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ABSTRACT 

Data in the form of a continuous vector function on a given interval are referred 
to as multivariate functional data. These data are treated as realizations of 
multivariate random processes. We use multivariate functional regression 
techniques for the classification of multivariate functional data. The approaches 
discussed are illustrated with an application to two real data sets.  

Key words: multivariate functional data, functional data analysis, multivariate 
functional regression, classification. 

1. Introduction 

Much attention has been paid in recent years to methods for representing data 
as functions or curves. Such data are known in the literature as functional data 
(Ramsay and Silverman (2005)). Applications of functional data can be found in 
various fields, including medicine, economics, meteorology and many others. In 
many applications there is a need to use statistical methods for objects 
characterized by multiple features observed at many time points (doubly 
multivariate data). Such data are called multivariate functional data. The 
pioneering theoretical work was that of Besse (1979), in which random variables 
take values in a general Hilbert space. Saporta (1981) presents an analysis of 
multivariate functional data from the point of view of factorial methods (principal 
components and canonical analysis). In this paper we focus on the problem of 
classification via regression for multivariate functional data. Functional regression 
models have been extensively studied; see for example James (2002), Müller and 
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Stadmüller(2005), Reiss and Ogden (2007), Matsui et al. (2008) and Li et al. 
(2010). Various basic classification methods have also been adapted to functional 
data, such as linear discriminant analysis (Hastie et al. (1995)), logistic regression 
(Rossi et al. (2002)), penalized optimal scoring (Ando (2009)), nn (Ferraty and 
Vieu (2003)), SVM (Rossi and Villa (2006)), and neural networks (Rossi et al. 
(2005)). Moreover, the combining of classifiers has been extended to functional 
data (Ferraty and Vieu (2009)). 

In the present work we adapt multivariate regression models to the 
classification of multivariate functional data. We focus on the binary 
classification problem. There exist several techniques for extending the binary 
problem to multi-class classification problems. A brief overview can be found in 
Krzyśko and Wołyński (2009). The accuracy of the proposed methods is 
demonstrated using biometrical examples. Promising results were obtained for 
future research. 

2. Classification problem 

The classical classification problem involves determining a procedure by 
which a given object can be assigned to one of  populations based on 
observation of  features of that object. 

The object being classified can be described by a random pair , where 
 and . 

The optimum Bayesian classifier then takes the form (Anderson (1984)):  
 

 

We shall further consider only the case . Here  
 

 

We note that  

 

where  is the regression function of the random variable  with respect to the 
random vector . 

Hence  
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3. Functional data 

We now assume that the object being classified is described by a -
dimensional random process , where  is the 
Hilbert space of square-integrable functions. 

Let be the realization of the random process . Moreover, assume that the 
th component of the vector  can be represented by a finite number of 
orthonormal basis functions  

 
(1) 

where  are the unknown coefficients. 
Let  

and 

 
where , . 

Then, the vector of the continuous function  at point can be represented as 

 (2) 

We can estimate the vector  on the basis of  independent realizations
 of the random process  (functional data). 

Typically data are recorded at discrete moments in time. Let  denote an 
observed value of the feature ,  at the th time point , where 

. Then our data consist of the  pairs . These discrete data 
can be smoothed by continuous functions  and  is a compact set such that 

, for . 
Details of the process of transformation of discrete data to functional data can 

be found in Ramsay and Silverman (2005) or in Górecki et al. (2014). 

4. Regression analysis for functional data 

We now consider the problem of the estimation of the regression function 
. 
Let us assume that we have an -element training sample  

 (3) 
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where  and . 
Analogously as in section 3, we assume that the functions  are obtained as 

the result of a process of smoothing  independent discrete data pairs , 
, , . 

Thus the functions  at point  have the following representation:  

 (4) 

4.1. Multivariate linear regression. We take the following model for the 
regression function: 

  
We seek the unknown parameters in the regression function by minimizing 

the sum of squares  

 

We assume that the functions ,  have the representation (4). 
We adopt an analogous representation for the -dimensional weighting function , 
namely  

 (5) 

where ,and . 
Then  

 
Hence  

 

We define  and  
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Then  

 

Minimizing the above sum of squares leads to the choice of a vector  
satisfying  

 (6) 

Provided the matrix  is non-singular, equation (6) has the unique solution  

 (7) 

In the case of functional data we may use the smoothed least squares method 
(Ramsay and Silverman (2005)), that is, we minimize the sum of squares in the 
form 

 

where  denotes the linear differential operator. Assuming , we obtain  

 

Thus  

 

We define  

 

Hence  

 

where  

 

Then  
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Minimizing the above sum of squares leads to the choice of a vector  
satisfying the equation  

 

The equation thus obtained has the form  

 (8) 

From this we obtain the following form for the estimator of the regression 
function for the multivariate functional data:  

 

where  is given by the formula (7) or (8). 

4.2. Functional logistic regression. We adopt the following logistic regression 
model for functional data:  

 
(9) 

Using the representation of the function  given by (2) and the weighting 
function  given by (5) we reduce (9) to a standard logistic regression model in 
the form  

 
To estimate the unknown parameters of the model, we use the training sample 

 and the analogous representation for the functions ,  given 
by (4). 

