplify the 
description, we henceforth replace −

−ŷ  by −
−ŷ . Empirical averages from 

simulations, with M representing n or N, are calculated as ∑
=

−− =
1000

1
,1000

1
g

MgM GG , 

where −
MgG ,  is a function based on the g:th data, such as a point estimate −

Mgy ,
ˆ , 

the empirical mean squared error ( ) ( )∑
=

−−− −=
M

i
MgiMg yy

M
yMSE

1

2
,,

ˆ1ˆ , bias 

( ) −−− −= yyyB gg M,M,
ˆˆ  or variance ( ) ( )∑

=

−−− −
−

=
M

i
MgMgiMg yy

M
yV

1

2
,,,

ˆˆ
1

1ˆ , the average 

estimated variance ( )−
M,

ˆˆ
gyV , or the average double sided confidence interval 

length ( ) ( ){ } 21

M,,1
ˆˆ2 −

−= gdf yVtCIL α  and coverage { }2/ˆ
, CILyICIC Mg ≤= − . The 

significance level of the t-statistic is always set to α=0.05, and the degrees of 

freedom ( )
2

1
111 








+

++=
M

M

B
W

D
Dv  where W  and B are the variances 

components of (8) as described in Subsection 2.3 (Rubin, 1987). We always 
multiply −

MG  by 100 (1002) if −
MgG ,  is a first (second) moment function. 

4.2. Results from simulation study 

Results for LIy−
ˆ  ( NOy−

ˆ ) are presented in Table 3 (4), and for comparison 
methods in Appendix 2 (3). We only show results for sample sizes 100 and 900, 
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and 20 imputed datasets for multiple (including kernel) imputation. Results using 
n=400 ended up in between n=100 and n=900 with kernel imputation. This was 
mostly the case for multiple imputation comparison methods as well, except for 
bias (and sometimes for MSE dominated by bias) which tended to be highest with 
n=400. Comparing D=20 and D=5, most simulation results were up to 15% lower 
for kernel imputation with D=20 compared to D=5. Confidence coverage was 
only slightly smaller, but interval lengths were down to 30% shorter. Bias was 
rather unaffected by D, with ( )LI

nyB ˆ  as an exception which almost halved but 
from a low level. Results for multiple imputation comparison methods had the 
same tendencies, but were more mixed. 

Table 3. Simulation results for estimates of LIy , including 95% confidence 
intervals 

  Sample size n=100, nonresponse  
r=50 

Sample size n=900, nonresponse 
r=450 

M ID MSE B V V^ CIC CIL MSE B V V^ CIC CIL 

n;
 sa

m
pl

e 
im

pu
te

d 

U 14.4 0.69 13.9 11.9 93.2 14.1 0.85 0.17 0.82 0.79 95.5 3.7 
E 13.8 0.47 13.6 11.8 92.9 14.0 0.84 0.13 0.82 0.80 95.8 3.7 
L 14.0 0.60 13.6 12.0 92.9 14.1 0.84 0.15 0.81 0.85 96.3 3.8 
S 14.2 0.58 13.8 11.9 93.5 14.1 0.84 0.14 0.81 0.80 95.2 3.7 
             
EL 13.7 0.40 13.5 11.8 93.0 14.0 0.85 0.12 0.83 0.84 95.7 3.8 
ES 13.6 0.41 13.5 11.7 92.9 13.9 0.84 0.12 0.83 0.80 95.8 3.7 
LS 13.9 0.52 13.7 12.0 93.6 14.1 0.85 0.13 0.83 0.85 95.6 3.8 
ELS 13.6 0.36 13.5 11.8 93.6 14.0 0.84 0.11 0.83 0.84 95.6 3.8 

              

N
; p

op
ul

at
io

n 
im

pt
ue

d U 6.2 0.78 5.6 4.4 91.0 8.6 0.44 0.15 0.42 0.40 93.6 2.6 
E 6.0 0.58 5.7 4.0 88.9 8.2 0.45 0.13 0.43 0.40 93.7 2.6 
L 6.1 0.66 5.7 4.4 90.0 8.6 0.48 0.17 0.45 0.45 93.7 2.8 
S 6.1 0.70 5.6 4.3 90.0 8.5 0.44 0.13 0.42 0.39 94.9 2.6 
             
EL 6.1 0.52 5.8 4.0 89.5 8.2 0.47 0.13 0.45 0.43 93.7 2.7 
ES 5.9 0.51 5.7 3.7 88.6 7.9 0.44 0.12 0.43 0.41 94.4 2.6 
LS 6.1 0.59 5.8 4.2 88.6 8.4 0.48 0.15 0.46 0.45 94.0 2.8 
ELS 6.0 0.45 5.8 3.9 89.4 8.0 0.47 0.12 0.45 0.44 94.1 2.7 

 
With the sample imputed in Table 3, bias decreased with increased sample 

size and added bias corrections (E, S or L). Variance dominated mean squared 
error, and seemed to decrease slightly with bias corrections and n=100. Average 
estimated variance was below the true value for n=100 and 400, but the 
underestimation was ameliorated by the added bias correction and it almost 
disappeared for n=900. Confidence interval coverage (CIC) was slightly below 
the stated 95% for n=100 and 400, but slightly above for n=900. Confidence 
interval lengths (CIL) decreased with sample size. Patterns were similar for the 



152                                                                       N. Pettersson: Bias reduction of finite … 

 

 

whole population imputed but all figures were lower. An exception is ( )LIyB n
ˆ , 

which was smaller than ( )LIyB N
ˆ , but became more alike with increased sample 

size. 
Single imputation methods (in Appendix 2) had similar or slightly better MSE 

compared to ELS, except SI3- SI6 which also had large bias. They always 
underestimated variance, and interval coverage decreased with sample size. Many 
multiple imputation methods behaved as well or somewhat better than ELS. 
Exceptions were MI5 and MI13 (and mostly MI12) with underestimated variance 
and poor coverage. MI13 also had huge bias. With the whole sample imputed MI6 
also underestimated variance severely, and MI9 and MI10 had extremely large 
bias for n=100. 

Table 4. Simulation results for estimates of NOy , including 95% confidence 
intervals 

  Sample size n=100, nonresponse r=50 Sample size n=900, nonresponse r=450 
M ID MSE B V V^ CIC CIL MSE B V V^ CIC CIL 

n;
 sa

m
pl

e 
im

pu
te

d 

U 20.9 2.29 15.6 13.6 89.2 15.1 1.30 0.68 0.84 0.86 91.3 3.8 
E 17.6 1.65 14.9 13.0 92.1 14.8 1.12 0.53 0.84 0.87 93.4 3.8 
L 18.1 1.83 14.7 14.0 91.6 15.3 1.14 0.55 0.84 0.94 94.4 4.0 
S 19.0 1.90 15.3 13.4 90.8 15.0 1.18 0.58 0.84 0.86 92.8 3.8 
             
EL 16.3 1.37 14.4 13.3 92.3 14.9 1.05 0.45 0.85 0.92 94.8 4.0 
ES 16.8 1.40 14.8 12.9 91.5 14.7 1.05 0.46 0.84 0.87 93.6 3.8 
LS 17.2 1.60 14.6 13.6 92.1 15.1 1.07 0.49 0.84 0.93 94.3 4.0 
ELS 15.9 1.23 14.4 13.1 92.9 14.8 1.00 0.40 0.83 0.91 95.2 3.9 

              

N
; p

op
ul

at
io

n 
im

pt
ue

d U 14.0 2.45 8.0 6.5 83.1 10.4 0.88 0.65 0.46 0.43 82.6 2.7 
E 10.4 1.81 7.1 5.4 84.8 9.5 0.73 0.51 0.46 0.43 86.6 2.7 
L 11.2 1.96 7.4 6.6 87.3 10.5 0.77 0.54 0.48 0.49 87.0 2.9 
S 11.5 1.97 7.6 6.0 86.2 10.0 0.76 0.55 0.46 0.42 86.7 2.7 
             
