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ABSTRACT 

The forecasting of mortality is of fundamental importance in many areas, such as 

the funding of public and private pensions, the care of the elderly, and the 

provision of health service. The first studies on mortality models date back to the 

19th century, but it was only in the last 30 years that the methodology started to 

develop at a fast rate. Mortality models presented in the literature form two 

categories (see, e.g. Tabeau et al., 2001, Booth, 2006) consisting of the so-called 

static or stationary models and dynamic models, respectively. Models contained 

in the first, bigger group contains models use a real or fuzzy variable function 

with some estimated parameters to represent death probabilities or specific 

mortality rates. The dynamic models in the second group express death 

probabilities or mortality rates by means of the solutions of stochastic differential 

equations, etc.  

The well-known Lee-Carter model (1992), which is widely used today, is 

considered to belong to the first group, similarly as its fuzzy version published by 

Koissi and Shapiro (2006). In the paper we propose a new class of fuzzy 

mortality models based on a fuzzy version of the Lee-Carter model. Theoretical 

backgrounds are based on the algebraic approach to fuzzy numbers (Ishikawa, 

1997a, Kosiński, Prokopowicz and Ślęzak, 2003, Rossa, Socha and Szymański, 

2015, Szymański and Rossa, 2014). The essential idea in our approach focuses on  

representing a membership function of a fuzzy number as an element of C*-

Banach algebra. If the membership function µ(z) of a fuzzy number is strictly 

monotonic on two disjoint intervals, then it can be decomposed into strictly 

decreasing and strictly increasing  functions (z), (z), and  the inverse functions  

f(u)=−1(u) and  g(u)=−1(u), u ∈ [0, 1] can be found.  

Ishikawa (1997a) proposed foundations of the fuzzy measurement theory, which 

is a general measurement theory for classical and quantum systems. We have 

applied this approach, termed C*-measurement, as the theoretical foundation of 

the mortality model. Ishikawa (1997b) introduced also the notions of objective 

and subjective C*-measurement called real and imaginary C*-measurements. In 

our proposal of the mortality model the function f is treated as an objective C*-

measurement and the function g as an subjective C*-measurement, and the  
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membership function µ(z) is represented by means of a complex-valued function 

f(u) + ig(u), where i is the imaginary unit. We use the Hilbert space of quaternion 

algebra as an introduction to the mortality models. 

Key words: C*-Banach algebra, non-commutative C*-algebra, quaternion 

algebra, fuzzy mortality model. 

1. Introduction 

Long-lasting observations of mortality rates or death probabilities lead to the 

conclusion that in developed countries they decline for most age groups, whereas 

the upper limit of human lifetime is moving upwards. Other life-table parameters 

also change in time. The mortality trends and patterns observed in developed 

countries in the second half of the 20th century can be summed up as follows (see 

also Wilmoth and Horiuchi, 1999): 

– the normal lifetime drifts toward older ages, 

– ages at deaths are concentrating around the normal lifetime, 

– the survival curve is undergoing rectangularization (because of the 

aforementioned trends), 

– the life expectancy is increasing, 

– in the young population (especially among young males aged 20+), the 

number and percentage of deaths from external causes (injuries, accidents, 

poisoning) is rising. 

These measures are therefore not constant in time. They are rather functions 

of time or, in broader terms, stochastic processes showing some variability. Past 

works on this subject have used, for instance, time-series analysis tools to 

examine the stochastic nature of these processes. One of the most popular is the 

Lee-Carter mortality model (Lee and Carter, 1992). 

2. The Lee-Carter mortality model 

Let 𝑚𝑥(𝑡) denote an age-specific (central) death rate for the subset of a 

population that is between exact ages x and x+1  

𝑚𝑥(𝑡) =
𝐷𝑥(𝑡)

𝐿𝑥(𝑡)
,      x=0,1,2,…,X,   t=1,2,…,T,     (2.1) 

where 

𝐷𝑥(𝑡) – the number of deaths at age x in the year t, 

𝐿𝑥(𝑡) – the midyear population at the age x in the year t, 

x=0,1,…,X –  index of one-year age groups, 

t=1,2,…,T – years of observation period. 
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The measure 𝑚𝑥(𝑡) is the ratio of deaths between ages x and x + 1 to the 

midyear population alive at age x in the given year t, also referred to as the mean 

population in the year t. The measure is described as the central rate because the 

midyear population is used in the denominator.  

The Lee-Carter model can be written as 

 ln 𝑚𝑥(𝑡)  =  𝛼𝑥  +  𝛽𝑥𝜅𝑡  + ϵ𝑥𝑡,          x=0,1,…,X, t=1,2,…,T    (2.2) 

or, equivalently, as  

 𝑚𝑥(𝑡)  =  exp{𝛼𝑥  +  𝛽𝑥𝜅𝑡  +  𝜖𝑥𝑡},         x=0,1,…,X, t=1,2,…,T,   (2.3) 

where mx(t), t ∈ N are age-specific mortality rates, αx, βx and κt are the model 

parameters, of which αx, βx depend on age  x and κt on time t. The double-indexed 

terms εx,t are error terms, which  are assumed to be independent and to have the 

same normal distributions with an expected value of 0 and constant variance.   

The parameters αx, x=0,1,…,X indicate the general shape of the mortality 

schedule, the time-varying parameters κt, t=1,2,…,T represent the time-trend 

indices of the general mortality level, whereas βx indicate the pattern of deviations 

from the age profile when the general level of mortality κt changes. In general, βx 

could be negative at some ages, indicating that mortality rates at those ages tend 

to rise when falling at other ages. In other words, the shape of βx  profile tells 

which rates decline rapidly and which slowly over time in response to change of 

κt.  

Because of the form of (2.2), the Lee-Carter model is called a bilinear model. 

The system of equations (2.2) or (2.3) cannot be explicitly solved unless 

additional restrictions are imposed. Let us assume, for instance, that for a set of 

parameters {αx},{βx}, and {κt} the model (2.2) is valid. It is easy to see that the 

model holds true also for any constant c and parameters {αx − cβx}, {βx}, {κt + c} 

or {αx}, {cβx}, {κt/c}. 

To make sure that an unambiguous solution is obtained, some additional 

restrictions must be defined. To this end, it is assumed that the sum of parameters 

βx  over age index x is 1 and the sum of parameters κt over time index t is equal to 

0, i.e. 

 ∑ 𝛽𝑥 = 1,
𝑋
𝑥=0   ∑ 𝜅𝑡 = 0.

𝑇
𝑡=1          (2.4) 

Parameters αx and βx  do not depend on time t, which means that once they 

have been established  they can also be used for the future period, i.e. t > T. The 

time-varying rates are κt. They can be further modelled using, for instance, the 

time series analysis methods. 

