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ABSTRACT 

This paper focuses on recently proposed similarity measures and their 
performance in categorical variable clustering. It compares clustering results 
using three recently developed similarity measures (IOF, OF and Lin measures) 
with results obtained using two association measures for nominal variables 
(Cramér’s V and the uncertainty coefficient) and with the simple matching 
coefficient (the overlap measure). To eliminate the influence of a particular 
linkage method on the structure of final clusters, three linkage methods are 
examined (complete, single, average). The created groups (clusters) of variables 
can be considered as the basis for dimensionality reduction, e.g. by choosing one 
of the variables from a given group as a representative for the whole group. The 
quality of resulting clusters is evaluated by the within-cluster variability, 
expressed by the WCM coefficient, and by dendrogram analysis. The examined 
similarity measures are compared and evaluated using two real data sets from a 
social survey. 

Key words: variable clustering, nominal variables, association measures, 
similarity measures. 

1. Introduction 

When dealing with high dimensional data, reduction of the number of 
variables is often desired. It can spare both the computational time and costs for 
gathering the information in the future. The use of principal component analysis 
or factor analysis, as described, for example, by Jolliffe (2002), or their 
categorical counterparts, such as correspondence analysis Greenacre (2010), is 
very popular. These methods provide additional information about a data set, 
variables of which have significant loadings on a shared vector, see Palla et al. 
(2012). An approach based on multiple correspondence analysis for large data sets 

                                                        
1 Department of Statistics and Probability, University of Economics, Prague. W. Churchill sq.4, 

130 67 Praha 3, Czech Republic. E-mail: zdenek.sulc@vse.cz.  
2 Department of Statistics and Probability, University of Economics, Prague. W. Churchill sq.4, 

130 67 Praha 3, Czech Republic. E-mail: hana.rezankova@vse.cz. 



592                                                          Z. Šulc, H. Řezanková: Evaluation of selected … 

 

 

is presented by D’Enza and Greenacre (2012). Another way to achieve the 
dimensionality reduction of a data set can be to create groups of similar variables 
using cluster analysis. One variable of each group can be chosen as a 
representative for further analysis. Hierarchical cluster analysis represents the 
basic approach used for variable clustering, see Gordon (1999), Gan et al. (2007). 
It is based on a proximity matrix, which contains dissimilarities of analyzed 
variables taken pairwise. More sophisticated approaches are represented, for 
example, by model-based clustering, see Chavent et al. (2010); Everitt et al. 
(2011). In R software, one might find a few variable clustering procedures in a 
package named ClustOfVar, see Chavent et al. (2012). The practical use of 
variable clustering can be found in various fields of use, e.g. in questionnaires 
surveys, actuarial sciences, chemistry, gene expression analysis, see Palla et al. 
(2012), or in getting rid of redundant variables in predictive models, see Payne 
and Edwards (1999). 

The paper focuses on comparison of two kinds of similarity measures which 
can be used in variable clustering with binary or nominal variables. The first ones 
are the association measures, Cramér’s V and the uncertainty coefficient, which 
express the dependency between two variables based on the chi-square statistic 
and the ANOVA method. The second kind is represented by recently developed 
similarity measures, IOF, OF and Lin, which were originally proposed for object 
clustering, but have been adjusted for variable clustering in this paper. Clustering 
with both kinds of measures is going to be compared with the simple matching 
coefficient, which is commonly used in categorical data clustering and thus it can 
serve as a reference measure. 

The IOF, OF and Lin measures have never been evaluated for variable 
clustering; they have only been studied for object clustering so far. Moreover, the 
evaluations of these measures were performed only with the known cluster 
membership, see Boriah et al. (2008), Chandola et. al. (2009); thus cluster 
analysis was treated more like a classification problem with supervised learning. 
Moreover, both publications were focused on the outlier detection performance of 
the similarity measures. 

In this paper, two data sets from a social survey are analyzed. The quality of 
clusters, obtained using different similarity measures, is evaluated from aspects of 
both the within-cluster variability, measured by the WCM (within-cluster 
mutability) coefficient, and the dendrogram analysis. To minimize the influence 
of clustering algorithm on clustering performance of the similarity measures, 
clusters obtained by three linkage methods are compared and evaluated.  

The rest of the paper is organized as follows. Section 2 introduces the 
association and other similarity measures. Section 3 describes evaluation criteria 
of cluster quality. The application of theoretical approach to real data is presented 
in Section 4. The final results are summarized in the Conclusion. 
 