EL 9.4 1.54 7.0 5.4 86.6 9.5 0.66 0.43 0.47 0.46 90.3 2.8 
ES 9.0 1.48 6.8 4.9 86.3 9.0 0.66 0.46 0.45 0.42 88.8 2.7 
LS 10.1 1.66 7.4 6.0 87.4 10.0 0.70 0.47 0.48 0.48 89.5 2.9 
ELS 8.5 1.30 6.8 5.0 87.2 9.1 0.62 0.38 0.47 0.46 90.9 2.8 

 
In Table 4, both ( )NO

nyMSE ˆ  and ( )NO
nyB ˆ  decreased in all cases with added 

bias correction and increasing sample size when the sample was imputed. 
Variance fell with sample size and somewhat with bias corrections for n=100. The 
underestimation of variance lessened with sample size, and ( )NOyV n

ˆˆ  was even 
somewhat higher then ( )NO

nyV ˆ  with n=900. Confidence interval coverage 
increased with sample size and added bias corrections, but was always below the 
stated 95% except for ELS with n=900. Confidence interval lengths decreased 
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with sample size. The patterns were similar when the whole population was 
imputed, but all figures were lower except for bias, which was somewhat higher 
with n=100, about the same with n=400, and slightly lower with n=900. 

With only the sample imputed, nearest neighbour methods SI7- SI10 and 
predictive mean matching methods MI5-MI6 in Appendix 3 had MSE similar to 
ELS, but with lower bias and higher variance. Their underestimation of variance 
also increased with sample size, with worsening confidence interval coverage. 
With the whole population imputed, MI5-MI6 gave small or zero estimates of 
variance. Method MI12 gave better coverage rate than ELS, both with the sample 
and population imputed, but overestimated the high variance severely and gave 
very wide confidence intervals. All other methods had much larger MSE than 
ELS, due to larger bias or variance. Several methods that rely on regression 
models had MSE similar to complete cases, with bias dominating the MSE. 

5. Conclusions 

Our proposed imputation method for missing value of a study variable 
assumes a relationship to a fully observed continuous auxiliary variable. Common 
to other methods based on nonparametric models, our method relies on having 
observed the data dispersion, which is more probable with larger samples. The 
non-informative Bayesian approach with Pólya urn sampling only using the 
sample as a prior and with multiple imputation can effectively address uncertainty 
with minimal assumptions. Given a missing at random mechanism, the real donor 
approach with imputed values selected among already observed (and thus 
presumably realistic) values, can also effectively remove nonresponse bias even 
with nonlinearities in the data. The use of kernel methods addresses the bias 
caused by having sparse and bounded finite sample data. 

As expected, the simulation study with linear data demonstrated a small loss 
of efficiency compared to methods utilizing parametric assumptions, but with the 
nonlinear data the improvement by bias corrections was relatively larger, and 
comparison methods were generally outperformed. In both cases, our three 
suggested devices (Epanechnikov kernel, Lagrange adjustment, and shrinkage at 
the boundary) always reduced bias. Properties seemed to improve with increasing 
the sample size, which agrees with the nonparametric reliance on the sample size. 
Many of the multiple imputation comparison methods managed to give at least 
95% coverage with linear data, which kernel imputation only did for the largest 
sample imputed. However, except for one extremely inefficient comparison 
method, kernel imputation with all bias corrections and the largest sample was the 
only method which reached 95% coverage with the nonlinear data. Since the 
response probabilities were strongly related to the study variable through the 
auxiliary, imputation methods with linear parametric assumptions displayed bias 
(and hence MSE) sometimes even larger than for complete cases when imputing 
the nonlinear data. 
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Variance (and hence MSE) went down when the whole population was 
imputed instead of just the sample. The effect is similar to what would have been 
expected from applying (post-) stratification weights based on the auxiliary. Since 
the bias share of MSE increased when the sample was imputed the confidence 
interval coverage rates fell. A similar but weaker effect was seen when the 
number of imputed datasets was increased.  

Several extensions of the proposed method could be explored, including 
multivariate auxiliary and study variables, use of more or other prior information, 
estimators other than means, alternative distance metrics, more elaborate ways of 
choosing the number of donors, including the degree of shrinkage, or other 
aspects related to boundary donees. 
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APPENDICES 
Appendix 1. R-packages and code for alternative estimators 

R-Package ID R-code 
monomvn. 
Gramacy (2010) SI1 monomvn(data) 

mvnmle. 
Gross (2008) SI2 mlest(data) 

pcaMethods.* 
Stacklies, Redestig and 
Wright (2011) 

SI3 
llsImpute(data,k=1,center=T,correlation="pearson",verbose=F,allVar
iables=T) 

SI4 pca(data,method="nipals") 
SI5 pca(data,method="ppca") 
SI6 pca(data,method="svdImpute") 

robCompositions. 
Templ, Hron and 
Filzmoser (2010) 

SI7 impKNNa(data,k=1,metric="Euclidean",agg="median",primitive=T) 

SI8 impKNNa(data,k=5,metric="Euclidean",agg="median",primitive=T) 

SeqKnn. 
Kim and Yi (2008) 

SI9 SeqKNN(data,k=1) 
SI10 SeqKNN(data,k=5) 

Amelia. 
Honaker, King and 
Blackwell (2011) 

MI1 amelia(data,m = D) 

Hmisc. 
Harrell (2010) 

MI2 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat
ch='closest',nk=0,curtail=T,boot.method="approximate bayesian") 

MI3 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat
ch='closest',nk=0,curtail=F,boot.method="approximate bayesian") 

MI4 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat
ch='weighted',nk=0,curtail=T,boot.method="approximate bayesian") 

MI5 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='pmm',match='
closest',nk=0,curtail=T,boot.method="approximate bayesian") 

MI6 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='pmm',match='
weighted',nk=0,curtail=T,boot.method="approximate bayesian") 

MI7 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat
ch='closest',nk=c(0,3:5),B=10,curtail=T,boot.method= 
"approximate bayesian") 

MI8 aregImpute(as.formula(~I(x)+I(y)),n.impute=D,type='regression',mat
ch='closest',nk=c(0,3:5),B=10,tlinear=F,curtail=T,boot.method="app
roximate bayesian") 

mi. 
Gelman (2010) 

MI9 mi(data.frame(data),n.imp=D,add.noise=noise.control(method="resh
uffling",K=1,post.run.iter=20),n.iter=30) 

MI10 mi(data.frame(data),n.imp=D,add.noise=noise.control(method="fadi
ng",pct.aug=10,post.run.iter=20),n.iter=30) 

mice. 
van Buuren and 
Groothuis-Oudshoorn 
(2010) 

MI11 mice(data,m=D,method="norm") 

MI12 mice(data,m=D,method="pmm") 
sbgcop. 
Hoff (2010) 

MI13 sbgcop.mcmc(data,nsamp=D) 

R-packages for single (SI) and multiple (MI) imputation methods are available at 
http://cran.r-project.org/web/packages/ and (*) http://www.biocondoctor.org/biocLite.R. 