Lee and Carter (1992) proposed a random walk model, but the range of 

proposals discussed in the literature is wider. A random walk process with a drift 

is given by the formula 

 κt = δ + κt−1 + ξt,             (2.5) 

where δ is a constant (a drift), and ξt  is a random term. 
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Parameter δ in (2.5) mostly takes negative values that point to declining 

mortality. Random fluctuations around this trend are represented by independent 

random terms ξt, each having a normal distribution with the expected value of 0 

and finite variance.  
With the values of κt predicted from (2.5) and the estimations of αx  and βx the 

partial death rates can be forecasted, as well as other life-table mortality rates. 

The method of parameter estimation proposed by Lee and Carter is based on 

the method of Singular Value Decomposition (SVD), which decomposes a data 

matrix M = [ln mx(t) − ax] into a matrix of singular values D and two matrices W 

and V of left and right singular vectors. 

Let ax, bx, kt represent the estimators of parameters αx, βx, κt. Assuming that 

random terms 𝜖𝑥𝑡 in model (2.2) have an expected value of 0, we have 

 E(𝜖𝑥𝑡) = 0.             (2.6) 

This property will be used to find ax. To this end, we will determine the 

analogous first row moment from the sample, i.e. from time series {ln mx(t), t = 

1,2,...,T} for x = 0,1,2,...,X we calculate the sum 

 ∑ [ln𝑚𝑥(𝑡) − (𝑎𝑥 + 𝑏𝑥𝑘𝑡)]
𝑇
𝑡=1 ,       (2.7) 

then by comparing (2.7) with 0  

 ∑ [ln𝑚𝑥(𝑡) − (𝑎𝑥 + 𝑏𝑥𝑘𝑡)] = 0,
𝑇
𝑡=1       (2.8) 

we obtain the following equality  

 𝑇𝑎𝑥 + 𝑏𝑥 ∑ 𝑘𝑡 = ∑ ln𝑚𝑥(𝑡)
𝑇
𝑡=1

𝑇
𝑡=1 .       (2.9) 

By allowing additionally for condition ∑ 𝑘𝑡 = 0
𝑇
𝑡=1 , we arrive at 

 𝑎𝑥 =
1

𝑇
∑ ln𝑚𝑥(𝑡) .
𝑇
𝑡=1          (2.10) 

To estimate x, κt the first singular value and the first vector of matrices W 

and V are used. For a general case, all singular values and singular vectors can be 

employed, which gives the following extension of the model (2.2) 

 ln𝑚𝑥(𝑡) = 𝑥 + ∑ 𝑥
(𝑖)𝜅𝑡

(𝑖)𝑟
𝑖=1 ,       x=0,1,…,X, t=1,2,…,T,     (2.11) 

where r is the number of non-zero singular values. 

3. The Koissi-Shapiro model  

One of the most interesting generalisations of the Lee-Carter model, referring 

to the algebra of fuzzy numbers, was proposed by Koissi and Shapiro (2006). 

Their version of the Lee-Carter model (FLC model) assumes a fuzzy 

representation of the central death rates. It allows taking account of uncertainty 

involved in mortality rates and entering a random term into the fuzzy structure of 

the model. 
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Their approach builds on the assumption that the real rates of mortality are not 

exactly mx(t), but rather around mx(t), thus the role of the explanatory variable is 

played by fuzzified mortality rates.  

It is well-known that death statistics are subject to reporting errors of several 

kinds. They may be reported for incorrect year, area, or assigned statistics that are 

incorrect, e.g. age. Moreover, the midyear population data that serve as the 

denominators of mortality rates are also the subject of errors. It is regarded as the 

population at July 1 and is assumed to be the point at which half of the deaths in 

the population during the year have occurred. Such an estimate can be actually 

underestimated or overestimated. For these reasons, fuzzy representation of the 

central death rates seems to be justified. 

Koissi and Shapiro proposed fuzzy representation of the logarithms of age-

specific mortality rates ln mx(t), by converting them into symmetric, triangular 

fuzzy numbers (basic notions of the fuzzy numbers are given in Rossa, Socha, 

Szymański (2015, appendix) presented as 

  𝑌𝑥𝑡 = (𝑦𝑥𝑦, 𝑒𝑥𝑡),   x = 0,1,...,X,   t = 1,2,...,T,        (3.1) 

where yxt = ln mx(t) and ext  are the spreads of the membership functions of 

triangular fuzzy numbers. 

In fuzzification approach, a fuzzy least-squares regression based on minimum 

fuzziness criterion was employed, and – for simplicity – triangular symmetric 

fuzzy numbers were considered.  

Given the log-central death rates yxt= ln mx(t)  for age x in year t, the task is to 

find symmetric triangular fuzzy numbers A0 = (c0x, s0x), A1 = (c1x , s1x ) and Yxt = 

(yxt, ext) with centers c0x, c1x, yxt and spreads s0x, s1x, ext such that  

 (yxt, ext ) = (c0x, s0x)+( c1x, s1x)×t .             (3.2) 

To find the fuzzy numbers A0 and A1, the approach is as follows: 

1. First, ordinary least-squares (OLS) regression is used to find the center values 

c0x and c1x such that  

 𝑦𝑥𝑡  =  𝑐𝑜𝑥  +  𝑐1𝑥𝑡 + 𝜀𝑥𝑡,   for each x,         (3.3) 

where yxt = ln mx(t) are the observed log-central death rates, t is time variable, and 

𝜀𝑥𝑡 represent random terms. 

2. The spreads (s0x and s1x) are obtained by using the minimum fuzziness 

criterion. This consists in minimizing the following optimization problem, 

which can be solved through standard optimization software, i.e. minimize     

 𝑇𝑠0𝑥 + 𝑠1𝑥∑ 𝑡𝑇
𝑡=1                (3.4) 

subject to  

 ∀𝑡  𝑠0𝑥, 𝑠1𝑥 ≥ 0   

 c0x+ c1xt+ (s0x+s1xt) ≥ yxt,     and   c0x+ c1xt−(s0x+s1xt) ≤ yxt . 
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Once the log-central death rates are fuzzified, the FLC model can be defined 

as 

 Yxt = Ax ⊕Tw (Bx ⊗Tw Kt),      x = 0,1,...,X,  t = 1,2,...,T,         (3.5)  

where Yxt are known fuzzy log-central mortality rates, Ax, Bx, Kt are unknown 

parameters, and ⊕Tw, ⊗Tw are the addition and multiplication operators of fuzzy 

numbers in the norm 𝑇𝑤, respectively. For the definition of the norm 𝑇𝑤  see 

Koissi and Shapiro (2006). 