STATISTICS IN TRANSITION new series, Autumn 2014 

 

593 

2. Nominal variable clustering 

A basic approach to variable clustering is to create a dissimilarity matrix, 
which contains dissimilarities of analyzed variables taken pairwise, and then to 
apply agglomerative hierarchical cluster analysis. A dissimilarity measure can be 
derived from a similarity measure. Many similarity measures have been proposed 
for categorical data. One can use association measures for nominal variables, see 
Anderberg (1973), or similarity measures determined for objects characterized by 
nominal variables. There are also several other approaches, for example, in 
Chavent et al. (2010), where the adjustment of existing centre-based method for 
categorical variable clustering is presented. It is not possible to compare all 
approaches or all measures; therefore, we focus only on the selected ones. 

Three linkage methods of hierarchical clustering are applied in this paper: 
complete method (CLM), single method (SLM) and average method (ALM). In 
CLM, the dissimilarity between the furthest variables from two different clusters 
is considered as the distance between these clusters. SLM takes the dissimilarity 
between the nearest variables from two different clusters for this purpose, and 
ALM takes the average distance of all dissimilarities between variables from two 
different clusters. 

2.1. Association measures 

Different types of association measures for nominal variables are used in 
multivariate analysis. Some of them are based on Pearson’s chi-squared statistic, 
some on the principle of dependence measurement in the ANOVA method. 

The measures based on the chi-square statistic compare observed and 
expected counts under the hypothesis of independence; these counts are 
frequencies of combinations of categories of two nominal variables. Pearson’s 
coefficient of contingency, Cramér’s V and the phi coefficient belong to this 
group. In this paper, Cramér’s V is applied because it takes values from the 
interval [0, 1] and takes into account the numbers of categories. It is calculated 
according to the formula 

)1(2 −χ= qnV , (1) 

where 2χ  is Pearson’s chi-squared statistic, n is the number of surveyed objects 
and q is a minimum number of categories of two analyzed variables. If at least 
one variable is dichotomous, then values of Cramér’s V equal the values of the 
phi coefficient. Cramér’s V can be transformed into a dissimilarity measure by 
subtracting its value from 1. 

In the ANOVA method, a directional dependence is considered. In such a 
case, a symmetric measure is calculated as the harmonic mean of two asymmetric 
measures. There are two symmetric coefficients for nominal variables derived 
from asymmetric measures which are based on the principle of ANOVA: the 
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lambda coefficient and the uncertainty coefficient. The former one is based only 
on frequencies of modal categories, the latter one takes into account frequencies 
of all combinations of categories. Therefore, the uncertainty coefficient is applied 
in our experiments. It takes values from the interval [0, 1] and it is based on the 
entropy as a variability measure. For the c-th and d-th variables it is calculated as 

dc
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cd HH

HHHU
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−+⋅
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where Hc (Hd) is the entropy of the c-th (d-th) variable and Hcd is the within-group 
entropy. Generally, the entropy H is expressed as 
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where pu is a relative frequency of the u-th category and h is the number of 
categories if for all u pu ≠ 0. In the case of pu = 0, the corresponding addend 
equals 0 for this u. The uncertainty coefficient can be transformed into a 
dissimilarity measure by subtracting its value from 1. 

More association measures for variable clustering can be found in Řezanková 
(2014). 

2.2. Recently developed similarity measures 

Compared with association measures, which are based on frequencies in a 
contingency table, the other similarity measures considered in this paper compare 
categories taken pairwise for each object individually. The term the other 
similarity measures covers the recently developed similarity measures (IOF, OF 
and Lin) and the overlap measure, which serves as a reference measure. All these 
measures have a drawback which is that all analyzed variables must have the 
same number of categories and the categories must have the same meaning. The 
reason is as follows: if categories across the variables did not have the same 
meaning, it would make no sense to compare them. For this reason the same 
number of categories is considered. 

All formulas in this paper are based on the data matrix X = [xic], where i = 1, 
2, ..., n and c = 1, 2, ..., m (n is the total number of objects, m is the total number 
of variables). 