The object ‘data’ is created as ‘data <- cbind(x,y)’ in R, where ‘x’ is the fully 
observed auxiliary variable vector, and ‘y’ is the partly observed study variable vector. 
Object ‘D’ is the number of imputed datasets. 
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Appendix 2.  Simulation results, alternative LIy - estimators 
  Sample size n=100, nonresponse r=50 Sample size n=900, nonresponse r=450 
M ID MSE B V V^ CIC CIL MSE B V V^ CIC CIL 

n CD 9.7 -.03 9.7 10.0 94.2 12.4 0.49 -.01 0.49 0.51 95.1 2.8 
CC 32.7 3.5 20.4 10.7 70.2 12.8 13.4 3.43 1.67 0.87 11.6 3.7 

              

n;
 sa

m
pl

e 
im

pu
te

d 
 

SI1 12.1 -.15 12.1 10.1 92.3 12.4 0.73 -.02 0.73 0.51 90.8 2.8 
SI2 12.1 -.15 12.1 9.9 92.3 12.3 0.73 -.02 0.73 0.51 90.8 2.8 
SI3 20.9 2.77 13.2 8.7 79.6 11.6 11.3 3.24 0.85 0.45 1.8 2.6 
SI4 39.5 4.81 16.4 5.0 42.6 8.7 31.6 5.51 1.18 0.25 0.0 1.9 
SI5 23.7 3.09 14.2 8.1 73.2 11.1 37.0 5.98 1.30 0.23 0.0 1.9 
             
SI6 51.2 5.72 18.4 4.6 32.4 8.3 44.3 6.55 1.40 0.23 0.0 1.9 
SI7 14.1 -.06 14.1 9.9 89.1 12.3 1.21 -.02 1.21 0.51 78.4 2.8 
SI8 13.3 0.08 13.3 9.2 88.7 11.8 0.92 -.06 0.92 0.48 83.8 2.7 
SI9 14.3 -.03 14.3 9.9 88.6 12.3 1.24 -.03 1.24 0.51 78.5 2.8 
SI10 13.3 0.01 13.3 9.4 89.4 12.0 0.95 -.01 0.95 0.49 83.5 2.7 
             
MI1 12.5 -.54 12.2 12.4 95.4 14.4 0.75 0.11 0.73 0.90 97.9 3.9 
MI2 12.3 0.04 12.3 12.2 95.7 14.3 0.74 0.03 0.73 0.82 96.8 3.7 
MI3 12.2 -.14 12.1 12.8 95.5 14.7 0.75 -.03 0.75 0.85 97.4 3.8 
MI4 12.2 0.05 12.2 12.2 95.2 14.3 0.73 0.03 0.73 0.82 97.3 3.7 
MI5 14.1 -.06 14.1 9.9 89.3 12.3 1.20 -.02 1.20 0.51 80.3 2.9 
             
MI6 12.9 0.11 12.9 10.6 93.0 13.3 0.80 0.25 0.73 0.63 93.1 3.2 
MI7 12.3 0.04 12.3 12.1 94.9 14.3 0.74 0.03 0.74 0.82 96.7 3.7 
MI8 12.2 0.06 12.2 12.2 95.3 14.3 0.74 0.03 0.74 0.82 97.0 3.7 
MI9 12.1 -.03 12.1 13.2 96.1 14.9 0.74 -.10 0.73 0.87 97.4 3.8 
MI10 12.4 -.25 12.3 12.6 95.0 14.5 0.75 -.03 0.75 0.86 97.3 3.8 
             
MI11 12.2 -.26 12.2 12.9 96.0 14.7 0.73 0.07 0.73 0.92 98.1 4.0 
MI12 12.7 0.19 12.7 12.2 94.9 14.3 1.12 0.09 1.11 0.76 90.4 3.6 
MI13 28.5 3.71 14.7 12.1 81.7 14.3 14.5 3.67 0.99 0.70 2.4 3.4 

              

N
; p

op
ul

at
io

n 
im

pt
ue

d 

MI1 5.3 0.12 5.3 4.9 94.1 9.0 0.39 -.05 0.39 0.36 93.8 2.5 
MI2 5.4 0.44 5.2 8.7 98.6 12.1 0.41 0.03 0.41 0.68 98.9 3.4 
MI3 5.2 0.11 5.2 10.7 98.8 13.4 0.40 -.01 0.39 0.71 98.9 3.5 
MI4 5.7 0.46 5.5 9.5 98.2 12.7 0.41 0.03 0.41 0.69 98.2 3.4 
MI5 7.5 0.29 7.4 0 0 0 0.85 -.06 0.84 0.00 6.5 0.2 
             
MI6 6.9 0.62 6.5 0.1 21.8 1.3 0.45 0.24 0.39 0.10 65.8 1.3 
MI7 5.6 0.46 5.4 9.0 98.4 12.3 0.39 0.04 0.39 0.69 99.5 3.4 
MI8 5.3 0.45 5.1 8.6 97.9 12.0 0.40 0.03 0.40 0.69 99.0 3.4 
MI9 52.8 6.01 16.7 14.4 68.5 15.9 0.39 0.12 0.38 0.49 96.8 2.9 
MI10 65.9 7.03 16.5 8.3 38.1 12.0 0.39 0.08 0.38 0.46 97.1 2.8 
             
MI11 5.5 0.82 4.9 4.2 93.0 8.5 0.37 0.00 0.37 0.60 99.3 3.2 
MI12 6.3 0.56 6.0 4.3 90.0 8.6 0.76 0.27 0.68 0.22 71.0 1.9 
MI13 59.0 6.29 19.5 0.5 9.5 3.1 26.3 5.02 1.10 0.25 0.0 2.1 

Estimators are based on complete data (CD), complete cases (CC), multiply imputed 
(MI) and singly imputed (SI) datasets. Confidence interval coverage (CIC) and length 
(CIL) are from double-sided intervals with 5% significance level. 
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Appendix 3. Simulation results, alternative NOy - estimators 
  Sample size n=100. nonresponse r=50 Sample size n=900. nonresponse r=450 
M ID MSE B V V^ CIC CIL MSE B V V^ CIC CIL 

n CD 10.6 0.05 10.6 11.2 95.4 13.1 0.6 0.02 0.55 0.57 95.8 3.0 
CC 63.9 6.6 19.9 9.2 42.8 11.8 44.0 6.51 1.55 0.75 0.0 3.4 

              

n;
 sa

m
pl

e 
im

pu
te

d 
 

SI1 40.3 4.4 21.1 10.7 65.8 12.8 40.2 6.20 1.75 0.54 0.0 2.9 
SI2 40.3 4.4 21.1 10.5 65.3 12.6 40.2 6.20 1.75 0.54 0.0 2.9 
SI3 24.7 -.5 24.5 9.4 76.1 12.0 2.1 0.35 2.00 0.48 65.0 2.7 
SI4 29.1 3.1 19.3 5.5 57.4 9.1 22.8 4.61 1.49 0.28 0.4 2.1 
SI5 26.0 2.4 20.0 5.2 60.6 8.9 25.0 4.83 1.58 0.29 0.2 2.1 
             
SI6 25.9 2.4 20.1 5.2 60.7 8.9 15.0 3.66 1.56 0.26 2.1 2.0 
SI7 15.2 0.4 15.1 10.7 89.3 12.8 1.4 0.16 1.39 0.57 79.2 2.9 
SI8 14.9 0.8 14.2 9.7 87.5 12.2 1.1 0.19 1.09 0.53 83.1 2.9 
SI9 15.5 0.4 15.4 10.7 88.2 12.8 1.5 0.15 1.43 0.57 78.3 2.9 
SI10 14.8 0.6 14.4 10.1 88.8 12.4 1.2 0.20 1.13 0.54 83.4 2.9 
             
MI1 36.3 3.8 22.1 23.0 89.4 19.7 44.3 6.52 1.77 2.38 1.4 6.4 
MI2 44.1 4.8 21.1 24.7 85.7 20.5 40.8 6.24 1.88 2.28 2.0 6.2 
MI3 46.9 5.0 21.7 27.6 87.0 21.5 41.1 6.26 1.84 2.31 1.6 6.3 
MI4 43.8 4.7 21.5 24.7 86.5 20.4 40.7 6.23 1.82 2.27 1.9 6.2 
MI5 15.2 0.4 15.1 10.7 89.3 12.8 1.4 0.16 1.39 0.57 79.6 3.0 
             
MI6 13.9 0.7 13.4 11.5 93.1 13.8 1.7 0.95 0.84 0.68 79.9 3.4 
MI7 43.7 4.8 21.0 25.3 86.7 20.7 40.4 6.21 1.84 2.27 1.6 6.2 
MI8 43.5 4.8 20.9 25.0 86.3 20.6 40.5 6.22 1.83 2.29 2.0 6.3 
MI9 42.7 4.6 21.7 22.3 85.4 19.5 39.9 6.17 1.84 1.90 1.1 5.7 
MI10 38.8 4.0 22.8 21.8 86.6 19.2 40.4 6.22 1.76 2.03 1.5 5.9 
             