The authors assumed that the model parameters can be estimated by 

minimizing the criterion function based on the Diamond distance measure 

between fuzzy variables. The criterion can be expressed as the following sum 

∑ ∑ [3𝑎𝑥
2 + 3𝑏𝑥

2𝑘𝑡
2 + 3𝑦𝑥𝑡

2 + 6𝑎𝑥𝑏𝑥𝑘𝑡 − 4𝑦𝑥𝑡(𝑎𝑥 + 𝑏𝑥𝑘𝑡) + 2𝑒𝑥𝑡
2 ] +

𝑇

𝑡=1

𝑋

𝑥=0
 

  (3.6) 

+2∑ ∑ [(max{𝑠𝐴𝑥 , |𝑏𝑥|𝑠𝐾𝑡 , |𝑘𝑡|𝑠𝐵𝑥})
2𝑇

𝑡=1

𝑋

𝑥=0

− 2𝑒𝑥𝑡max{𝑠𝐴𝑥 , |𝑏𝑥|𝑠𝐾𝑡 , |𝑘𝑡|𝑠𝐵𝑥}]. 

However, the FLC model poses major problems in the estimation algorithm, 

because expression max{𝑠𝐴𝑥 , |𝑏𝑥|𝑠𝐾𝑡 , |𝑘𝑡|𝑠𝐵𝑥} in the criterion (3.6) prevents the 

standard use of non-linear optimization methods.  

In the rest of the paper, modification to the fuzzy mortality model based on 

fuzzified mortality rates with exponential membership functions will be proposed. 

The model simplifies both operations on fuzzy numbers and the model estimation. 

The essential idea in this approach is representing the membership functions of 

fuzzy numbers as elements of C*-Banach algebra. 

4.  A new class of mortality models based on algebraic approach to 

fuzzy numbers  

4.1. The theoretical background for the new mortality model 

 Fuzzification of data depends on the assumption about membership functions 

of fuzzy numbers. Koissi and Shapiro (2006) adopted triangular symmetric 

membership functions and used fuzzy least-squares regression. In our approach, 

we will assume exponential membership functions derived from relative 

frequencies of residuals in the least-squares regression model. 

Suppose that the membership function 𝜇(𝑧) of a fuzzy number is strictly 

monotonic on two disjoint intervals. Following Nasibov and Peker (2011), we 

will consider an exponential membership function of the form 
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 𝜇(𝑧) =

{
 

 exp {−(
𝑐−𝑧

𝜏
)
2
} ,      for  𝑧 ≤ 𝑐,

exp {−(𝑧−𝑐
𝜈
)
2
} ,    for  𝑧 > 𝑐,

        (4.1) 

where  𝑐, 𝜏, 𝜈  are scalars. 

Note that we can decompose 𝜇(𝑧) into two parts – strictly increasing and 

strictly decreasing functions (𝑧) and  (𝑧) of the form 

 

(𝑧) = exp {−(𝑐−𝑧
𝜏
)
2
} ,    for  𝑧 ≤ 𝑐,

(𝑧) = exp {−(𝑧−𝑐
𝜈
)
2
} , for  𝑧 > 𝑐.

             (4.2) 

Then, there exist inverse functions  

   −1(𝑢) = 𝑐 + 𝜓(𝑢),      −1(𝑢) = 𝑐 + 𝜑(𝑢),   𝑢 ∈ [0,1],    (4.3) 

where ψ(𝑢) and φ(𝑢) are expressed as follows 

 𝜓(𝑢) = −𝜏(−ln𝑢)
1
2,       𝜑(𝑢) = 𝜈(− ln𝑢)

1
2,   𝑢 ∈ [0,1].       (4.4) 

Example 1. Figure 1(a) illustrates an exponential functions (4.2) for fixed values 

of parameters c=0.03, 𝜏 = 0.08, 𝜈 = 0.09, Figure 1(b) presents respective inverse 

functions (4.3).   

Figure 1.  An example of an exponential membership function, c=0.03, τ =0.08,

ν =0.09 

(a) (b) 

 

 
 

Source: developed by the authors. 
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4.2. Transformation of membership functions into complex-valued functions 

Let us consider the complex functions  

𝑓(𝑢) = 𝑐 + 𝑖𝜓(𝑢),     and      𝑔(𝑢) = 𝑐 + 𝑖𝜑(𝑢),      𝑢 ∈ [0,1],      (4.5) 

where i = √−1 is an imaginary unit. 

Assuming that functions ψ(𝑢) and φ(𝑢) are expressed as in (4.4) we get 

𝑓(𝑢) = 𝑐 − 𝑖𝜏(− ln𝑢)
1
2,    and     𝑔(𝑢) =  𝑐 + 𝑖𝜈(− ln 𝑢)

1
2,      𝑢 ∈ [0,1].   (4.6) 

The pair of two complex functions (𝑓(𝑢), 𝑔(𝑢)) is called a quaternion. 

 

An illustration of a quaternion (𝑓(𝑢), 𝑔(𝑢)) on the complex plane for c=0.03, 

𝜏=0.08, 𝜈=0.09 is presented in Figure 2. 

Figure 2. A quaternion (𝑓(𝑢), 𝑔(𝑢)), with 𝑓(𝑢) and 𝑔(𝑢) defined in (4.4) with  τ =
0.08, ν = 0.09 

 

Source: developed by the authors. 

 

The modules of 𝑓(𝑢) and 𝑔(𝑢)  are as follows 

 |𝑓(𝑢)|2 = 𝑐2 + 𝜏2(− ln𝑢),  𝑢 ∈ [0,1],            (4.7) 

 |𝑔(𝑢)|2 = 𝑐2 + 𝜈2(− ln𝑢),  𝑢 ∈ [0,1].         (4.8) 

After integrating both sides of (4.7) and (4.8) on the interval [0,1] we obtain 

     ∫ |𝑓(𝑢)|2𝑑𝑢
1

0
= 𝑐2 + 𝜏2 ∫ (− ln𝑢)

1

0
𝑑𝑢 = 𝑐2 + 𝜏2,         (4.9) 

  ∫ |𝑔(𝑢)|2𝑑𝑢
1

0
= 𝑐2 + 𝜈2 ∫ (− ln𝑢)

1

0
𝑑𝑢 = 𝑐2 + 𝜈2.            (4.10) 
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4.3. Basic properties of quaternions 

It is well known that the complex numbers could be viewed as ordered pairs 

of real numbers. By analogy, the quaternions can be treated as ordered pairs of 

complex functions  

 (𝑧, 𝑤),    where   𝑧 = 𝑎 + 𝑖𝑏,    𝑤 = 𝑐 + 𝑖𝑑   and  𝑖 = √−1.   (4.11) 

The algebra of quaternions is often denoted by 𝑯. Quaternions were first 

described by Irish mathematician William Hamilton in 1843. The space 𝑯 is 

equipped with three operations: addition, scalar multiplication and quaternion 

multiplication. 

The sum of two elements of 𝑯 is defined as the sum of their components. 

Therefore, we have 

 (𝑧, 𝑤) + (𝑢, 𝑥) = (𝑧 + 𝑢,𝑤 + 𝑥).        (4.12) 

The product of an element of 𝑯 by a real number R  is defined to be the 

same as the product by scalar of both components 

 𝛼(𝑧, 𝑤) = (𝛼𝑧, 𝛼𝑤).           (4.13) 

To define the product of two elements in 𝑯 a choice of the basis for 𝑹4 is 

needed. The elements of this basis are customarily denoted as 1, 𝑖, 𝑗 and 𝑘. Each 

element of  𝑯 can be uniquely denoted as a linear combination 𝑎 ∙ 1 + 𝑏𝑖 + 𝑐𝑗 +
𝑑𝑘, where 𝑎, 𝑏, 𝑐, 𝑑 are real numbers.  

