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IMPUTATION OF MISSING VALUES BY USING
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ABSTRACT

The estimation of population parameters might be quite laborious and inefficient,
when the sample data have missing values. In comparison follow-up visits, the
method of imputation has been found to be a cheaper procedure from a cost point
of view. In the present study, we can enhance the performance of imputation pro-
cedures by utilizing the raw moments of the auxiliary information rather than their
ranks, especially, when the ranking of the auxiliary variable is expensive or difficult
to do so. Equations for bias and mean squared error are obtained by large sample
approximation. Through the numerical and simulation studies it can be easily un-
derstood that the proposed method of imputation can outperform their counterparts.
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1. Introduction

In survey sampling, the common problem which is faced by most of social sciences,
economic and scientific studies is the item or unit non-response or missing values.
The main reason of the non-response is the sensitive or embarrassing nature of
the questions which are relevant to the variable of interest. Usually respondents
hesitate to respond to questions related to the sensitive issues, such as age, in-
come, tax returns etc., or due to summer vocations remain a problematic issues in
survey sampling. The best available sources need to be utilized for reducing the
non-response rate as much as possible. In most of social studies, item or unit non-
response mislead the researchers about the effective inference about the problem
of interest. Usually the missing values can create a problem, when the follow-up vis-
its are expensive, population is highly dispersed over the frame or difficult to reach.
Alternatively, imputation is the most cheapest and easiest procedure to impute the
non-responses by appropriate use of the auxiliary information, which is correlated
with the variable of interest.

In the last few decades, several methods of imputation have been proposed to han-
dle out such problems in an effective manner. Among them Rubin (1976) was the
first who considered a comprehensive examination of non-response and explain
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the different models under which it would occur, such as missing at random (MAR),
observed at random (OAR) and if the prior distributions are specified (PDS). Heitjan
and Basu (1996) and Ahmed et al. (2006) provided different imputation procedures
by correct use of the auxiliary information after Rubin (1976). The problem of non-
response under ranked set sampling, when the ranking of observation units is inex-
pensive was discussed by Herrera and Al-Omari (2011). They consider the problem
of missing values under the hot deck (HD) imputation strategy by the significant use
of supplementary information. Grover and Kaur (2014) provide an alternative esti-
mation procedure by combination the features of the proposed estimators by Rao
(1991) and Bahl and Tuteja (1991) to provide better results than existing ones. An
extensive discussion on item and unit non-response was considered by Little and
Rubin (2014) in their text. They explained a different method of imputation in sig-
nificant manners with suitable real life examples. Recently, Mohamed et al. (2016)
provided an efficient model for handling the problem of non-response by using multi
auxiliary information. Haq et al. (2017) suggested an estimation procedure for the
estimation of population mean by using the ranks of the supplementary information.
Sohail et al. (2017) considered the problem of scrambled non-response for the es-
timation of population mean and suggested a class of estimators by modifying the
existing ones.

Motivated by Mohamed et al. (2016) and Sohail et al. (2017), in the present study,
we appraise the problem of missing completely at random (MCAR), i.e. the prob-
ability of obtaining the response from i unit does not depend on x;, y; or survey
design and the respondents units are representative of the selected sample for the
estimation of population mean. The objective of the study is to provide an alterna-
tive procedure for those situations where the ranking of the auxiliary information is
expensive or difficult to create. The proposed model not only provides more better
results in terms of efficiency than Grover and Kaur (2014) and Haq et al. (2017)
estimators but is also easier to understand than others.

The rest of article is structured as follows: In Section 3, we discuss some ex-
isting estimators in the literature for the imputation of missing values. In Section
4, we propose an estimator by utilizing the second raw moment of the auxiliary
variable for imputing the missing values. The numerical and empirical studies are
considered in Section 6. We conclude our study in Section 7.

2. Notations

Let r* be the total number of the respondents (individuals or items) who belong to
group G in sample (s) and (n —r*) are those who do not provide the respond, are
belong to group G°. So, s = GUG®, and it is also assumed that ¥; = L y/_, ¥; is the
sample mean of the study variable obtained from respondent units in group G.
LetX =¥}, X;/N,R=Y_R;/N and U =Y\, U;/N be the population mean of
the auxiliary variable, rank variable and second raw moment, respectively, and also
let £« = Y xj/r*, Fpe = Xy /" @and @i = Y u;/r* be the sample mean of the
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auxiliary variable, ranked variable and second raw moment, respectively, from the

respondent group.
For evaluating the mathematical expressions for bias and mean square error of the

existing and proposed estimators, we defined some useful notations as follows:
Let

?* X 7y I,
ep = ;—1, 61:);%—1, 83:%—1, 65:%—],SUChthat
E(e;)) = 0 for i=0,1,3,5.
and
E (e‘%) = Qr*,NC}%, E (E%) = Qr*7NC)%,, E (E%) = 9r*7NC3, E (6%) = 9,*7NC§,
E(eger) = 0p npyCiCy, E(eoe3) = 0 npryCyCr,  E (eges) = 0y nPuyCuCy,
E (616‘3) = er*,prerCh E (6165> = r*,pruCuCXa E <6385) = er*.,Nmequ
where
1Y o? Se 11
T = — T C2 = 71’ = v y 9 * = _——— s
Nj; poS T PvT g TNT TN
1 N - _
Sty = N_1 j:l(rj—r)(wj—wL where 1,y =R U, X,Y.