MI11 38.3 4.1 21.1 23.4 88.1 20.0 42.8 6.40 1.75 2.31 1.3 6.3 
MI12 59.5 -2.2 54.6 74.6 93.7 35.1 2.1 0.85 1.37 18.6 100 17.6 
MI13 36.6 4.2 19.0 14.5 79.4 15.7 28.2 5.17 1.49 1.00 1.0 4.1 

              

N
; p

op
ul

at
io

n 
im

pu
te
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MI1 97.9 8.5 26.3 24.2 61.0 20.1 36.9 5.91 1.95 1.93 1.7 5.7 
MI2 92.6 8.3 23.1 42.0 80.1 26.6 37.5 5.95 2.03 3.57 9.2 7.8 
MI3 105 8.9 25.9 53.9 84.4 30.1 38.1 6.00 2.05 3.65 8.8 7.9 
MI4 98.6 8.7 23.1 45.5 81.0 27.7 37.6 5.97 2.00 3.58 8.4 7.8 
MI5 9.1 1.0 8.0 0.0 0 0 0.8 0.06 0.84 0.00 7.8 0.2 
             
MI6 9.8 1.6 7.2 0.1 19.6 1.4 1.3 0.93 0.41 0.12 36.5 1.4 
MI7 94.2 8.4 23.4 44.5 79.8 27.4 37.5 5.96 2.01 3.55 8.1 7.8 
MI8 95.3 8.5 22.9 42.2 79.8 26.6 37.8 5.97 2.07 3.61 9.7 7.9 
MI9 45.3 5.1 19.2 18.0 79.6 17.7 35.2 5.77 1.89 2.20 3.5 6.1 
MI10 58.7 6.3 18.9 10.7 55.3 13.7 34.2 5.68 2.01 1.83 2.9 5.6 
             
MI11 110 9.3 23.5 17.3 46.3 17.4 37.3 5.95 1.88 2.66 3.6 6.8 
MI12 75.4 -1.3 73.6 146 96.9 47.9 2.3 -.90 1.49 24.7 100 20.3 
MI13 38.6 4.3 19.9 0.7 20.9 3.4 18.4 4.10 1.54 0.53 2.3 3.0 

Estimators are based on complete data (CD), complete cases (CC), multiply imputed 
(MI) and singly imputed (SI) datasets. Confidence interval coverage (CIC) and length 
(CIL) are from double-sided intervals with 5% significance level. 
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A LINEAR MODEL FOR UNIFORMITY TRIAL 
EXPERIMENTS 

Alok K. Shukla1, Subhash K. Yadav2, Govind Ch. Misra3 

ABSTRACT 

Uniformity trial experiments are required to assess fertility variation in 
agricultural land. Several models have appeared in literature, of which Fairfield 
Smith’s Variance Law assuming a nonlinear relationship between the coefficient 
of variation (C.V.) and a plot size has been extensively used in uniformity trial 
studies. A linear model has been proposed for uniformity trial experiments and it 
has shown better results as compared to existing models. The expression for point 
of maximum curvature for the proposed model is much simpler as compared to 
the model of Fairfield Smith. The appropriateness of the proposed model has also 
been verified with the help of a data set.     

Key words: Fairfield Smith’s Variance Law, linear model, uniformity trial 
experiments.  

1. Introduction 

Uniformity trials are needed to determine suitable shape and size of the plot 
for knowing the nature and extent of fertility variation in land, so that if some 
treatment has given good result, one should be confirmed that it is true and is not 
due to some other unknown reason. In these trials, a particular variety of crop is 
sown on the entire experimental field and throughout the growing season it is 
managed uniformly. All sources of variation except that are due to natural soil 
differences, and are held constant to the maximum extent. At the time of harvest a 
substantial border is removed from all sides of the field. The rest of the field is 
divided into number of small plots which are termed as basic units, with the same 
dimensions. The production from these basic units is harvested and recorded 
separately for each basic unit. Then the yields in these basic units are collected 
separately. The usefulness of a uniformity trial lies in the fact that neighboring 
units may be amalgamated to form larger plots of various sizes and shapes. The 
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162                                          A. Shukla, S. K. Yadav, G. Ch. Misra: A linear model for… 

 

 

variation in yield over the field due to soil heterogeneity and other manual errors 
are generally summed up in the term “Experimental Error” and may be calculated 
for each type of plot thus formed. Hence, all efforts in designing field experiments 
are directed to measure and control this source of variation.  

The coefficient of variation (C.V.), the ratio of standard deviation to 
arithmetic mean is a normalized measure of dispersion of a probability 
distribution. It tells us about the size of variation relative to the size of the 
observation, and is independent of the units of observation. It is an index of the 
precision of the experiment. The coefficient of variation and the plot size 
relationship has been investigated by several researchers including Mahalanobis 
(1940) and Panse (1941), etc. Panse and Sukhatme (1954) gave detailed 
description of uniformity trial experiments. The determination of the optimum 
plot size is an important step in field experimentation as it takes into account 
variability, both due to crop species and soil heterogeneity.  

 Smith (1938) gave an empirical model for describing relationship between 
the variance and the plot size for his field experiments. His model can be reduced 
to the following simple form as       

                                              bY a X=                                                                 (1) 

where Y  is Coefficient of Variation and X is size of the plot, a  and b  being 
parameters of the model to be estimated.                             

Haque et al. (1988) considered the following two models along with the 
model (1) for describing relationship between the plot size ( X ) and the 
Coefficient of Variation (Y ) as,                                                 
                                                         XY a b=                                                                (2) 

                                                         
bY a
X

= +                                                             (3) 

Haque et al. (1988) arrived at the conclusion that the relationship (1) is the 
best among relationships (1) to (3) to describe the coefficient of variation and the 
plot size relationship. They calculated the point of maximum curvature for 
determining the optimum plot size and found the optimum plot size which 
corresponds to coefficient of variation (C.V.) of magnitude 25%. But this C.V. is 
quite high. They mentioned that in field experiments, generally the C.V. should 
not be more than 10-15%. If the C.V. is very high the reliability of the 
experimental results becomes doubtful. Therefore they suggested that instead of 
maximum curvature, it would be more logical to consider C.V. as the criterion for 
deciding the optimum plot size. In reference to the shape of the plots they showed 
that in all cases when 1x (length) is measured along the fertility gradient and 2x
(width) across the fertility gradient rectangular plots are always optimum. They 
also suggested that if the experimenter has no idea of fertility gradient of the field, 
it is safer to use square shaped plots. 
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Draper and Smith (1998) classified the models (1) and (2) as intrinsically 
linear models, as they can be transformed into a form in which parameters appear 
linearly. The estimation of parameters a  and b  of these models can be done only 
after transforming them into a form in which parameters appear linearly by the 
well known method of least squares. The models (1) and (2) can be brought into 
linear form by using log transformation. However, it presupposes a multiplicative 
error term, a condition not so easy to justify. The direct application of least square 
method is not possible to estimate parameters of the models (1) and (2). Non-
linear least squares estimation involves complicated iterative procedures. 
Convergence of solution is a serious problem in non-linear least squares 
estimation. Obtaining prior guess values of parameters in non-linear least squares 
estimation poses a serious problem before an investigator. The relation (3) is, 
however, a linear model and its parameter estimates can be obtained by direct 
application of classical least squares method of estimation.  

The curvature is the amount by which a curve deviates from being flat. It is 
defined in different ways depending on the context. In uniformity trial 
experiments, the basic units of uniformity trials are combined to form new units. 
The new units are formed by combining columns, rows or both. Combination of 
columns and rows should be done in such a way that no column or row is left out. 
For each set of units, the coefficient of variation (C.V.) is computed. A curve is 
plotted by taking the plot size (in terms of basic units) on the X-axis and the C.V. 
values on the Y-axis of a graph sheet. The point at which the curve takes a turn 
that is the point of maximum curvature is located by inspection. The value 
corresponding to the point of maximum curvature will be the optimum plot size 
(Sundarraj, 1977). The following figure shows the point of maximum curvature 
expressed by dotted line. 

