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ABSTRACT 

In this paper the distribution of random variable skewness measure is modelled. 
Firstly, we present some results of matrix algebra useful in multivariate statistical 
analyses. Then, we apply the central limit theorem on modelling of skewness 
measure distribution. Finally, we give an idea for finding the confidence intervals 
of statistical model residuals' asymmetry measure.  

Key words: central limit theorem, multivariate skewness measure, skewness 
measure distribution, statistical model residuals.  

1. Introduction and basic notations 

Firstly, we introduce some notations used in the paper. The zero vector is 
denoted as .0  The transposed matrix A is denoted as .TA  

Let us have random vectors T
21 ),,,( ikiii XXX =X  where index 

ni ,,2,1 =  is for observations and k denotes the number of variables. These 
random vectors are independent and identically distributed copies (observations) 
of a random k-vector .X  Let  

∑
=
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i
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be the estimators of the sample mean μX =)(E  and the covariance matrix 
ΣX =)(D , respectively.  
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Now, we present matrix operations used in this paper. One of the widely used 
matrix operation in multivariate statistics is Kronecker product (or tensor product) 

BA⊗  of nm×:A  and qp×:B  which is defined as a partitioned matrix 
[ ] .,,2,1;,,2,1, njmiaij  ===⊗ BBA  

By means of Kronecker product we can present the third and the fourth order 
moments of vector :X   

)()( T
3 XXXX ⊗⊗= Em  

and 
).()( TT

4 XXXXX ⊗⊗⊗= Em  
The corresponding central moments 

{ })()()()( T
3 μXμXμXX −⊗−⊗−= Em  

and 
{ }.)))((()))((()( TT

4 μXμXμXμXX −−⊗−−= Em  

The operation )vec(A  denotes a mn -vector obtained from nm× -matrix by 
stacking its columns one under another in the natural order. For the properties of 
Kronecker product and vec-operator the interested reader is referred to Harville 
(1997), Kollo (1991) or Kollo and von Rosen (2005). In the next section skewness 
measure will be defined be means of the star-product of the matrices. The star-
product was introduced in (MacRae, 1974) where some basic properties of the 
operation were presented and proved.   
Definition 1. Let us have a matrix nm×:A  and a partitioned matrix 

nsmr×:B  consisting of sr× -blocks .,,2,1;,,2,1, njmiBij  ==  Then, the 
star-product BA*  is a sr× -matrix 

∑∑
= =

=
m

i

n

j
ijija

1 1
.* BBA  

The star-product is an inverse operation of Kronecker product in a sense of 
increasing and decreasing the matrix dimensions. One of the star-product 
applications is presented in the paper (Pihlak, 2004). 

We also use the matrix derivative defined following Neudecker (1969). 
Definition 2. Let the elements of a matrix sr ×:Y  be functions of a matrix 

.: qp×X  Assume that for all ,,,2,1 pi =  ,,,2,1 qj =  rk ,,2,1 =  and 

sl ,,2,1 = partial derivatives 
ij

kl

X
Y
∂
∂  exist and are continuous in an open set A. 

Then, the matrix 
X
Y

d
d  is called matrix derivative of the matrix sr ×:Y  by the 

matrix qp×:X  in a set A, if  
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The matrix derivative defined by Definition 2 is called Neudecker matrix 
derivative. This matrix derivative has been in the last 40 years a useful tool in 
multivariate statistics. 

2. Multivariate measures of skewness  

In this section we present a multivariate skewness measure by means of the 
matrix operation described above. A skewness measure in multivariate case was 
introduced in Mardia (1970). Mori et al. (1993) introduced a skewness measure as 
a vector. B. Klar (2002) gave a thorough overview of the skewness problem. In 
this paper asymptotic distribution of different skewness characteristics is also 
examined. In Kollo (2008) a skewness measure vector is introduced and applied 
in Independent Component Analyses (ICA). In this paper we give an idea for the 
application of a skewness measure to residuals of statistical models. Our aim is to 
estimate the distribution of skewness measure and to find confidence intervals of 
the asymmetry characteristics.  