3. Some Existing Methods of Imputation

In this section, we discuss some existing methods of imputation, which are available
in the literature and commonly used for estimation of the population mean. These

are defined below.
e Under mean imputation approach

N Y, if jeG
I (1)
Y« if jeGC,

The point estimator for population mean (Y) is given by
. 1 r . n—r* . R
YM:[ZY]A—ZYJ}:Y,* (2)
oy =1
The variance of the mean estimator is given by:

Var(Yy) = 6, NY2C )



24 M. U. Sohail, J. Shabbir, F. Sohil: Imputation of missing...

e Cochran (1940) suggested the ratio estimator for the estimation of the population
mean. We can rewrite it for imputing missing values as:
Y; if jeG

?': 7 — 2 4
! ! |:§:jX_f]Yr*:| if jeccv ( )

1=fi

where f; = ’; and X are the population mean of the auxiliary variable. The point

estimator is given as: .
N X
Y, =Y —. (5)

X

>

The ratio estimator is conditionally more efficient as compared to the mean estima-
tor when the correlation between y and x is positive. The bias and the mean square
error are given by

Bias(Y) = 6, v ¥ (Cf — pyxcycx> (6)
and
MSE (Yg) = 0,572 (cf +C2— 2pyxcycx) . 7)

e Bahl and Tuteja (1991) proposed the ratio-exponential type estimator for imputing
non-response, is expressed as:

)7,- if jeG
?- = X % P S P (8)
! = f [Y + exp (; Xr*> le,*} if je G,
The point estimator is given by:
a 2 )2 Xyp*

with bias and mean squared error

3

Bias(Y,, )= 6T (8

LpuGiC ) (10)
and

. 1
MSE(Yp7_g) = ~6,n7?( 4C2 +C2 — 4p,C\Cy ). (11)
4 p
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The product-exponential type estimator for imputing the missing values is given by

R f/j if jeG
Y= . (12)
f Yr* exp ler* if jeG°,
The point estimator for the population mean is given as:
a a2 _)z * —}_(
Y, »=Ye-exp ()E:* +X>. (13)
The bias and mean squared error of Ysr_p are
. % ~ vV 1 3 2
BlaS(YB,TﬂD) = 9,*7NY EpynyCx — ng . (14)
and
1 _
MSE(Y,, )= Z9,*_NY2 (4cy2+c§+4pyxcycx>. (15)
e The conventional difference estimator is defined as:
R f/, if jeG
Y= (16)

= [Yr*—kk(X %) — fi,*] if jeGe,

where k is an un-known constant. The point estimator for the population mean is
defined as:

?DZIA"r* —&—k()?—ir*). (17)
The optimum value of k i.e. kyp. = pyx(Sy/Sx). The minimum MSE(?D) is given by
MSE (YD) min. == 6+ yT2C2 (1 - pf,x> . (18)

¢ Rao (1991) difference type estimator can be reformulated for imputing the missing
values, as:

Lo

if jeG

Y‘: 2 .
= V¥ + Vo (X — %) — le,*} if jeGe,

(19)

where v; and v, are unknown, which are to be determined. The point estimator ¥;
is given by:

Yrp = ViFr + Va(X — % ). (20)
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The optimum values of v, and v, are
1 YCipyx

and Va(opt.) = : .
1—|—9r*,NCy2<1 —p}?x> XCx<1+6r*_yNCy2.(1 —p)%x)>

Vi(opt) =

The bias and MSE(Yz p)min. are given by
Bias(¥y,) = 07 (ki — 1) 1)

and

0,-nY2C? (1 — p}?x>

1+ 6,-8C5 (1 - pgx)

MSE (YR.D)min. =

e In line with Grover and Kaur (2014), we can reformulate the given procedure for
the imputation of missing values, as:

¥ if jeG

N I 5 o

Y=< ) [(OﬂYr* + (X —x,*)) X (23)
exp <m> _ler*:| if jeGe,

where a; and o, are the suitably chosen constants, where a and » are known
parameters of the auxiliary variable, see Table 1, which is described below. The
point estimator for the population mean is given as:

5 s — a(X —x)
Y* = Y, X — % —_— . 24
oK [al X =5 )} xp L{(XJr)Er*)Jer] (24)

The optimum values of o; and o, are defined as:

o 8=0-N0CF
1(opt.) = 8[1+ 9,*7NC}2,(1 _ P}%{)]

and

Y[6, NOC} +8Cypyx — 6,2 O CiCypy — 40C{1 — 6,2 NC (1 — Py ) }]
BXCy[1+ 0, NC2(1—p2)]

X (opr) =
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_ X H Ox i H .
where 6 = 2. The bias of ¥ is given as:

2

_ 3 _
Bias(Y ) = 6 nY [(al —1)+ 6, N0 Cy (Cx — pyny)} + 6,*1N9a2XCf. (25)

GK 2

Substituting the optimum values of a; and a,, we get the minimum mean squared
error of ¥__as follows:

0,0 N T2 [64%2’(1 o)~ B n6°G }
" — 166, yO2C2C2(1—p2)
64[1+ 6,- NC2(1 — p2,)]

MSE(Y, Yimin. (26)

e Following Haq et al. (2017), the imputation procedure for imputing the missing
values is defined as:

?j if _]SG
= d | (B +BX =)+ R =7 @)
exp <m> —flffr*} if jeG©,

where f,, and B; are the unknown constants, these constant values are deter-
mined by minimizing the resultant mean squared error. The point estimator for
procedure given in (27) is given as:

By = (B + Ba8—5)+ paR— ) fexp { ST T ey

The optimum values of B;, 3, and 35 are given by:

; B 8 — Gr*,NQZC)%
L(opt.) — 8[1+ 9r*,NC%(1 7p)2x)} 7

7 6,*1N93C3(—1 + p)%,x) + (_8Cy + er*,NGZC)%Cy)(pyX
ﬁ = _erxpyrx)““‘ec)c(_l +pX2”)r)[_1 +6’*~Ncy2(1 _pi’”x)]
2(opt.) 8XCi(—1+4p2, )[1+ 6, NC}H(1 —p2.,.,)]

and

— ):/(8 — 6, N07C)Cy (ParePryx — Pyr)
8RC,(—1+pg, )1+ 6 NC3(1—pR)]

B3(0pt.)

2 2
2 Py TPy —2PyxPyry Pr.

where pg,, = == mlfp%r —
X

and R.

is coefficient of multiple determination of ¥ on X
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The bias and minimum MSE(f’Haq_) are given as:

Bias(¥;, ) = <[ 87440, NOC(RCHi +UCspn)
+Yﬁ1 {8 + er*,NBCx (3 9Cx - 4Cypxy) }} . (29)

and

9 * NYZ 64C3(1 — p)zy‘xrx) — er*7N94C?
e, — 166r*N62C)%C3(1 _p}%xr,\‘)

MSE(Y" )pin.
( Haq,)mm- 64[1 + Qr*ﬁNC}%(l — p}%xrx)]

(30)

In Section 4, we propose new procedure for imputing the missing values by utilizing
some extra auxiliary information like raw moments.

4. Proposed Method of Imputation

Correct use of auxiliary information about the study variable can enhance the per-
formance of the estimation procedure. If the study and auxiliary variables are cor-
related with each other, then the second raw moment of the auxiliary variable is
also correlated with the study variable. The utilization of the second raw moment is
more effective than ranking, especially in those situations, when the ranking of the
auxiliary information is done at high cost or is difficult. On the basis of this logic, we
propose a new class of the estimators for imputing the missing values by utilizing
the second raw moment of the auxiliary variable for the estimation of finite popula-
tion mean. The suggested class of estimators can incorporate the supplementary
information in the form of the second raw moment. Let p,, = S../(S:S,) be the cor-
relation coefficient between X and U.

The imputation procedure for the use of the second raw moment of the auxiliary
information is described as follows:

Y; if jeG
. 1 5 v _ o 7
7= mm[{"lyr*+"2(xxf*)+k3(‘f“r*>} (31)

The point estimator for the population mean for using the above mentioned imputa-
tion procedure in (31), is defined as:

2*7 _ o = 5= Q(X*)Er*)
YP’_f{klyr*Jrkz(X B) ks (O ur*)}exp{a(X+Xr*)+2b}. (32)

where ky,k, and ks are suitably chosen constants, which can be determined by min-
imizing the mean square error. We can rewrite the proposed estimator for imputing
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the missing values in terms of error as:

A _ _ _ 6 3
Y;‘ = <k1Y(l+eo)—k2Xel—k3Ue5) (1—2614-8928%).
"1

The bias of the proposed estimator is:

1%

Bias(¥?) é [ — 87 +46,- OC, (Xkal +UCks p,,x)
Yk {8 + 6, N OC, (39@ _ 4Cypw) H . (33)