The basis element 1 could be viewed as the identity element of 𝑯. It means 

that multiplication by 1 does not change the value, and elements of 𝑯 can be 

uniquely denoted as 

 (𝑧, 𝑤) = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘,           (4.14) 

where 𝑎, 𝑏, 𝑐, 𝑑 are real numbers. Therefore, each element of 𝑯 is determined by 

four numbers and hence the term “quaternion”.   

The possible products of basic elements 𝑖, 𝑗, 𝑘 can be described as follows 

 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1,          (4.15) 

 𝑖𝑗 = 𝑘, 𝑗𝑖 = −𝑘,             (4.16) 

 𝑗𝑘 = 𝑖, 𝑘𝑗 = −𝑖,              (4.17) 

 𝑘𝑖 = 𝑗, 𝑖𝑘 = −𝑗.              (4.18) 

Quaternions can be represented as pairs of complex numbers as a 

generalization of the construction of the complex numbers being pairs of real 

numbers.  



710                                                         A. Szymański, A. Rossa: Improvement of fuzzy… 

 

 

Let C be a two-dimensional vector space over the complex numbers. Let us 

choose a basis consisting of two elements 1 and j. For 𝑧, 𝑤 ∈ 𝐶 of the form 𝑧 =
𝑎 + 𝑏𝑖 and  𝑤 = 𝑐 + 𝑑𝑖, we can write 

 𝑞 = 𝑧 + 𝑤𝑗 = (𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖)𝑗 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑖𝑗.      (4.19) 

If we denote 𝑘 = 𝑖𝑗 then  

 𝑞 = 𝑧 + 𝑤𝑗 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘.          (4.20) 

Thus, the vector (𝑧, 𝑤) corresponds to a quaternion 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘. 

Then, each quaternion 𝑞 ∈ 𝑯 is uniquely represented by 

 𝑞 = 𝑧 + 𝑤𝑗.                   (4.21) 

Multiplication of quaternions could be defined in the form 

 (𝑧, 𝑤)(𝑢, 𝑥) = (𝑧𝑢 − 𝑤𝑥̅, 𝑧𝑥 + 𝑤𝑢̅),         (4.22) 

where 𝑥̅, 𝑢̅ denote conjugations of 𝑥 and 𝑢.   

Multiplication of quaternions is associative and distributive with respect to 

addition, however it is not commutative, since, for example, we have 

 (𝑖, 0)(0,1) = (0, 𝑖),              (4.23) 

but 

 (0,1)(𝑖, 0) = (0,−𝑖).             (4.24) 

Let us denote 

 𝑞∗ = 𝑧 − 𝑤𝑗              (4.25) 

as the conjugate of 𝑞.  

Conjugation is an involution. It means that for 𝑝, 𝑞 ∈ 𝑯 we have 

  (𝑞∗)∗ = 𝑞,     (𝑝𝑞)∗ = 𝑞∗𝑝∗,      (𝑝 + 𝑞)∗ = 𝑝∗ + 𝑞∗.     (4.26) 

The square root of the product of a quaternion with its conjugate is called 

a norm, and is denoted ‖𝑞‖. This is expressed as follows 

 ‖𝑞‖ = √𝑞𝑞∗ = √𝑞∗𝑞 = √𝑎2 + 𝑏2 + 𝑐2 + 𝑑2.   (4.27) 

It is always a non-negative real number, and it is the same as the Euclidean 

norm on 𝑯 considered as the vector space 𝑹4 . Multiplying a quaternion by a real 

number scales its norm by the absolute value of this number 

 ‖𝛼𝑞‖ = |𝛼|‖𝑞‖.               (4.28) 

This is a special case of the following property 

 ‖𝑝𝑞‖ = ‖𝑝‖‖𝑞‖               (4.29) 

for any two quaternions p and q.  

http://en.wikipedia.org/wiki/Norm_(mathematics)
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The norm (4.27) allows us to define the distance 𝑑(𝑝, 𝑞) between p and q as 

the norm of their difference 

 𝑑(𝑝, 𝑞) = ‖𝑝 − 𝑞‖.             (4.30) 

This defines 𝑯 as a metric space.  

According to (4.6) we have  

           𝑓(𝑢) = 𝑐 + 𝑖𝜓(𝑢),     𝑢 ∈ [0,1], 

and       

           𝑔(𝑢) = 𝑐 + 𝑖𝜑(𝑢),      𝑢 ∈ [0,1], 

where 𝜓,𝜑 are defined in (4.4). 

Hence, 

|𝑓(𝑢)|2 = 𝑐2 +  𝜓2(𝑢),       and       |𝑔(𝑢)|2 = 𝑐2 +  𝜑2(𝑢). 

Let us denote 

 𝑃(𝑢) = (𝑓(𝑢), 𝑔(𝑢)),    𝑢 ∈ [0,1].        (4.31) 

The function P is a quaternion-valued function.  The norm of 𝑃(𝑢) could be 

expressed as follows 

 ‖𝑃(𝑢)‖2 = |𝑓(𝑢)|2 + |𝑔(𝑢)|2 = 𝑐2 + 𝜓2(𝑢)+𝑐2 + 𝜑2(𝑢),    (4.32) 

and from (4.9) and (4.10) we have  

∫|𝑓(𝑢)|2𝑑𝑢

1

0

< ∞     𝑎𝑛𝑑     ∫|𝑔(𝑢)|2𝑑𝑢

1

0

< ∞. 

Integrating both sides in (4.32) we receive also 

 ∫ ‖𝑃(𝑢)‖2𝑑𝑢
1

0
= ∫ |𝑓(𝑢)|2𝑑𝑢

1

0
+ ∫ |𝑔(𝑢)|2

1

0
𝑑𝑢 < ∞.     (4.33) 

Thus, the functions f and g are the elements of the Hilbert space 𝐿2[0,1], and 

the quaternion-valued function 𝑃 is integrable with squared norm on the interval 

[0,1]. Let us denote the space of such functions as 𝐿2(𝑯). 

5. A mortality model based on quaternion-valued functions 

5.1. Formulation of the model 

We will assume that  𝑌̃𝑥,𝑡 = (𝑓𝑌𝑥,𝑡 , 𝑔𝑌𝑥,𝑡) are quaternions with complex 

functions 𝑓𝑌𝑥,𝑡 , 𝑔𝑌𝑥,𝑡 of the form 

𝑓𝑌𝑥,𝑡(𝑢) = 𝑦𝑥𝑡 − 𝑖𝜏𝑥(− ln𝑢)
1
2,       𝑔𝑌𝑥,𝑡(𝑢) =  𝑦𝑥𝑡 + 𝑖𝜈𝑥(− ln𝑢)

1
2,      𝑢 ∈ [0,1], 

http://en.wikipedia.org/wiki/Metric_space
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where i is an imaginary unit, 𝑦𝑥𝑡 = ln𝑚𝑥(𝑡), and τ𝑥 , 𝜐𝑥 are known parameters 

evaluated by means of Nasibov-Peker method (see section 5.3 for more details). 