 
This is only an approximate method of fixing the optimum plot size. Another 

method to obtain the point of maximum curvature is the calculus method. 
Fairfield Smith (1938) derived expression for maximum curvature for his model 
described by the relation (1) as 
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On putting, 0dC
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= ,  the solution of X will define the point of maximum 

curvature. For Fairfield Smith’s model the value of C is 
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Putting 0dC
dX

=  and substituting estimated values of the parameters a  and b

in it, the point of maximum curvature can be obtained.  
 
In the present study we propose a linear model which relates the coefficient of 

variation to the plot size in a better way as compared to existing models. The 
expression for calculating the point of maximum curvature is also simple as 
compared to that of Fairfield Smith’s model. 

2. Proposed model 

A linear model with its deterministic component is proposed to relate the plot 
size represented by X  and Coefficient of Variation represented byY as 

                                                         logY a b X= +                                      (7) 

The proposed model describes the relationship between the plot size and C.V. 
in a better way as compared to existing empirical models. a  and b  are 
parameters of the model which appear linearly in it and can be estimated by least 
squares method of estimation. The proposed model (7) was used by Shukla (2011) 
for his studies on uniformity trial experiments.   

The model (7) admits an additive error term and can be written as  
 

                              log( ) , 1, 2........,i i iY a b X U i n= + + =                          (8) 
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where iY and iX are ith observations of Y and X respectively. Us are independently and 

identically distributed random variables with mean zero and fixed variance 2σ . If Us 

follow normal distribution, i.e. U ~ ),0( 2σN , the maximum likelihood estimates of a  

and b  can also be obtained.                               

Following standard procedures as described in Draper and Smith (1998), the 
classical least squares estimators of parameters can be easily obtained. Let â  and 
b̂  are the least square estimates of a  and b , respectively. The least squares 
estimate of  iY  that is îY  will be  

                                                          ˆˆ ˆ logi iY a b X= +                                                (9) 

The residual ie is      

                                                           ˆ
i i ie Y Y= −                                                  (10) 

The appropriateness of the proposed model has been verified by examining 
the values of coefficient of determination- 2R , mean residual sum of square- 2s , 
mean absolute error (MAE), Akaike Information Criterion (AIC) and standardized 
residuals. Adopting the procedures as described in Montgomery et al. (2003), the 
analysis of residuals have been performed to verify the assumptions of zero mean, 
normal distribution and fixed variance of residuals. The point of maximum 
curvature can be obtained for the proposed model (7) as below, 

 

                                           
32 2 21 ( )C X b

bX
= − +                                                      (11) 

On putting, 0dC
dX

= , the point of maximum curvature can be obtained. It 

leads to the solution of 
2

2
bX = ± . As X  will assume only positive values, 

the point of maximum curvature will be at
2

2
bX = . It is observed that 

expression for obtaining point of maximum curvature is much simpler for the 
proposed model as compare to that of Fairfield Smith’s model. 

3. Empirical study 

The appropriateness and model adequacy of the proposed linear model (7) has 
been verified with the help of primary data given in Haque et al. (1988). Haque et 
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al. (1988) worked on field experiments for wheat and taken a piece of land 
measuring 45 x 39 m2 at Rajendra Agricultural University, Bihar, India. At the 
time of harvest, the land was subdivided into 45 x 39 = 1755 basic units, of size 1 
x 1 m2 , and grain yield was recorded in gram for each unit separately. We have 
computed the values of Coefficient of determination 2R , residual mean square 2s , 
Mean absolute error (MAE) and Akaike Information Criterion (AIC) for the 
models (1) to (3) & (7) and these values are listed in table 1 along with parameter 
estimates of the model (7). An analysis of residuals has also been performed for 
the model (7) by plotting normal probability plot and residual versus explanatory 
variable plot. The normal probability plot (Fig.1) is almost a straight line which 
conforms the assumption of normal distribution of residuals. The plot of residuals 
versus explanatory variables (Fig.2) for the model (7) does not show any 
systematic pattern. It conforms the assumption of homoscedasticity for residuals. 
The MAE values are also negligible. Thus, we infer that residuals of the model (7) 
admit the assumption of zero mean, normal distribution and fixed variance. We 
can conclude that the proposed linear model (7) adequately explains the 
relationship between the plot size and the C.V. 

 
 
 

Figure 1. 
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Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
On comparing values of 2R , 2s , MAE and AIC for the models (1) to (3) and 

(7) we have observed that the proposed linear model (7) has highest 2R values 
and lowest 2s , MAE and AIC values. Thus, the model (7) better fits data sets as 
compared to the models (1) to (3). The model (7) is more appropriate to be used 
in uniformity trial experiments. 

 

Table 1. 

Parameters Estimates of Model (7) â = 32.9928 b̂ = -4.6674 

 2R  2s  MAE AIC 

Model (7) 0.9186 2.4638 1.2472  2.5868 

Model (1) 0.9110 2.6980 1.2547  2.8325 

Model (2) 0.7810 6.6170 1.8190  6.9475 

Model (3) 0.6750 9.7969 2.4658  10.2859 
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Table-2 gives the values of C.V. for different plot areas. Estimated values of 
C.V. using the model (1) and (7) are also given. 

Table 2. 

S. 
No. 

Area( 2m ) 
x 

C.V. 
y 

C.V. 

(1)ŷ  
C.V. 

(7)ŷ  
S. 

No. 
Area( 2m ) 

x 
C.V. 

y 
C.V. 

(1)ŷ  
C.V. 

(7)ŷ  

1 1 35.75 37.39 32.99 21 30 17.28 16.57 17.12 

2 2 29.65 31.67 29.76 22 32 16.49 16.31 16.82 

3 3 28.47 28.74 27.87 23 35 16.80 15.97 16.40 

4 4 24.98 26.83 26.52 24 36 16.95 15.86 16.27 

5 5 22.01 25.44 25.48 25 40 14.59 15.46 15.78 

6 6 23.85 24.35 24.63 26 42 17.46 15.28 15.55 

7 7 22.05 22.73 23.91 27 45 15.73 15.03 15.23 

8 9 24.31 22.10 22.74 28 48 14.95 14.80 14.92 

9 10 20.83 21.55 22.25 29 50 13.59 14.66 14.73 

10 12 21.24 20.63 21.39 30 54 16.23 14.39 14.37 

11 14 21.98 19.88 20.68 31 56 12.75 14.27 14.20 

12 15 20.55 19.56 20.35 32 60 14.04 14.03 13.88 

13 16 19.17 19.26 20.05 33 63 15.69 13.87 13.66 

14 18 19.99 18.72 19.50 34 64 12.07 13.82 13.58 

15 20 17.20 18.25 19.01 35 70 11.32 13.53 13.16 

16 21 22.66 18.04 18.78 36 72 13.47 13.43 13.03 

17 24 18.01 17.47 18.16 37 80 11.83 13.10 12.54 

18 25 16.55 17.30 17.97 38 81 14.96 13.06 12.48 

19 27 19.09 16.99 17.61 39 90 12.49 12.74 11.99 

20 28 18.35 16.84 17.44 40 100 08.92 12.42 12.50 
 

The point of maximum curvature for the proposed model (7) is 3.30x = , 
hence the optimum plot size which falls just near to this point of maximum 
curvature is 23m corresponding to which the C.V. is 27.86%, which is quite high. 
Therefore, as suggested by Haque et al. (1988), it would be more logical to 
consider C.V. as the criterion for deciding the optimum plot size.  
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4. Conclusions 