The mean squared error of the proposed imputation procedure is given as:

¢

MSE(T;) = 7240, NXCio( ~ 760+ Xk ) + 6, NOCIHE + 6, NOCC,
(=70 -+2%Kk ) + 7231+ 6w {CP +6C (6C. 20,0, ) }
1 ] o ]
+5 7k [ 87+ 6. vC{6C. ( — 370+ 8%k ) +8T0C ks
+46,(7 = 2%k2 ) piy | — 8UC.C, 00 kapuy . (34)

The optimum values of the unknown constants [k;fori = 1,2,3.] are determined by
minimizing (34), which can be expressed as:
r B 8— 9,*7N92C§
1(opt.) — 8[1 +9r*7NC)%(1 _p}%()]a

7 [ 0N G (=14p5,) + (=8C, + 6, N6 CIC)) (Pyx — P Py
. +46Cx(_1+px2ux){_l+er*7NC)%(1_p)%xux)}
opt. 8XCe(—1+p2, )1+ 6, ¥C3(1— pZy,.)]

ky

and

k _ _(8*er*,NGZC)%)Cy(pxuxpyx*pyux>
3Ort) = 8UC,(—1+p2, )1+ 6, NC2(1—p2)]

2 PR+ 2Py Pyux Py i ; ; ;
where py,, = = T 18 coefficient of multiple determination of Y on X

and U in simple random sampling.

72 64C(1—p;i ) — B NO'CY
—160,y6°CIC3(1—p},,.)
64[1 + GV*«,NC)Z*(I - p)%xux)]

er* N

MSE(Y:,)mm =
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Table 1: Some special cases of existing and proposed imputation methods

a b v, v
T
. S
1 S S A
N ' S A A9 v
1 Pxy ?gk ¥ Ijuq. ¥ Psr
RS A T
A A A 7
1 SR A A
P NX B BB
tONEF0 g g

5. Efficiency Comparison

Here, we define the regulatory conditions under which the proposed estimators can
perform better than their existing estimators, which are given by

o

(i) By (26) and (35), MSE(¥,, ) —~ MSE(V*) > 0, if

Puy > PruPry — \/ Pry (1= p2,) (1= pay).- (36)
(ii) By (30) and (35), MSE(Y,,, ) —MSE(¥*) > 0, if

—p2 _
(1 pxu) (pwy pxwpx)’) (37)

uy > + PxyPru-
p} V 1_p)%w pﬂp

Conditions (i) and (ii) are satisfied, then the proposed estimators for imputing the
missing responses perform better than their counterparts.

6. Application

For the relative comparison of the proposed class of estimators with existing ones
in terms of efficiency, we consider real life as well as simulated data, sets which are
discussed in the following subsections.
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6.1. Numerical Study

We consider the following four real life data sets for the practical application of the
proposed class of estimator and obtained the percentage relative efficiencies of the
existing and proposed estimators. The data description is given below as:
Population 1: [Source: Singh (2003)]

y= Estimated number of fish caught by marine recreational fishermen in year 1995
and x = estimated number of fish caught by marine recreational fishermen in year
1994,

N = 69,n=40,7 =14.0225, X = 147.0425, R = 100.5, U = 28955.59,

Sy = 27.22185,5; =7370.95, S, = 33505, = 653591180, Sy, = 350.3902,
Sy = 98116.68S,, = 2123923, S,, = 234.8867, S,,, = 4959.526, S,,,, = 1438183,
Py = 0.7822, p,y = 0.7355817, pyy = 0.7778165, Py, = 0.967662, pyyy = 0.97193,

pwx = 0.998058

Population 2: [Source: James et al. (2013)]
y= total sales and x = expenditure on TV advertisement

N = 200,n=40,Y = 14.0225, X = 177.5965, R = 100.5, U = 73653530,

S; = 27.22185,5; =8057.097, S; =4.4¢"'° S, =376.3316, S,, = 98116.68,
Sw = Lde™? S, =94080.28, S, = 106830.7, S, = 1.4e'2 p,y = 0.9601,
Puy = 0.8554,p,, = 0.7689, py, = 0.9283, p,,, = 0.5208, p,,x = 0.75434

Population 3: [Source: James et al. (2013)]
y= Income and x = education

N = 30,n=15Y =16,X =50.1455, R = 15.5, U = 2946.634,

Sy = 132712, 57 =446.9652, S;, = 77.55; = 4340687, S, = 74.31184,
Sy = 734401, S, =43477.52,S,, = 30.7390, S,,, = 106830.7, S, = 18115.9,
Py = 0.9648, p,y = 0.9676,p,y = 0.9584, py,, = 0.9283, p,,, = 0.9870,
Pux = 0.9925

Population 4: [Source: James et al. (2013)]
y= Income and x = education + seniority