Similarly, we will assume that 𝐴̃𝑥 = (𝑓𝐴𝑥 , 𝑔𝐴𝑥),  𝐾̃𝑡 = (𝑓𝐾𝑡 , 𝑔𝐾𝑡) are 

quaternions determined by complex functions 

 𝑓𝐴𝑥(𝑢) = 𝑎𝑥 − 𝑖(− ln𝑢)
1
2𝑠𝐴𝑥
𝐿 ,     𝑔𝐴𝑥(𝑢) = 𝑎𝑥 + 𝑖(− ln𝑢)

1
2𝑠𝐴𝑥
𝑅 ,    𝑢 ∈ [0,1]     

(5.1) 

 𝑓𝐾𝑡(𝑢) = 𝑘𝑡 − 𝑖(− ln 𝑢)
1
2s𝐾𝑡  ,     𝑔𝐾𝑡(𝑢) = 𝑘𝑡 + 𝑖(− ln𝑢)

1
2s𝐾𝑡,     𝑢 ∈ [0,1].     

(5.2) 

As in other models based on functional analysis, we postulate the following 

mortality model based on quaternion-valued functions  

 𝑌̃𝑥,𝑡 = 𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡,             𝑥 = 0,1,… , 𝑋, 𝑡 = 1,2,… , 𝑇,          (5.3) 

where 𝑌𝑥,𝑡 are fuzzified log-central mortality rates expressed in terms of 

quaternion-valued functions in the Hilbert space 𝐿2(𝑯), 𝑏𝑥 ∈ 𝑹, 𝑥 = 0,1,… , 𝑋, is 

a set of unknown scalar parameters, and quaternions 𝐴̃𝑥 , 𝐾̃𝑡  represent unknown 

parameters in 𝐿2(𝑯) determined by the complex functions (5.1) and (5.2). The 

proposed model (5.3) will be termed Complex Number Mortality Model 

(CNMM). 

Note that the quaternions  𝐴̃𝑥 = (𝑓𝐴𝑥 , 𝑔𝐴𝑥),  𝐾̃𝑡 = (𝑓𝐾𝑡 , 𝑔𝐾𝑡) on the right-hand 

side of (5.3) reflect fuzzy numbers 𝐴𝑥,  𝐾𝑡 with exponential membership 

functions 𝜇𝐴𝑥(𝑧) and 𝜇𝐾𝑡(𝑧) (see sections 4.1 and 4.2) 

 𝜇𝐴𝑥(𝑧) =

{
 
 

 
 exp {−(𝑎𝑥−𝑧

𝑠𝐴𝑥
𝐿 )

2

} ,      for  𝑧 ≤ 𝑎𝑥 ,

exp {−(𝑧−𝑎𝑥
𝑠𝐴𝑥
𝑅 )

2

} ,    for  𝑧 > 𝑎𝑥 ,

        (5.4) 

 

 𝜇𝐾𝑡(𝑧) =

{
 
 

 
 exp {− (𝑘𝑡−𝑧

𝑠𝐾𝑡
)
2
} ,      for  𝑧 ≤ 𝑘𝑡 ,

exp {−(𝑧−𝑘𝑡
𝑠𝐾𝑡
)
2
} ,    for  𝑧 > 𝑘𝑡 .

       (5.5) 

Using the properties (4.12) and (4.13) the complex functions defining the 

quaternion 𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡 on the right-hand side of (5.3) are as follows 

 𝑓𝐴𝑥+𝑏𝑥𝐾𝑡(𝑢) = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 − 𝑖(− ln 𝑢)
1
2(𝑠𝐴𝑥

𝐿 + 𝑏𝑥𝑠𝐾𝑡),  𝑢 ∈ [0,1],    (5.6) 

 𝑔𝐴𝑥+𝑏𝑥𝐾𝑡(𝑢) = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝑖(− ln 𝑢)
1
2(𝑠𝐴𝑥

𝑅 + 𝑏𝑥𝑠𝐾𝑡),  𝑢 ∈ [0,1].     (5.7) 
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It means that 𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡 reflects a fuzzy number 𝑊𝑥𝑡  with an exponential 

membership function  

 𝜇𝑊𝑥𝑡(𝑧) =

{
 
 

 
 exp {−(𝑎𝑥+𝑏𝑥𝑘𝑡−𝑧

𝑠𝐴𝑥
𝐿 +𝑏𝑥𝑠𝐾𝑡

)
2

} ,      for  𝑧 ≤ 𝑎𝑥 + 𝑏𝑥𝑘𝑡,

exp {−(𝑧−𝑎𝑥−𝑏𝑥𝑘𝑡
𝑠𝐴𝑥
𝑅 +𝑏𝑥𝑠𝐾𝑡

)
2

} ,    for  𝑧 > 𝑎𝑥 + 𝑏𝑥𝑘𝑡.

     (5.8) 

5.2. Estimation of the model parameters 

In order to estimate the parameters 𝑎𝑥 , 𝑏𝑥, 𝑘𝑡 , 𝑠𝐴𝑥
𝐿 , 𝑠𝐴𝑥

𝑅 , 𝑠𝐾𝑡 we will use the 

notion of the norm  (4.32) defined in the space of quaternion-valued functions. 

Thus, the following distance between left- and right-hand sides of the model (5.3) 

will be defined for fixed  𝑥  and  𝑡 

𝑑𝑥,𝑡 = ∫ ‖𝑌̃𝑥,𝑡 − (𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡)‖
2
𝑑𝑢

1

0

= ∫|𝑓𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢)|
2
𝑑𝑢

1

0

+∫|𝑔𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢)|
2

1

0

𝑑𝑢. 

Let us find functions 𝑓𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢) and 𝑔𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢) determining 

the difference of quaternions 𝑌̃𝑥,𝑡 − (𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡). We have 

 𝑓𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢) = 𝑦𝑥,𝑡−(𝑎𝑥 + 𝑏𝑥𝑘𝑡) − 𝑖(− ln𝑢)
1
2(𝜏𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑏𝑥𝑠𝐾𝑡),      

(5.9) 

 

 𝑔𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢) = 𝑦𝑥,𝑡−(𝑎𝑥 + 𝑏𝑥𝑘𝑡) + 𝑖(− ln𝑢)
1
2(ν𝑥 − 𝑠𝐴𝑥

𝑅 − 𝑏𝑥𝑠𝐾𝑡).   