It is submitted that the linear model (7) is a better alternative to describe the 
relationship between the plot size and the coefficient of variation in uniformity 
trial experiment. The proposed model (7) has highest 2R  values as compared to 
the models (1) to (3) which include Fairfield Smith’s model also. Apart from it 
the model (7) has smallest values of 2s , MAE and AIC, as compared to all other 
models (1) to (3). The analysis of residuals also conforms the assumptions of zero 
mean, normal distribution and fixed variance for residuals. The expression for 
obtaining the point of maximum curvature is also easy to use for the model (7). 
The parameter estimates of the proposed model posses good statistical properties. 
Another advantage with this model is that it admits additive error term. The 
predictions and inferences as well as test of significance procedures for the model 
(7) can be easily carried out. It is therefore recommended that the linear model (7) 
should preferably be used in uniformity trial experiments. 
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MODEL OF LATENT PROFILE FACTOR ANALYSIS 

FOR ORDERED CATEGORICAL DATA  

Piotr Tarka1  

ABSTRACT  

In the literature factor analysis is admittedly a well-known and effective 
multivariate method in the reduction of extensive and broad data, e.g., in the 
analysis of too many variables. It is also known for the process of unidimensional 
or multidimensional scale/s construction. Typically, in many studies (especially 
those pertaining to market research area) a common factor analysis solution is 
used (based on continuous data). However, there are rarely ever undertaken 
studies pertaining to latent variable models where other type of data is used based 
on discrete variables. One of these models might be called Latent Profile Factor 
Analysis - LPFA. In this article author’s main objective is to propose and discuss 
its (LPFA) main assumptions. In order to prove the model’s functionality in 
practice of market research, a brief example of LPFA model for ordered 
categorical data (based on one-factorial solution) in reference to hedonic 
consumption data is given at the end of the paper. 

Key words: latent profile factor analysis model, ordered categorical data. 

1. Introduction 

Most of professional researchers in the socio-economic field, when analyzing 
market and people-customers’ traits, often conduct projects in statistical research 
based on qualitative data. Most of them are thus forced to describe customers by 
simply asking questions (including prepared earlier set of items) about their 
hidden and unknown structure concerning for example personal attitudes, feelings 
or values. In consequence, in order to examine internal structure of customers, 
they need to implement an appropriate model for the purposes of data reduction, 
facing the problems of broad data, e.g. including too many variables. Researchers 
struggle also with the selection of appropriate method in order to increase 
precision level in the analysis according to the type of collected data. Solutions, as 
                                                           
1 Poznan University of Economics, Department of Marketing Research, al. Niepodległości 10,  
   Poland, e-mail: piotr.tarka@ue.poznan.pl. 
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usual, come with latent variable models based on multivariate complexity. And 
because in social sciences and in many surveys (undertaken within market 
research) collected data is mainly of categorical nature, and categorical variables 
are definitely more used than continuous variables, hence they need a more 
sophisticated latent variable model to examine this type of data as compared to 
classical solution based on common factor analysis (Vasdekis et al., 2008). By 
term “ordered categorical” we will refer to type of data being measured on ordinal 
variables. For instance in market survey, respondents are often asked to 
characterize their opinions or attitudes (e.g. about products, etc.) on measurement 
scales where answers are ranging from “strongly disagree” to “strongly agree”. 
This is a common example of such data. This type of data is also known as the 
ordinal logit, ordered polytomous logit, constrained cumulative logit, 
proportional odds (Borooah, 2002; Cohen et al., 2003; DeMaris, 2004; 
Hoffmann, 2004; Long and Freese, 2006). The most natural way to view structure 
in ordinal data is to postulate the existence of an underlying latent (unobserved) 
variable associated with each respondent’s response – observed variable. 
Unfortunately as it often happens in research practice, the analysis of such data is 
performed without regard to their ordinal nature (Agresti 2007). For this reason in 
this article the author investigates the most important characteristics and 
specificity of Latent Profile Factor Analysis (LPFA). LPFA model is designed for 
data, that is originating strictly from ordered categorical responses. At the end of 
paper a practical example of this model is given. 

2. Generalized Linear Latent Variable Model 

Generalized Linear Latent Variable Model (GLLVM) could be approximately 
a framework or some kind of a background for construction of Latent Profile 
Factor Analysis Model (LPFA) for ordered categorical responses. As far as the 
GLLVM model is concerned, it includes (Moustaki and Knott 2000; Moustaki 
2003):  

• the random component in which each of the p random response variables, 

( )1,..., px x has a distribution from the exponential family such as Bernoulli, 

Poisson, Multinomial, Normal, Gamma, 
• the systematic component in which latent variables vector and covariates vector 

( )1z ,..., ,qz z′ = ( )1x ,..., rx x′ =  produce a linear predictor iη  corresponding to 

each category of x : 

                                  0
1 1

,
q r

i i ij j il l
j l

z xη α α β
= =

= + +∑ ∑
      

1,..., .i p=
                       

(1) 

• the links between the systematic component and the conditional means of the 
random component distributions: 

                                                 
( )( )z,xi i iη υ µ=

                                            
(2) 



STATISTICS IN TRANSITION-new series, Spring 2013 

 

173 

where: 
 

                                     
( ) ( )z,x z,xi iE xµ =

                                        
(3) 

and iυ  is called the link function which can be any monotonic differentiable 
function and may be different for different manifest variables ix  1,..., .i p=  

We shall also assume that ( )1 2, ..., px x x denotes a vector of p manifest 
variables where each variable has a distribution in the exponential family taking 
the form: 

   
( ) ( ) ( ); , exp , ,i i i i

i i i i i i i
i

x b
g x d x

θ θ
θ φ φ

φ
 − 

= + 
    

1,..., ,i p=
              

(4) 

where ( )i ib θ  and ( ),i i id x φ
 

are specific functions taking a different form 
depending on the distribution of the response variable .ix

  Because of the existence of different types of collected responses (depending 
on type of used measurement scale) there will be different distribution forms, 
which we rearrange respectively to their specific transformation functions 
(Table 1). 

Table 1. Distributions and transformation functions from Generalized Linear 
Model approach 

Scale type ix  Distribution ( )if x θ   Transformation ( )ig E x θ    

Dichotomous Binomial Logit 

Nominal Multinomial Logit 

Ordinal Multinomial Restricted logit 

Count Poisson Log 

Continuous Normal Identity 

Source: Vermunt and Magidson 2005. 

And from perspective of GLLVM approach we may further assume a four-
fold classification including sub-models of latent variables. They are: Factor 
Analysis (FA), Latent Trait Factor Analysis (LTFC), Latent Profile Factor 
Analysis (LPFA), and Latent Class Analysis (LCA), as shown in Table 2. The 
fundamental distinction in this classification is the one between continuous and 
discrete latent variables, so that a researcher has to decide whether to treat the 
underlying latent variable(s) as continuous or discrete. In case of LPFA model, 
the latent variable is assumed to be discrete and to come from a multinomial 
distribution.  
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Table 2. Classification of Latent Variable Models 

Manifest  
Variables 

Latent variables 

Continuous Categorical 

Continuous Factor 
Analysis (FA) 

Latent Profile Factor  
Analysis (LPFA) 

Categorical Latent Trait Factor 
Analysis (LTFA) 

Latent Class 
Analysis (LCFA) 

Source: own construction based on Bartholomew and Knott 1999. 

3. Latent Profile Factor Analysis (LPFA) against a background of 
other useful models 

Classical Factor Analysis (FA) is a popular used tool in market research 
where in a given set of manifest variables one wants to find a set of latent 
variables 1,..., ,kξ ξ  fewer in number than the manifest variables, which contain 
essentially the same information. Although FA is meant in general for continuous 
observed indicators, it is often used by researchers with ordinal models which are 
based on other types of discrete variables. This mistake yields in the end results 
that might be incorrect. Not only parameter estimates may be biased, but also 
goodness-of-fit indices cannot be trusted (Moustaki and Jöreskog, 2006).  