N = 30,n=15Y =15.5,X=110.2483, R=15.5,U = 15249.32,

Sy = 729.7176,5; =3201.347, S, =77.5, S; = 179829664, S, = 872.8027,
Sy = 186487.9, 8, =741453.5,S,, = 130.5645, S, = 491.1011, S,,,, = 1438183,
Py = 0.5710, pyy = 0.5148,p,,,, = 0.5490, p,,, = 0.97720, p,,,, = 0.9494,

Pwx = 0.98594
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For the relative efficiencies of the proposed and existing imputation procedures, we
consider the following expression:

 Var(Yy)

PRE() MSE(¥;)

for k=G.K,Hagq., Pr. (38)

To check the relative performance of the given procedures, we consider the re-
sponse rate between 25% to 80% in all of the four populations. By the use of varying
response rate, we are able to illustrate the relative performance of the imputation
procedure in an significant way. Based on the results given in Table 2 and 3, we
conclude that the estimator f/GK, )Q’Huq_ and f/p, remain better as compared to Y.
At varying response rate, the inter-class efficiency of the available estimators is
varying slightly over their entire range. After observing Table 2 and 3 in detail, we
can say that there exists an inverse relationship between the response rate and
PRE’s. At low response rate, all the given estimators can perform better as com-
pared to the mean estimator than a high response rate. For intra-class efficiency,
we can observe that the proposed estimators can outperform the existing estima-
tors. At the response rate (25%), PRE of the ?GK, and Y,, is 1411.1340,1502.4550
and 261.4669,262.9224 for the first and second population, but at the same point
PRE of )A’, is 1608.0930 and 266.3743 respectively. In population 3 and 4, PRE
of the existing one is 1507.4520,1508.4190 and 154.8800, 156.4693 respectively. The
PRE value of the suggested estimator is 1741.5110 and 164.7871 respectively.
Overall, we can say that, the utilization of the second raw moment of the auxiliary
variable has significant effect on the estimation of population parameters rather
than utilizing the ranks of the supplementary information, even when the ranking of
the auxiliary information is inexpensive.

6.2. Empirical Study

An empirical study of any strategy or procedure is helpful to draw the actual picture
of the performance for the respective phenomena by assuming some known value
of the population parameters. For empirical illustration of the existing and proposed
methods of imputing non-response, we consider the following steps to generate the
artificial data sets, which are defined as follows:

e We can generate first two artificial data sets by using the bivariate normal popu-

2
lation with mean A = { Ha } and varianceV = [ Ox "Xg’ ] and last two data sets
My Oxy Oy

a

are generated by using the gamma distribution with Q= [ b

] under following para-

metric values:
o Artificial Data Set 1:
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Table 2: PRE(.) of the existing and proposed estimators by real life data sets

Population 1 Population 2
” Estimators f’gK :I:aq. ﬁp*r f/gk :;quv i,*,
10 ¥ f’,la.,, ¥l 14111340 15025440  1608.0930 261.4669 262.9224  266.3743
72 12 72 12955650 1375.8530  1468.0350 258.8331  260.2699  263.6769
v Q;“q. Y3 1411.2400 1502.6620  1608.2260 261.4941 262.9498  266.4023
v jjm ¥4 12956230 1375.9150  1468.1010 258.8329  260.2696  263.6767
7S T3 FS 14111680 15025820  1608.1360 261.4577 262.9132  266.3649
ve. 5. ¥S 14111900 15026060  1608.1630 261.4323 262.8875 266.3388
Pl ¥ ¥ 14111200 15025300  1608.0870 261.4594 262.9149  266.3666
5 Qgﬂq» S 14112400 1502.6620  1608.2260 261.4941  262.9498  266.4023
7. o Ve 12955600 1375.8480  1468.0300 258.8330  260.2697  263.6768
vl f/,;gq. Y10 12955170 13758020  1467.9810 258.8331  260.2699  263.6769
20 ¥ A,la., ¥l 1331.6930 14162790  1513.6120 259.2250  260.6695  264.0950
Y Y. Y 12864050 1366.6910  1458.8710 258.1407  259.5774  262.9845
v Q;m Y3 13317320 14163220  1513.6610 259.2361 260.6807  264.1064
v jjm ¥4 12864290 13667170  1458.8990 258.1406 259.5773  262.9844
7S ¥a. ¥S 13317060 14162930  1513.6280 259.2213  260.6657  264.0912
e 5. ¥S 13317140 14163020  1513.6380 259.2108  260.6552  264.0805
Pl ¥ 7] 13316910 14162770  1513.6100 259.2219  260.6664  264.0919
5 530., S 13317320 1416.3220  1513.6610 259.2361 260.6807  264.1064
v Tp. ¥ 12864030  1366.6890  1458.8690 258.1406 259.5774  262.9844
Pl E0 70 12863850  1366.6700  1458.8490 258.1407 2595774  262.9845
3 7l P 7l 13069350 1389.4510  1484.3000 258.4836  259.9244  263.3413
720 12 72 12833520  1363.6380  1455.8170 257.9099  259.3466  262.7537
v Q;aq Y3 1306.9560  1389.4730  1484.3250 258.4895  259.9303  263.3473
v jjm ¥4 12833650 1363.6510  1455.8310 257.9098 259.3466  262.7536
P i TS 1306.9420  1389.4580  1484.3080 258.4816  259.9224  263.3392
Fe. ¥e. VS 13069460  1389.4620 14843130 258.4761  259.9169  263.3336
Pl ¥ V] 13069340  1389.4500  1484.2090 258.4820  259.9228  263.3396
P8 ¥ ¥S 13069560  1389.4730  1484.3250 258.4895  259.9303  263.3473
7o, ¥p. ¥e 12833510  1363.6370  1455.8160 257.9099 259.3466  262.7536
plo pl0 pl0 0 12833420  1363.6270  1455.8050 257.9099 259.3466  262.7537
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Table 3: PRE(.) of the existing and proposed estimators by real life data sets