     (5.10) 

Hence, 

|𝑓𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢)|
2
= (𝑦𝑥,𝑡−(𝑎𝑥 + 𝑏𝑥𝑘𝑡))

2
+ (− ln𝑢)(𝜏𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑏𝑥𝑠𝐾𝑡)
2
,    

(5.11) 

 

|𝑔𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢)|
2
= (𝑦𝑥,𝑡−(𝑎𝑥 + 𝑏𝑥𝑘𝑡))

2
+ (− ln𝑢)(ν𝑥 − 𝑠𝐴𝑥

𝑅 − 𝑏𝑥𝑠𝐾𝑡)
2
.     

(5.12) 

Integrating (5.11) and (5.12) on the interval [0,1] we receive  

         𝑑𝑥,𝑡 = ∫ ‖𝑌̃𝑥,𝑡 − (𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡)‖
2
𝑑𝑢

1

0

= 

= 2(𝑦𝑥,𝑡−(𝑎𝑥 + 𝑏𝑥𝑘𝑡))
2
+ (𝜏𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑏𝑥𝑠𝐾𝑡)
2
+ (𝜈𝑥 − 𝑠𝐴𝑥

𝑅 − 𝑏𝑥𝑠𝐾𝑡)
2
. 

       (5.13) 
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By the analogy to the Lee-Carter model and restrictions (2.4) we will assume 

that 

 ∑ 𝑘𝑡 = 0,
𝑇
𝑡=1   ∑ 𝑏𝑥 = 1.

𝑋
𝑥=0              (5.14) 

An additional restriction will be also imposed on the sum of 𝑠𝐾𝑡  

 ∑ 𝑠𝐾𝑡 = (𝑋 + 1)
𝑇
𝑡=1 √∑ (𝑦̅𝑡 − 𝑦̅)

2𝑇
𝑡=1 ,          (5.15) 

where 𝑦̅𝑡=
1

𝑋+1
∑ 𝑦𝑥𝑡
𝑋
𝑥=0   and  𝑦̅ =

1

𝑇(𝑋+1)
∑ ∑ 𝑦𝑥𝑡

𝑋
𝑥=0

𝑇
𝑡=1 . 

Thus, the criterion used to estimate model parameters takes the form 

𝐹(𝑎𝑥 , 𝑏𝑥 , 𝑘𝑡, 𝑠𝐴𝑥
𝐿 , 𝑠𝐴𝑥

𝑅 , 𝑠𝐾𝑡 , 𝜆1, 𝜆2, 𝜆3) =  

∑ ∑ 𝑑𝑥,𝑡
𝑇
𝑡=1 +𝑋

𝑥=0 𝜆1(∑ 𝑏𝑥 − 1
𝑋
𝑥=0 ) + 𝜆2∑ 𝑘𝑡 + 𝜆3

𝑇
𝑡=1 (∑ 𝑠𝐾𝑡 −

𝑇
𝑡=1

(𝑋 + 1)√∑ (𝑦̅𝑡 − 𝑦̅)
2𝑇

𝑡=1 ), 

(5.16) 

where 𝜆1, 𝜆2, 𝜆3 represent Lagrange multipliers.    

To minimize (5.16) it is necessary to compute its first derivatives with respect 

to 𝑎𝑥 , 𝑏𝑥 , 𝑘𝑡, 𝑠𝐴𝑥
𝐿 , 𝑠𝐴𝑥

𝑅 , 𝑠𝐾𝑡 , 𝜆1, 𝜆2, 𝜆3.  We have 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝜕𝐹

𝜕𝑎𝑥
= −4∑ (𝑦𝑥𝑡 − 𝑎𝑥 − 𝑏𝑥𝑘𝑡)

𝑇
𝑡=1 ,                                                                                            

𝜕𝐹

𝜕𝑏𝑥
= −2∑ [2𝑘𝑡(𝑦𝑥𝑡 − 𝑎𝑥 − 𝑏𝑥𝑘𝑡) + 𝑠𝐾𝑡(𝜏𝑥 + 𝜈𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑠𝐴𝑥
𝑅 − 2𝑏𝑥𝑠𝐾𝑡)]

𝑇
𝑡=1 + 𝜆1 

𝜕𝐹

𝜕𝑘𝑡
= −4∑ 𝑏𝑥(𝑦𝑥𝑡 − 𝑎𝑥 − 𝑏𝑥𝑘𝑡)

𝑋
𝑥=0 + 𝜆2                                                                            

𝜕𝐹

𝜕𝑠𝐴𝑥
𝐿 = −2∑ (𝜏𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑏𝑥𝑠𝐾𝑡)
𝑇
𝑡=1                                                                                          

𝜕𝐹

𝜕𝑠𝐴𝑥
𝑅 = −2∑ (𝜈𝑥 − 𝑠𝐴𝑥

𝑅 − 𝑏𝑥𝑠𝐾𝑡)
𝑇
𝑡=1                                                                                          

 
𝜕𝐹

𝜕𝑠𝐾𝑡
= −2∑ 𝑏𝑥(𝜏𝑥 + 𝜈𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑠𝐴𝑥
𝑅 − 2𝑏𝑥𝑠𝐾𝑡)

𝑋
𝑥=0 + 𝜆3                                                 

𝜕𝐹

𝜕𝜆1
= ∑ 𝑏𝑥

𝑋
𝑥=1 − 1                                                                                                                      

𝜕𝐹

𝜕𝜆2
= ∑ 𝑘𝑡

𝑇
𝑡=1                                                                                                                                 

𝜕𝐹

𝜕𝜆3
= ∑ 𝑠𝐾𝑡 − (𝑋 + 1)

𝑇
𝑡=1 √∑ (𝑦̅𝑡 − 𝑦̅)

2𝑇
𝑡=1                                                                            

  

 

   (5.17) 

 

https://en.wikipedia.org/wiki/Lagrange_multiplier
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Then, setting each derivative in (5.17) equal to zero and solving for required 

parameters yields the set of normal equations 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝑎𝑥 =

1

𝑇
∑ 𝑦𝑥𝑡 =
𝑇
𝑡=1 𝑦̅𝑥                                                 

𝑏𝑥 =
∑ [2𝑘𝑡(𝑦𝑥𝑡−𝑎𝑥)+𝑠𝐾𝑡(𝜏𝑥+𝜈𝑥−𝑠𝐴𝑥

𝐿 −𝑠𝐴𝑥
𝑅 )]𝑇

𝑡=1 −
𝜆1
2

2∑ (𝑘𝑡
2+𝑠𝐾𝑡

2 )𝑇
𝑡=1

        

𝑘𝑡 =
∑ 𝑏𝑥(𝑦𝑥𝑡−𝑎𝑥)−

𝜆2
4

𝑋
𝑥=0

∑ 𝑏𝑥
2𝑋

𝑥=0
                                              

𝑠𝐴𝑥
𝐿 = 𝜏𝑥 −

1

𝑇
𝑏𝑥 ∑ 𝑠𝐾𝑡

𝑇
𝑡=1                                            

𝑠𝐴𝑥
𝑅 = 𝜈𝑥 −

1

𝑇
𝑏𝑥∑ 𝑠𝐾𝑡

𝑇
𝑡=1                                            

                                                                                        

𝑠𝐾𝑡 =
∑ 𝑏𝑥(𝜏𝑥+𝜈𝑥−𝑠𝐴𝑥

𝐿 −𝑠𝐴𝑥
𝑅 )−

𝜆3
2

𝑋
𝑥=0

2∑ 𝑏𝑥
2𝑋

𝑥=0
                               

∑ 𝑏𝑥
𝑋
𝑥=1 = 1                                                                 

∑ 𝑘𝑡
𝑇
𝑡=1 = 0                                                                 

∑ 𝑠𝐾𝑡 − (𝑋 + 1)
𝑇
𝑡=1 √∑ (𝑦̅𝑡 − 𝑦̅)

2𝑇
𝑡=1 = 0             

          (5.18) 

Note that the last three equations in (5.18) satisfy restrictions (5.14) and (5.15).  