Thus we obtain the following form for the estimator of the regression function  

 

4.3. Local linear regression smoothers. We consider the problem of 
nonparametric estimation of a regression function  from a sample (3). 

Let  be a fixed and known point in the space . 
Using Taylor series, we can approximate , where  is close to a point , 

as follows:  

 
(10) 
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where  

 

This is a local polynomial regression problem in which we use the data to 
estimate the polynomial which best approximates  in a small neighborhood 
around the point , i.e. we minimize it with respect to  and  in the function  

 

This is a weighted least squares problem where the weights are given by the 
kernel functions . 

Analogously as in the previous sections, suppose that the vector functions  
and  are in the same space, i.e.  

 

Then  

 

 

The least squares problem is then to minimize the weighted sum-of-squares 
function  

 

with respect to the parameters  and . 

It is convenient to define the following vectors and matrices:  
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where  

 

The least squares problem is then to minimize the function  

 

The solution is  

 

provided  is a non-singular matrix. 

As in the case of multivariate functional linear regression model we can also 
include an additional smoothing component. Then, we seek the unknown 
parameter  by minimizing the sum of squares  

 

Provided the matrix  is non-singular we have the unique 
solution  

 

The  is than estimated by the fitted intercept parameter (i.e. by ) as 
this defines the position of the estimated local polynomial curve at the point . 
By varying the value of , we can build up an estimate of the function  over 
the range of the data. 

We have  

 

where the vector  is of the length  and has a  in the first 
position and ’s elsewhere. 

4.4. Nadaraya-Watson kernel estimator. In Section 4.3 we approximated the 
regression function  using Taylor series. In the approximation (10) let us 
take into account only the first term, i.e. 

 

Then  
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Minimizing the above sum of squares leads to the kernel estimator of the 
regression function  of the form  

 

where  

This gives us a well-known kernel estimator proposed by Nadaraya and 
Watson (1964). 

5. Examples 

Experiments were carried out on two data sets, these being labelled data sets 
whose labels are given. The data sets originate from Olszewski (2001).The ECG 
data set uses two electrodes (Figure 1) to collect data during one heartbeat. Each 
heartbeat is described by a multivariate time series (MTS) sample with two 
variables and an assigned classification of normal or abnormal. Abnormal 
heartbeats are representative of a cardiac pathology known as supraventricular 
premature beat. The ECG data set contains 200 MTS samples, of which 133 are 
normal and 67 are abnormal. The length of an MTS sample is between 39 and 
152. 

 
Figure 1. Variables of the extended ECG data set. 

The Wafer data set uses six vacuum-chamber sensors (Figure 2) to collect data 
while monitoring an operational semiconductor fabrication plant. Each wafer is 
described by an MTS sample with six variables and an assigned classification of 
normal or abnormal. The data set used here contains 327 MTS samples, of which 
200 are normal and 127 are abnormal. The length of an MTS sample is between 
104 and 198. 
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The multivariate samples in the data sets are of different lengths. For each 
data set, the multivariate samples are extended to the length of the longest 
multivariate sample in the set (Rodriguez et al. (2005)). We extend all variables to 
the same length. For a short univariateinstance  with length , we extend it to a 
long instance  with length  by setting 

 

Some of the values in a data sample are duplicated in order to extend the 
sample. For instance, if we wanted to extend a data sample of length 75 to a 
length of 100, one out of every three values would be duplicated. In this way, all 
of the values in the original data sample are contained in the extended data 
sample. 

For the classification process, we used the classifiers described above. For 
each data set we calculated the classification error rate using the leave-one-out 
cross-validation method (LOO CV). Table 1 contains the results of the 
classification error rates (in %). 

 

Table 1. Classification error (in %) 

Model ECG Wafer 

Multivariate functional 

linear regression 
11.50 0.59 

Functional logistic 

 regression 
11.50 0.17 

Local linear 

regression smoothers 
16.50 0.67 

Nadaraya-Watson 

kernel estimator 
20.50 10.64 
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Figure 2. Variables of the extended Wafer data set.  

From Table 1 we see that the ECG data set is difficult to recognize. None of 
the four regression methods can deal with it well. In contrast, the data set Wafer is 
easily recognizable. For this set of data definitely the best results are given by a 
functional logistic regression. We also see a big difference between the local 
linear regression smother, and the Nadaraya-Watson kernel estimator. 
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6. Conclusion 

This paper develops and analyzes methods for constructing and using 
regression methods of classification for multivariate functional data. These 
methods were applied to two biometrical multivariate time series. In the case of 
these examples it was shown that the use of multivariate functional regression 
methods for classification gives good results. Of course, the performance of the 
algorithm needs to be further evaluated on additional real and artificial data sets. 
In a similar way, we can extend other regression methods, such as partial least 
squares regression – PLS (Wold (1985)), least absolute shrinkage and selection 
operator – LASSO (Tibshirani (1996)), or least-angle regression – LARS (Efron 
et al. (2004)), to the multivariate functional case. This will be the direction of our 
future research. 
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