The skewness measure in the multivariate case is presented through the third 
order moments: 

)()( YY'YXs ⊗⊗= E                                         (2.1) 
where 

).(2
1

μXΣY −=
−

 
In Kollo (2008) the skewness measure based on (2.1) is introduced by means 

of the star product:  
)(*)( Xs1Xb kk×=                                            (2.2) 

where kk × -matrix 
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In Kollo and Srivastava (2004) the Mardia’s skewness measure is presented 
through the third order moment: 

))()((tr 3
T
3 YY mm=β  



148                                                                             M. Pihlak: Modelling of skewness … 

 

 

where operation tr denotes the trace of matrix. 

The equality (2.2) generalizes the univarite ( 1=k ) skewness measure 

3

3)()(
σ

µ−
=

XEXb  

where σ  denotes standard deviation of the random variable X. Thus, we can 
express the estimator of the univariate skewness measure as 

3

3^ )()(
s

xXEXb i −=                                             (2.3) 

where s denotes unbiased estimator of standard deviation σ  and x  is the sample 
mean estimator. 

3. Modelling distribution of the univariate skewness measure  

In this section we model the distribution of the random variable 
^

)(Xb  defined 
by the equation (2.3). Let us have independent and identically distributed random 
variables .,,, 21 nXXX   

Let µ=)(XE  and .)( 2σ=XD  Then, according to the central limit 

theorem the distribution of the random variable 
σ

µ)( −xn
 converges to the 

normal distribution ).1,0(N  In the multivariate case the distribution of the 

random vector )( μx −n converges to normal distribution ).,( Σ0N   

Let us have 2kk + -vector 
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in distribution. Here, )()( 22 kkkk +×+ -dimensional partitioned matrix 
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where 22 kk × -matrix )(vec)(vec)( T
44 ΣΣXΠ −= m  (Parring, 1979). This 

convergence can be generalized by means of the following theorem. 
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Theorem 1. Let { }nZ be a sequence of 2kk + -component random vectors and ν
be a fixed vector such that )( νZ −nn  has the limiting distribution ),( Π0N  as 

.∞→n  Let the function kkk RRg →+2

:  have continuous partial derivatives at 

.νz =n  Then, the distribution of random variable )}()({ νZ ggn n −  converges 

to the normal distribution ),( T
nn

ggN ZZ Π0  where kkk ×+ )( 2 -matrix 

νzZ z
z

==
nn

n

n

d
dgg )(  

is Neudecker matrix derivative at .νz =n   

The proof of the theorem can be found in the book of T. W. Anderson (2003, 
page 132). In Theorem 1 vector ).( nE Zν =  

In the univariate case  
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( )T2)( σµ=nE Z  and the function )( ng z  is defined by equality (2.3).  
In this case 22× -matrix 
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According to the Theorem 1 we can say that the random variable 







 − )()(

^
XbXbn  has approximately normal distribution ),0( 2

bN σ . Variance 

2
bσ  can be found in the following way:  
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Thus, we have  

.91
4

)(9 4
4
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2
32 +






 +
Π

=
σσ

σ Xm
b                                   (3.1) 

Example. Let us generate m times random variable X with a sample size n. Let 
random variable X have exponential distribution with parameter .0>λ  Then, the 

i-th order moment .!)( i
i iXE

λ
=  Using these moments we get that 33

2)(
λ

=Xm  

and .8
44 λ

=Π  According to the formula (3.1) variance .1172 =bσ   Thus, we get 

the following approximate 0.95-confidence interval for the skewness measure 
:)(Xb  

.11796.1)(ˆ
nm

Xb ±  

4. Summary: skewness confidence intervals for statistical models 

The problem concerns the estimation of statistical models. This is the problem 
of skewness or lack of symmetry, which means the distribution of statistical 
model residuals is frequently non-gaussian, as Kolmogorov-Smirnov test shows. 
In this case the skewness has to be estimated for testing the goodness of models. 
The confidence intervals of that parameter have to be found. This enables us to 
improve the diagnosis of statistical models. By means of skewness confidence 
intervals we can estimate the influence of outliers. These outliers are typical in 
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forestry. The main question is: does the zero value belong to the estimated 
confidence interval? To answer this question we can estimate the variance of 
residuals by means of equality (3.1). This variance depends on standard deviation, 
skewness and kurtosis of residuals. 
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