 

This set of normal equations  can be solved numerically by means of an 

iterative procedure. After choosing a set of starting values, equations are 

computed sequentially using the most recent set of parameter estimates obtained 

from the right-hand side of each equation. In addition to numerical solution of the 

normal equations, there are also other minimizing algorithms, e.g. computer 

routines available in several mathematical packages (e.g. quasi-Newton or 

simplex methods). 

Prediction of the log-central death rates with the CNMM can be performed in 

three steps. First, the random-walk model with a drift (2.5) should be used to 

predict  time parameters 𝑘𝑡 for future periods t>T. Next, functions (5.6) and (5.7) 

should be determined using estimated parameters 𝑎𝑥 , 𝑏𝑥, 𝑠𝐴𝑥
𝐿 , 𝑠𝐴𝑥

𝑅 , 𝑠𝐾𝑡 and the 

sequence of predicted time indices  𝑘𝑡, 𝑡 > 𝑇. Note that the functions  (5.6) and 

(5.7) define the right-hand side of the mortality model (5.3) for 𝑡 > 𝑇, i.e. they 

define quaternions 𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡  for future periods. Finally, these quaternions 𝐴̃𝑥 +
𝑏𝑥𝐾̃𝑡 can be transformed into fuzzy numbers 𝑊𝑥𝑡 using exponential membership 

function 𝜇𝑊𝑥𝑡(𝑧) given in (5.8). They also can be further defuzzified into crisp 

numbers 𝑤𝑥𝑡, if necessary, i.e. by means of the centroid defuzzification method  

 𝑤𝑥𝑡 =
∑  𝑧𝜇𝑊𝑥𝑡

(𝑧)1
𝑧=𝜖

∑ 𝜇𝑊𝑥𝑡
(𝑧)1 

𝑧=𝜖
,                 (5.19) 

where 𝜖 > 0 denotes a small positive number. 
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The crisp values 𝑤𝑥𝑡 represent predicted fuzzy log-central death rates for t>T , 

whereas 𝑊𝑥𝑡 are their fuzzy counterparts. 

5.3. Fuzzification of log-central death rates  

Fuzzification of the log-central death rates 𝑦𝑥𝑡 = ln𝑚𝑥(𝑡) for x=0,1,...,X, t =  

1,2,...,T by means of exponential membership functions (4.1) will be based on the 

method proposed by Nasibov and Peker (2011), which allows us to determine 

parameters 𝑥 , 𝑥 for a fixed x based on an empirical distribution of a sequence of 

data. The main results of their work are introduced in this section. 

Assume that {𝑟𝑡, 𝑡 = 1,2, … , 𝑇} is a sequence of T observations in a data set. 

Assume that observation are grouped into a frequency table with k mutually 

exclusive class intervals (Table 1). 

Table 1. Frequency table 

Class intervals 
Midpoints  

zi 

Frequencies 

 fi 

Relative 

frequencies pi 

𝑟1- 𝑟2 z1=( 𝑟1+𝑟2)/2 f1 p1=f1/T 

𝑟2- 𝑟3 z2= (𝑟2+𝑟3)/2 f2 p2=f2/T 

… … … … 

𝑟𝐾−1- 𝑟𝐾   𝑟𝑘 = (𝑟𝐾−1+ 𝑟𝐾)/2 fk pk=fk/T 

Source: developed by the authors. 

Let us consider  the exponential membership function (4.1). To find estimates 

of parameters  ≡ 𝑥 ,  ≡ 𝑥  the following criterion will be used 

   ∑ (ln(− ln 𝑝̃𝑖) − 2 ln(
𝑐−𝑧𝑖
𝜏
))
2
+ ∑ (ln(− ln 𝑝̃𝑖) − 2 ln(

𝑧𝑖−𝑐

𝜈
))
2
,𝑘

𝑖=𝑚+1   𝑚−1
𝑖=1   

  (5.19) 

where c denotes the midpoint of m-th class interval with maximum relative 

frequency 𝑝𝑚 = max (𝑝1, 𝑝2, … , 𝑝𝑘), and 𝑝̃𝑖, 𝑖 = 1,2,… , 𝑘 are normalized 

frequencies for separate class intervals 

 𝑝̃𝑖 =
𝑝𝑖

𝑝𝑚
, 𝑖 = 1,2, … , 𝑘.            (5.20) 

It is worth noting that normalized frequencies (5.20) are included in the 

criterion (5.19) in order to find an exponential membership function of a fuzzy 

number similar to an empirical histogram.  

The expressions (5.21) and (5.22) give the minimum of (5.19) with respect to 

the unknown parameters 𝜏, 𝜈 (see Nasibov and Peker (2011) for more details). 

Thus, we have 

 𝜏̂ = exp (
2∑ ln(𝑐−𝑧𝑖)−∑ ln(− ln 𝑝̃𝑖)

𝑚−1
𝑖=1

𝑚−1
𝑖=1

2(𝑚−1)
),        (5.21) 

 𝜈̂ = exp (
2∑ ln(𝑧𝑖−𝑐)−∑ ln(− ln 𝑝̃𝑖)

𝑚−1
𝑖=1

𝑚−1
𝑖=1

2(𝑘−𝑚)
).         (5.22) 
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Example 3. Let us consider the data aggregated in the frequency Table 2.  

Table 2. Frequency table 

Class intervals Midpoints  

zi 

Frequencies  

fi 

Relative 

frequencies pi 

Normalized 

frequencies 𝑝𝑖  

0.00 – 0.03 0.015 3 0.0698 0.3333 

0.03 – 0.06 0.045 7 0.1628 0.7778 

0.06 – 0.09 0.075 9 0.2093 1.0000 

0.09 – 0.12 0.105 8 0.1860 0.8889 

0.12 – 0.15 0.135 6 0.1395 0.6667 

0.15 – 0.18 0.165 5 0.1163 0.5556 

0.18 – 0.21 0.195 3 0.0698 0.3333 

0.21 – 0.24 0.225 2 0.0465 0.2222 

Source: developed by the authors. 