Population 3 Population 4
P Estimators f’gk f’;aq_ ﬁp*r f/gk 2;% i,*,
4 P ¥ 7L 1507.4520  1508.4190  1741.5110 154.8800  156.4693  164.7871
PR 12 72 14406250 14505270  1667.1470 152.4071  153.9680  162.1362
3 Ta. ¥3 15002460 15102150  1743.8630 152.4055  153.9664  162.1345
vaoo ¥h. Vi 14406130 14505150  1667.1330 154.9062  156.4958  164.8154
v5. Y3 Y5 15052450  1506.2100  1738.6210 154.8770  156.4663  164.7840
o Y5 ¥S 15003310 1501.2000 17321930 154.8499  156.4388  164.7547
¥ ¥l ¥l 1507.3880  1508.3550  1741.4270 154.8606  156.4496  164.7662
PR ¥R VS 15002450 15102140  1743.8610 154.9062  156.4958  164.8154
P ¥a. ¥ 14496240 14505260  1667.1460 152.4057  153.9666  162.1346
PO E0 710 14496240 14505270  1667.1470 152.4071  153.9680  162.1362
8 ¥l Iy ¥, 14728720 1473.8010  1697.1490 1511097  152.6824  160.9131
PR Y2 ¥l 1448.9680  1449.8710  1666.4890 150.0889  151.6498  159.8179
V3 Ta.  ¥3 14735070 14745270  1698.0940 150.0883  151.6492  159.8172
Fhoo ¥h. Vi 14489630  1449.8660  1666.4830 1511204  152.6933  160.9246
¥S. Y3 ¥S 14719800  1472.9080  1695.9870 1511085  152.6812  160.9118
e ¥ VS 14609870 1470.9130  1693.3920 151.0974  152.6700  160.8998
Pl ¥ V] 14728460 14737750  1697.1160 151.1017  152.6744  160.9045
PR ¥R VS 14735060 14745260  1698.0930 1511204  152.6933  160.9246
¥, ¥a. ¥ 1448.9680  1449.8700  1666.4890 150.0883  151.6492  159.8173
PO EN0 710 14489680  1449.8710  1666.4890 150.0889  151.6498  159.8179
12 ¥, ¥ 7, 14616890 14626060  1682.8530 149.8684  151.4358  159.6378
PR 72 P2 14487490 14496520  1666.2700 149.3162  150.8771  159.0451
e Ta.  ¥3 0 14620780  1462.9950  1683.3500 149.3159  150.8768  159.0448
P4 i Vi 14487460 14496490  1666.2670 149.8742  151.4416  159.6440
Y3 ¥s. V3 14612000 14621260  1682.2290 149.8678  151.4351  159.6371
ve, Y5, Y5 1460.1370  1461.0520  1680.8350 149.8618  151.4290  159.6306
Pl ¥ ¥l 14616750 14625920  1682.8350 149.8641  151.4314  159.6332
P ¥S.¥S 14620780  1462.9950  1683.3590 149.8742  151.4416  159.6440
Fo. o ¥h 14487490 14496520  1666.2700 149.3159  150.8768  159.0448
PO 70§10 14487490  1449.6520  1666.2700 149.3162  150.8771  159.0451
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o Artificial Data Set 2:

o Artificial Data Set 3:

[ 2
Q= 4
o Artificial Data Set 4:
4
Q= 6

The main purpose of generating the two different data sets from the same distribu-
tion is to find the pattern of PRE with respect to their parametric values. In Data
sets 3 and 4, the study variable is generated as y = (ry, x x) +e, Where e ~ N(0,1)
and ry, is the sample correlation coefficient between y and x.