Latent Profile Factor Analysis (LPFA) differs from standard Factor Analysis 
mainly in the sense that the observed variables are either ordered categorical 
variables (e.g.: “very much”, “a little”, “not very much”) or measured on 
attitudinal statements (such as: “strongly disagree”, “disagree”, “agree”, “strongly 
agree”). These answers collected from survey fall into only one category. Such 
categorization makes the data of ordinal nature. However, as already mentioned, 
assumptions of ordinality of data in practice of market research is often ignored 
and numbers such as 1, 2, 3, 4, 5 representing ordered categories are treated as 
numbers having metric properties 1-2-3-4-5 which yields incorrect results. In 
consequence, ordered categorical data (which has for example number of five or 
seven categories) is by mistake of many analysts treated as if there were some 
kinds of interval level variables in it. Indeed, proceeding in that way with standard 
factor analysis allows them to compute correlations on the basis of so-called 
pseudo-continuous variables. Moreover, this uncritical approach to application of 
factor analysis associated with ordered categorical data is likely to give biased 
estimates of the factor loadings. Hence, the better solution in finding relationships 
between ordered categorical data comes with minor modifications of Item 
Response Theory Models where one assumes that the responses to the ordinal 
items are independent conditional on the latent variables (conditional 
independence) (Bartholomew 2002). For ordered-response categories (which 
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appear in LPFA) IRT models1 are definitely more informative and reliable than 
simply scored items by FA.  

However, IRT solution is not yet enough. In order to construct a good model 
of LPFA we need to focus additionally on Latent Trait Factor Analysis for binary 
data, where we usually analyze the probability of a randomly selected individual 
giving a positive response to an item as a function of the latent variables. In case 
of ordinal data, where more than two categories exist, we simply need to specify 
probabilities for each category. As a result the observed ordinal variables are 
denoted by 1,..., .px x  Let us suppose that there are mi categories for variable i 
labelled ( )1,..., .im For binary items mi = 2 (for each i) the category labels are 
usually denoted as 0 and 1 but they could equally well have been marked as 1 and 
2. In LPFA we need to redefine a response probability for each category. Let now 

( ) ( )Fi sπ  be the probability so that given F a response falls in category s  for i-th 
variable. The position with two categories can be then compared with the general 
case as follows: 

Categories 0 1     
Response 
probability 

( )1 fiπ−  ( )fiπ      

 
Categories 

 
1 

 
2 

 
… 

 
s  

 
… 

 

im  
Response 
probability ( ) ( )1 fiπ  ( ) ( )2 fiπ  … ( ) ( )fi sπ  … ( ) ( )f

ii mπ  

 
In both cases, the response probabilities sum to one. The question is now on 

how to use logit model (expressing the logit of probability of response in category 
as a linear function of f) for more than just two categories. Suppose we divided 
categories into two groups with categories ( )1,2,..., s  - into one group and 
( )1, 2,..., is s m+ +  - into other group and were merely to report into which of 
these two groups the response fall. We would thereby need to reduce the 
polytomous variables to a binary variable. Therefore, it seems reasonable to infer 
that any model we choose for polytomous case should be consistent with the one 
                                                           
1 IRT model(s) may be characterized by a few options such as (Embretson and Reise, 2000): Graded 
Response Model (Samejima, 1969), Modified Graded Response Model (Muraki, 1992), (which is 
used with questionnaires that have a common rating scale format (e.g., all item responses scored on 
a five-point scale). These two models are considered as “indirect” models because a two-step 
process is needed to determine the conditional probability of the response in particular category. The 
other remaining models are considered as “direct” IRT models because only a single equation is 
needed to describe the relationship between respondent response level and the probability of 
responding in particular category. Specifically there are two polytomous models that are extensions 
of the Rasch model, e.g. Partial Credit Model (Masters, 1982) and Rating Scale Model (Andrich, 
1978 a-b). 
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which we use also for the binary case. As a result, in order to make ordered 
categorical model (in LPFA) more effective, we need to apply binary logit model. 
To do so we must split the binary model where the probabilities of a response fall 
into the first and second group, which may be written as follows (Bartholomew, 
2002): 

                           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2f Pr f f ... f ,ii s i i i sy sγ π π π= ≤ = + + +              (5) 

and 

                     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 21 f Pr f f ,..., f ,
iii s i s i s i my sγ π π π+ +− = > = + + +       (6) 

where: s  denotes the category into which the -thi variable falls.  

( ) ( )fi sγ  - the probabilities are referred to as cumulative response probabilities . 

Next we need to define the model, supposing that binary logit model holds for 
all possible divisions of the mi categories into two groups. We can do this by 
specifying the model in terms of logit ( ) ( )fi sγ  or logit ( ) ( )( )1 f .i sγ−   

The model is thus expressed as follows: 

                                           

( ) ( )
( ) ( ) ( )

1

f
log ,

1 f

k
i s

ij ji s
ji s

f
γ

α α
γ =

 
= − 

−  
∑                               (7) 

where: ( )1,..., 1;  1,..., .is m i p= − =  

For a positive factor loading ijα  the higher the value of an individual on the 
latent variable ,jf  the higher the probability of that individual responding in the 
higher categories of item i. The intercept parameter ( )i sα  is one for each category. 
The ordering of the categories implies that the intercept parameters are also 
ordered: 

                                                  ( ) ( ) ( )1 2 ... .
ii i i mα α α≤ ≤ ≤                                        (8) 

In consequence the factor loadings remain the same across categories of the 
same variable. Otherwise, the discriminating power of the item does not depend 
on where the split into two groups was made. The 'sπ  are obtained from the 'sγ  
by: 

                                        ( ) ( ) ( ) ( ) ( ) ( )1f f fi s i s i sπ γ γ −= −        ( )2,..., ,is m=            (9) 

where ( ) ( ) ( ) ( )1 1f fi iγ π=  and ( ) ( )f 1.
ii mγ =  We refer to ( ) ( )fi sγ  as cumulative 

response function and to ( ) ( )fi sπ  as category response function.  
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4. Goodness-of-fit in Latent Profile Factor Analysis – (LPFA) 

The LPFA model should be fitted in the same way as the binary latent trait 
model using the method of maximum likelihood. Goodness-of-fit can likewise be 
judged using the same criteria based on the likelihood ratio 2G

 
and the Pearson 

chi-squared 2χ
 
statistics calculated from the whole response patterns as follows: 

                                                   
2

1
2 log i

i
i i

OG O
E=

= ∑                                           (10) 

                                                    
( )2

2

1

i i

i i

O E
E

χ
=

−
=∑                                          (11) 

where iO  and iE  are the observed and expected frequency of response pattern .i  
When the sample size n is large and p small, the statistics under the hypothesis 
that the model fits follow a chi-square distribution with degrees of freedom the 
number of response patterns minus the number of independent parameters minus 
one. As the number of items increases, the chi-square approximation to the 
distribution of either goodness-of-fit statistic ceases to be valid. Parameter 
estimates are still valid but it is difficult to assess the model. 

The goodness-of-fit in Latent Profile Factor Analysis can be also assessed by 
looking at the two or three-way margins. The pairwise distribution of any two 
variables is then displayed as a two or three-way contingency table, and chi-
squared residuals are constructed by comparing the observed and expected 
frequencies. The differences are computed using 2G

 
and 2χ  statistic. If there are 

small differences, it means the associations between all pairs of responses are well 
predicted by the model. 

5. Example on construction LPFA one-factorial model in reference to 
hedonic consumption data 

For demonstration purposes the data set that was extracted from the earlier 
study conducted by the author (Tarka, 2010) was prepared. The data included the 
responses given by 232 individuals to four below listed items concerning attitude 
to hedonic consumption-oriented lifestyle. For each item (statement), respondents 
were asked the following response alternatives based on four-point scale: [1] = 
strongly disagree, [2] = disagree to some extent, [3] = agree to some extent, [4] = 
strongly agree. And the chosen questions were given: 

1:  I’m money-oriented person and looking for wealth in my life [money] 
2:  I’m striving to be free in my private life with no family frontiers [freedom] 
3:  I’m having a good time and enjoying only things I like and prefer [party] 
4:  I’m looking for adventurous and risky life [full of  life] 



178                                                                               P. Tarka: Model of latent profile … 

 

 

The output of the one-factor analysis for above ordered categorical data is 
given below. For calculations the author used LAMI software which contains an 
interface that allows users of the GENLAT and LATCLASS programs to run their 
analyses conveniently than using the original DOS programs directly. The 
program fits a latent trait model for ordinal observed variables with up to two 
latent variables. The program computes parameter estimates, standard errors, chi-
squared residuals, and scoring methods.  