The maximum relative frequency refers to the third class interval, thus we 

obtain m=3, 𝑝𝑚 = 0.2093, and c=0.075. The membership function with 𝜈̂, 𝜏̂ 
derived from (5.21)–(5.22) is illustrated on Figure 3. 

Figure 3.  Normalized frequencies and a fitted membership function for τ̂ =
0.059,   ν̂ = 0.106 

 

Source: developed by the authors. 
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5.4. Evaluation of the proposed mortality model based on real data 

To illustrate theoretical discussions presented in the previous chapters dealing 

with the proposed mortality model based on quaternion-valued functions the 

estimates of model parameters will be calculated using real data to compare the 

ex-post forecasting errors with errors yielded by the standard Lee–Carter model 

(LC). 

The analysis is based on the log-central death rates for males and females in 

Poland from the years 1958–2014. The necessary data were sourced from the 

Human Mortality Database (www.mortality.org) and from the GUS database 

(stat.gov.pl). The 2001–2014 death rates served the purpose of evaluating the 

models’ forecasting properties and were not used in estimations.  

Estimates ax, bx, kt of the parameters of the quaternion mortality model (5.3) 

were obtained with the log-central death rates for males and females from the 

years 1958–2000. Parameters 𝑥 , 𝑥 were derived for each separate x using the 

Nasibov-Peker method, with {𝑟𝑡, 𝑡 = 1,2, … , 𝑇} represented by standardized 

residuals from the ordinary least regression (3.3). 

To ensure the clarity of data presentation, the parameter estimates are plotted 

as shown in Figures 4-6. 

 

Figure 4.  Parameters ax, x = 0,1,...,100 estimated with the CNMM model for 

males and females 

 

 

Source: developed by the authors. 
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Figure 5.  Parameters bx, x = 0.1,...,100 estimated with the CNMM model for 

males and females 

 

Source: developed by the authors. 

Figure 6.  Parameters kt, t = 1958,...,2000 estimated with model CNMM  (males 

and females) 

 

Source: developed by the authors. 

The interpretation of the model parameters’ estimates ax, bx, kt is similar as in 

the standard Lee-Carter approach, meaning that ax, x=0,1,…,X indicate the 
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general shape of the mortality schedule, the time-varying parameters kt, t=1,2,…,T 

represent the general mortality level, and bx, x=0,1,…,X indicate the pattern of 

deviations from the age profile when the general level of mortality kt changes.  

The conclusion that can be drawn by comparing two curves plotted in Figure 

4 is that average mortality in almost all age groups was higher for men than for 

women. Despite this fact the shapes of mortality profiles for both sexes seem rather 

similar, i.e. with a high mortality among children under two years of age, relatively 

low mortality for children aged 8–12, rising rapidly in the older age groups.  

The arrangement of curves in Figure 5 shows that in some age groups the 

absolute values of bx are higher for males than for females (i.e. for young or 

middle ages). It means that the log-central death rates clearly are more sensitive to 

the temporal changes in mortality for males than those noted for females. What is 

more, some negative values of bx are  estimated, i.e. for males at age group (34, 

67) years. They indicate that male log-central mortality rates at those ages grew in 

some years of the period under consideration when declining at other ages in 

response to change of kt.  Figure 6 also shows that the overall mortality trend was 

generally declining, but at a varying rate. It is also worth noting that this general 

mortality trend (expressed by kt) was faster in the subpopulation of women. 

The forecasting properties of LC and CNMM models were compared based 

on the ex-post errors measured for each year in the period 2001–2014, i.e. the 

period which was omitted from parameter estimation. The ex-post errors were 

determined using crisp forecasts of log-central death rates (5.23). Two types of 

prediction accuracy measures will be used, i.e. a mean squared error (MSE) and a 

mean absolute deviation (MAD). The results are summarized in Table 3. 

Table 3.  Comparison of ex-post errors (MSE and MAD) for LC and CNMM 

models  
Year Males Females 

MSE MAD MSE MAD 

LC CNMM LC CNMM LC CNMM LC CNMM 

2001 0.197 0.121 0.182 0.093 0.098 0.140 0.083 0.114 

2002 0.204 0.119 0.185 0.091 0.122 0.120 0.107 0.096 

2003 0.215 0.120 0.195 0.087 0.122 0.124 0.109 0.098 

2004 0.223 0.111 0.206 0.081 0.132 0.113 0.117 0.089 

2005 0.230 0.097 0.214 0.070 0.146 0.117 0.129 0.093 

2006 0.232 0.110 0.214 0.081 0.152 0.105 0.130 0.083 

2007 0.238 0.106 0.219 0.077 0.172 0.116 0.152 0.091 

2008 0.257 0.107 0.234 0.083 0.174 0.111 0.156 0.086 

2009 0.281 0.114 0.250 0.090 0.191 0.124 0.170 0.092 

2010 0.330 0.137 0.302 0.110 0.190 0.095 0.167 0.072 

2011 0.341 0.149 0.307 0.119 0.218 0.108 0.191 0.081 

2012 0.373 0.174 0.335 0.137 0.215 0.105 0.185 0.081 

2013 0.406 0.204 0.359 0.160 0.246 0.138 0.221 0.108 

2014 0.469 0.257 0.430 0.212 0.273 0.148 0.245 0.117 

Source: developed by the authors 
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It is worth noting that the CNMM model generates markedly smaller ex-post 

errors (in terms of MSE or MAD measures) than the LC model, which is visible 

especially for last years of prediction. For instance, for the prediction years 2010, 

2011, 2012, 2013 and 2014  the ex-post errors obtained with the CNMM model 

are less than half of what was obtained with the LC model.  

A comparison between empirical log-central death rates and those rates 

obtained from the CNMM model for some age groups is illustrated in Figures 7 

and 8. It is worth noting that the models’ parameters were estimated using the 

1958–2000 data, therefore the log-central death rates estimated for the years 

2001–2014 represent the ex-post forecasting.   

 

 

Figure 7. Real and predicted log-central death rates for some age groups (males) 

 

 
 

Source: developed by the authors. 
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Figure 8.  Real and predicted log-central death rates for some age groups 

(females) 

 
Source: developed by the authors. 

6. Final remarks 

We should explain to the reader why we have applied the exponential 

functions while building the theoretical function space as a basis of our new 

mortality model.  

This approach has theoretical and practical advantages. Practical ones are 

delivered in the paper of Nasibov and Peker (2011), where an easy and useful 

fitting algorithm is proposed. Based on this algorithm it is possible to fit an 

exponential functions to the empirical distributions of the observed data, or – as in 

our case – to the normalized frequencies of residuals in the regression model.  

The theoretical advantage of applying exponential membership functions lies 

in the desirable theoretical properties, because such functions can be transformed 

into the Hilbert spaces of quaternion valued functions. It is possible that other 

functions offer better fit to the observed data. This approach will be the subject of 

further research. 
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