e Here, we can select the sample of size n form N units, randomly, and select ran-
domly r units out of n sample units and impute the dropped units by using the above
mentioned imputation procedures, then compute the relevant statistics.

e Repeat the process 30000 (say H) times and obtain the value of ¥;*. The mean
squared error of the given estimator is obtained by using the following expression,
as:

H 2
mse() = 13 (-7 (39)
i=1
At the specified values of parameters and n = 50, the behaviour of normal distri-
bution, gamma distribution and self-generated study variable is shown in Appendix
(Figure: 1). By utilizing the artificial data sets, mean squared errors of the given pro-
cedures are reported below. On the behalf of numerical findings, which are reported
in Tables 4 and 5, we see that the relative performance of the existing and proposed
imputation method is similar to the reported results in Table 2 and 3. By the use
of simulated data sets (which are generated by bivariate normal and gamma dis-
tribution under certain regulatory conditions) the performances of the existing and
proposed estimators are better than the mean estimator. As given by the reported
results in Table 2 and 3, PRE of respective imputation procedure decreases as the
response rate increases, but as a whole these are better than traditional estima-
tors. After comprehensive examination of Tables 4 and 5, we can easily understand
that our proposed class of estimators performs significantly better than existing and
mean imputation procedures even in high response rate. As the parametric values
of the population constants increase in normal population, the performance of all
the estimator increase. But in the case of positively dispersed population, there is

an inverse relationship between PRE’s and parametric values.
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Table 4: PRE(.) of existing and proposed estimators by using artificial data set (.).

Artificial Data Sets 1

Artificial Data Sets 2

V*

r Estimator ?g_ © f’;}aq, ?; f’é_ X Y, Hag. .
10 Viy Vb, 7l 1186620 105.9573 119.6891 124.0394 127.1311  132.0750
Vc V3, 72 1202631 106.3291 122.0707 135.0018 134.6481 138.5286
Yox Vi, 72 1014103 117.0941  123.6927 1155257 119.5066  126.8564
Yéx Vi, Y4 1202941 106.3447 122.1189 136.0608 1357178  141.6042
Yk Vi, Y3 1096636 116.9660 121.5692 125.0806 128.1636 132.6883
Yo% ¥, Y& 1138250 114.6901 115.1804 126.1819  127.2321 131.1512
¥lx Y, Y1 1196756 100.1994  120.9550 127.8607 130.1780  132.4522
Y8¢ Vi, Y8 1028872 1172912 120.0964 115.6963 119.6452  126.6902
Yok ¥, Y2 1157024 1055199 1205186 136.5683 136.1019  139.8346
Y% 7, 710 1207877 108.3721  121.5206 137.3745 136.8175 138.5315
20 ¥lx ¥, YL 1178110 1052151 119.8508 120.7829 123.9798  129.3023
Y Y3, Y2 1212069 105.0492 120.9690 134.9703 1345377 137.2016
Vg Vi Y32 1052075 119.1198  127.4633 118.2557 121.9277 128.7035
Véx Vi, Y4 1203429 1051115  122.1641 134.4532  134.1529  139.9697
Vo Vi, 73 1108191 1164726 118.5771 125.1330 128.1416  132.7055
Y8y ¥S, Y& 1143393 1143480 1157193 128.5056 130.6469  132.4355
Ylx Vi, Y1 1201568 100.1455 124.3512 128.6391 130.8064 132.7405
¥8x S, Y8 1087974 1052274 106.1870 116.6377 120.5083 127.8116
Yok Y, Y2 1196394 1050234 1205388 134.5111 134.2217  135.1581
Y0 ?,;gq, i}ro 116.2761 105.1145 119.2251 134.6683 134.4694 137.5448
30 i ¥, ¥l 1197622 1051340 120.6659 1225217 1256854 130.4396
Y i, Y2 1190610 1046887 1197440 134.7711  134.4483 135.1757
Y3x Vi, Y2 1052325 1186783 127.5033 117.8911  121.6284 128.4568
Yéx Vi, Y4 1198207 1045238 1237315 133.8278 133.4614 136.3154
Yx Vi, Y3 1123861 116.9674 118.0800 1245436 127.5873 132.0415
Yoy Y8 ?pﬁ_ 114.4807 1145614 115.8958 131.6862 133.5503 135.1994
¥lx TVl 71 1182454 1000115 119.6349 129.0047 131.1589  133.2060
¥&¢ ¥, Y8 1055192 106.8852 107.7843 117.4968 121.3278  128.5287
Yok Vi, Y2 1202420 1047962 120.4320 133.3648 134.0260 135.7968
Y ¥j, 710 1155720  104.6800 119.5149 132.7433 132.2578 136.8836
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Table 5: PRE(.) of existing and proposed estimators by using artificial data set (.).