In order to start program input file parameters were specified as follows: 
One-Factorial Model = 1 
  Number of Observed Variables = 4 
  Number of Ordinal Variables = 4 
  Number of Cases Sampled = 232 
  Proportion of Response Patterns with at Least One  Missing Observation = 0,00 
  Number of Quadrature Points Used = 8 
  Maximum Number of Iterations Permitted = 2000 
  Convergence Tolerance For The Relative Likelihood  Value =  0.00000000 
…………. 
NFAC: Number of factors (1) 
INIT: 0 if the initial parameter values are set in the program or 1 if  the initial 
parameter estimates are to be read from file 
ITER: Number of iterations (maximum is 2000) 
PREC: Precision for maximization (e.g. 0.0000001, convergence tolerance of  the 
EM algorithm) 
SCOR: 1 if scoring results to be printed, 0 otherwise. 

Source: Own construction based on LAMI software. 

Finally, we obtained the following estimated scores (according to printed 
version in LAMI software. These results are shown in Tables 3-8. From Table 3 
we can observe that percentage of individuals agreeing to some extent or agreeing 
strongly (categories 3 and 4) is larger as compared to other two response 
categories denoted by 1 and 2. Having inspected the results (in case of binary 
data), we looked at pairwise associations between four mentioned above items 
which suggest there exists some real common underlying factor including all four 
items. They can be considered as indicators for measuring respondents’ attitude to 
lifestyle based on hedonic consumption.  

Table 3. Items – category frequencies 
Item   1 
             1   0,0043103 
             2   0,0689655 
             3   0,6810345 
             4   0,2456897 

Item   2 
             1   0,0732759 
             2   0,2413793 
             3   0,5689655 
             4   0,1163793 
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Table 3. Items – category frequencies  (cont.) 
Item   3 
             1   0,0431034 
             2   0,1810345 
             3   0,5474138 
             4   0,2284483 

Item   4 
             1   0,0387931 
             2   0,2413793 
             3   0,5172414 
             4   0,2025862 

Source: Own calculations based on LAMI software. 

Also the parameters and standard errors based on maximum likelihood 
estimates for particular categories associated with respective items (Tab. 4) 
indicate that the strongest relationships appear mainly in the third category 
containing positive values and smaller standard errors (S.E.). This result simply 
means that third category of the respective item (I) will compose to a greater part 
our considered one factorial-model.  

Table 4. Maximum likelihood estimates of item parameters and standard  
               errors (S.E.)  

Item Category (I - Item,  
J - Factor) S.E 

     1            1            -5,888          6,498 
     1            2            -2,920          2,523 
     1            3             1,328          0,328 
     1            4            -3,420          3,613 
     2            1            -3,035          1,059 
     2            2            -1,003          0,743 
     2            3              2,481         0,371 
     2            4            -2,820          1,583 
     3            1            -4,587          1,876 
     3            2            -2,019          1,304 
     3            3             1,964          0,369 
     3            4            -4,423          3,523 
     4            1            -3,616          2,470 
     4            2            -1,112          0,803 
     4            3             1,624          0,314 
     4            4            -1,920          0,423 

Source: Own calculations based on LAMI software. 

Now, if we decide to fit this type of one-factor model based on hedonic 
consumption data, we need to obtain the estimates given in Table 5. The Alpha’s 
are simultaneously representing factor loadings. They are defined in the literature 
as discriminating parameters. If the values of factor loadings are large and they all 
are positive but the standard errors are small, then there is an underlying factor 
which is common to all items. And this is purely visible in our case. The high 
values of standardized loadings (Table 6) also suggest that the single factor model 
provides a good explanation for all four ordinal (ordered categorical) items, 
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especially for item number 3. However, before putting too much weight on this 
conclusion, we need to look at how well the model fits.  

Given the sparsity of the data (at total frequency of 232 spread over multiple 
response categories), it is not feasible to carry out global tests. Instead, we need to 
look at the fits to the margins. Therefore, for each pair of items, (see Table 7) we 
need to calculate the sum of the chi-squared residuals over each pair of item 
categories. Sixteen chi-squared residuals for each pair of items were generated, 
since each variable had four response categories. 

Table 5. Alpha as factor loadings and standard errors (S.E.) for items  
Items Alpha(1,I) S.E 

     1                0,982            0,241 
     2                1,167            0,313 
     3                2,009            0,398 
     4                1,000            0,212 

Source: Own calculations based on LAMI software. 

Table 6. Standardized Loadings for items 
Items St. Alpha(1,I) 
      1            0,7008 
      2            0,7592 
      3            0,8952 
      4            0,7072 

Source: Own calculations based on LAMI software. 

Table 7 shows how the entry 20,47 (due to calculations based on two-way 
margins of selected items “Money” and “Full of Life” of Table 8) is computed. 
The sum of the entries of Table 8 is 20,47. In similar way we computed the sums 
of chi-squared residuals for other two-way tables including another pairs of items. 
In order to confirm if the model is correct, we need to check the chi-squared 
residuals. Values greater than about 4 would indicate a poor fit. For instance, as 
observed from Table 8, values larger than 4 do not appear. For the best part of 
cells they are considerably below 4. In other words these associations make up a 
good configuration for our items in the model.  

Table 7. Sum of chi-squared residuals for all pairs of items derived from the two-
way margins for one-factorial model 

Items Money Freedom Party 
F.o.life 20,47 10,58 23,32 

Money  17,21 12,45 

Freedom   9,56 

Source: Own calculations based on LAMI software. 
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Table 8. Chi-squared residuals for the two-way margins of selected pair of items 
“Money” and “Full of Life”  

Category Money 1 2 3 4 
F.o.Life  1 0,87 1,65 0,34 0,90 

 2 2,40 3,40 2,10 1,09 
3 2,34 1,13 1,09 0,56 
4 1,02 1,30 0,21 0,94 

Source: Own calculations based on LAMI software. 

Since the sum of these residuals over all the cells in a two-way marginal table 
is analogous to Pearson’s chi-squared statistic for goodness-of-fit, but because the 
model has been fitted to the full multi-way table, the standard chi-squared test 
does not apply. We may still use this sum, as a diagnostic, e.g. D. Larger value of 
D would then suggest that the associations in two-way table are not well 
explained. As a rule of thumb that D is too large we need to take into account 
value that is greater than upper 1% point of a chi-square distribution with 

( ) 1i jm m × −   degrees of freedom. And as observed from the results (Table 7), 
each pair of all analyzed six entries has values of D less than 28,58 (the upper 1% 
point of chi-square with 15 degrees of freedom). Therefore, the fit to each two-
way marginal table (pair of item) appears satisfactory. Overall, the one-factor 
model appears to give an adequate description of data. Therefore, we can use this 
factor as a summary measure of attitude to hedonic consumption issues.  
 

6. Conclusions 

Latent Profile Factor Analysis (LPFA), being a part of four latent variable 
models, is a powerful and useful tool for researchers. However, this model has 
been languishing too long on the borders of statistics and most importantly in 
research practice. It is slowly and surely taking its right place in the main stream, 
stimulated in part by the recognition of its greater value and sound foundations 
which have been given to it within a statistical framework. Assuredly, this new 
solution clarifies, simplifies and reduces broad data as far as the ordered 
categorical responses are concerned into more simple form than the previous 
model based on classical factor analysis. LPFA model would not be for sure 
possible without earlier progress of Item Response Theory which supported to 
a greater extent the development of Latent Profile Factor Analysis. 
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