Artificial Data Sets 3

Artificial Data Sets 4

V*

r Estimator ?g_ © f’;}aq, ?; f’é_ X Y, Hag. .
10 Vhy Vb, V) 1928977 1925636  193.1662 136.4316 1362749 136.7016
Vx V3, 72 1940581 1940559  194.9967 140.5252 140.5304  140.6584
Yoy Vi, 73 188.0287 187.8559 188.1561 136.3089  136.3474 136.8219
Yéx Vi, Y4 1915353 1915554 1917439 140.5487 140.5449  141.2544
Yk Vi, Y3 1892338 189.3205 189.9834 138.3192  138.3297  139.3096
Y8x ¥, YO 1913141 1915745 191.9685 139.2955 139.2150  139.4283
¥lx Y, Y1 1921016 192.8594 192.8723 139.1179 139.1532  139.4509
Y8y Vi, Y8 1875624 187.3498  187.7200 138.2495 138.2914 140.1726
Yok Vg Y2 1945011 1944885 194.4346 140.8154 140.8160 141.8146
Y% 7%, 710 1941044 1940683 194.5535 138.5544 138.5559  138.7474
20 ¥lx ¥, Y1 1532724 1526555 153.8245 118.6956 118.5047  119.0081
Y Y3, Y2 1548089 1547715 1557848 1405252  140.5304 140.7584
Vg Vi, Y2 1511041 150.8019 151.3284 122.4189 122.4683 122.7324
Véx Vi, Y4 1535339 1534891 1537509 125.0272 125.0842  125.8300
Yo« Vi, 73 1531577 1533651 153.8868 1235171 123.5145 123.5189
Y8y S, Y& 1480252 149.0603 149.9335 123.0634 122.0864 123.1859
Ylx Y, Y1 1573814 157.4595 157.6159 124.3142  124.3697 124.6227
¥8x S, Y8 1526729 1524070 152.8817 1225352 1225805 123.9481
Yok Y, Y2 1552700 1552155 156.2721 124.9516 124.9523  125.0465
Y0 ?,;gq, i}ro 154.7365 154.6740 154.7385 124.1267 124.1129  124.1383
30 i, ¥, ¥ 1376494 136.8790 138.3680 112.2768 112.0773  112.6044
Y Yh, Y2 1413239 1412753 1422912 118.8472 118.8500 118.9965
Yex Vi, Y2 139.0538 1387795 139.2670 116.4861 116.5465 116.7900
Yex Vi, Y4 1415240 1414602 1415615 119.0015 119.0045 119.0104
Yx Vi, Y3 1397605 139.9683 140.4578 118.0333 118.0357 118.1293
Y8 VS, YO 1309078 1321338 1326111 116.6496 116.5642  116.8055
¥lx ¥, 71 1393605 1395683 139.8578 118.9265 118.9745 119.8550
Y8&¢ ¥, Y8 1382340 137.9276 138.4662 116.2475 116.3058 116.4495
Yok Vi, Y2 1409842 1409393 141.9538 118.7914 118.7869  118.7950
Y TN, V10 14214794 1421593 142.2399 118.2523 118.2476  118.6504
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7. Conclusions

In this study, we assume that the non-response which occurred in the study is
MCAR. Our main objective is to introduce the idea of utilizing the second raw mo-
ment of the auxiliary variable for the imputation of missing values, especially for
those situations when the ranking of the auxiliary information is difficult or expen-
sive. The proposed imputation method provides better results in terms of efficiency
than the existing procedures. From Tables 2, 3, 4 and 5, it can be easily under-
stand that the proposed imputation procedure performs better than Grover and
Kaur (2014) and Haq et al. (2017) estimators. Thus, we recommend the proposed
estimator for the imputation of missing values and for a precise estimation of the
population mean.

The current work can easily be extended to other domains of survey sampling such
as the estimation population quartiles (Q; and Qs) and population variance under
the stratified and other sampling schemes. Another possible extension of the cur-
rent work is to estimate the population parameter of the sensitive variable with the
non-sensitive auxiliary variable, when the non-response occurs after the utilization
of the randomized response model, as in Mohamed et al. (2016) and Sohalil et al.
(2017). This work is deferred to the later article, which is currently in progress for
handling the non-response.
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APPENDIX

In Figure 1, we can show the shape of different distributions according to their
respective parametric values. In Figure (a), the behaviour of normal distribution is
shown according to their respective population parameters. The shape of gamma
distribution is expressed in Figure (b) and standard normal distribution is shown
in Figure (c). The trend of study variable is shown under the normal and gamma
distribution in Figure (d) and (e) respectively. In both Figures, the study variable
has an increasing trend.
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Figure 1: Shape of different distribtions according to their parametric values