Originally, the IOF (inverse occurrence frequency) measure comes from an 
information retrieval, where it used to serve to determine a relative number of 
documents containing a specific word, see Sparck-Jones (1972, 2002). The 
original measure was designed to deal only with binary variables; later, it was 
adjusted to deal with nominal variables as well. The measure was constructed to 
assign higher weights to mismatches on less frequent values and lower weights to 
mismatches on more frequent values. When determining similarity between 
variables xc and xd for the i-th object, it can be expressed as 
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where f(xic) is a frequency of the category xic of the i-th object. Dissimilarity 
between variables xc and xd is expressed as 
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The OF (occurrence frequency) measure has an opposite system of weights to 
the IOF measure. It assigns higher weights to mismatches on more frequent 
values and otherwise, i.e. 
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Dissimilarity can be determined using Equation (5). 
The Lin measure, which was introduced by Lin (1998), represents an 

information-theoretic definition of similarity based on relative frequencies. It was 
derived from theoretic assumptions about similarity. The emphasis was put on the 
universality of use; thus, it can be used in various situations including 
determination of similarity between ordinal values. It assigns higher weights to 
more frequent categories in the case of a match and lower weights to less frequent 
categories in the case of a mismatch, i.e. 
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where p(xic) expresses a relative frequency of the category xic of the i-th object. 
The dissimilarity measure is defined as 
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Clustering with the measures mentioned above is compared with results 
obtained using the overlap measure, which takes into account only whether two 
observations match or not. When determining similarity between variables xc and 
xd for the i-th object, it assigns value 1 if the variables match and value 
0 otherwise. 
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The dissimilarity measure is defined as 
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Unlike recently developed similarity measures, the overlap measure does not 
take into account frequency distribution of categories of a given object, which 
could serve as an important factor for determining similarity between variables. 
The comparison of the above mentioned coefficients applied for an object 
clustering with respect to the within-cluster variability is described in Šulc and 
Řezanková (2014). 

3. Evaluation criteria of final clusters 

In this paper, the quality of final clusters is evaluated from the aspects of the 
WCM (within-cluster mutability) coefficient and by the dendrogram analysis. 

The within-cluster variability is an important indicator of cluster quality. With 
an increasing number of clusters, the within-cluster variability decreases, so the 
clusters become more homogenous. In this paper, the measurement of the within-
cluster variability is based on the Gini coefficient, which determines the 
variability (mutability) of nominal variables. It is expressed by the following 
equation 
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where mg is the number of variables in the g-th cluster (g = 1, ..., k), ngiu is the 
number of variables in the g-th cluster by the i-th object with the u-th category (u 
= 1, 2, ..., h; h is the number of categories). After standardization of this 
coefficient with the aim to get values from 0 to 1, and its extending for n objects 
and k clusters, it can be expressed in a form of the normalized within-cluster 
mutability coefficient: 
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where m is the number of variables. The WCM coefficient is based on the Gꞌ 
measure, which was proposed by Řezanková et al. (2011) for the purpose of 
evaluation of object clustering. 

When clustering a relatively small number of variables, the dendrogram 
analysis can be very helpful. Dendrograms visualize the process of agglomerative 
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hierarchical clustering calculation. They have a form of charts, which have the 
examined variables, e.g. on the Y axis, and the distance between clusters on the X 
axis. They can be cut at any point to get a particular cluster solution. 

4. Real data application 

To illustrate the influence of selected association and other similarity 
measures on variable clustering, two variable sets, which come from the research 
Men and Women with a University Degree, are chosen. This survey was 
conducted by the Institute of Sociology of the Academy of Sciences of the Czech 
Republic, see the archives of the institute (http://archiv.soc.cas.cz). 

The following software was used for the analysis: Matlab, IBM SPSS 
Statistics, STATISTICA and MS Excel. In Matlab, proximity matrices for all 
similarity measures were computed. In IBM SPSS, hierarchical cluster analyses 
using CLM, SLM and ALM were performed. In STATISTICA, dendrograms 
were created. In MS Excel, evaluation criteria for cluster quality evaluation were 
computed. 

4.1. Description of the variable sets 

Two batteries of questions were chosen for the analysis. The first battery 
consists of 9 variables; all with two possible answers yes or no. The questions are: 
From family reasons, have you ever: p27a – worked part-time, p27b – worked in 
shifts, p27c – worked flextime, p27d – changed a job, p27e – changed a 
profession, p27f – moved, p27g – refused a job offer, p27h – refused a promotion 
offer, p27i – cheated at work? The cases with missing values were omitted, so 
answers from 1,904 respondents were included. 

The second battery deals with gender equality. It contains 9 variables, which 
all have three possible answers: women have better opportunities than men, men 
and women have approximately equal opportunities and men have better 
opportunities than women. The variables are the following: p13a – to get a job, 
p13b – to have better salary for the same job, p13c – to get a leadership, p13d – 
to be a director, p13e – to be promoted, p13f – for a salary increase, p13g – to 
gain benefits, p13h – to have authority, p13i – to keep a job. There is one 
additional variable with the name: p12 – a chance of success which has the same 
categories as the previous battery of questions. For this reason, it can be added to 
the set of variables. Overall, answers from 1,886 respondents were used. 

4.2. Binary variable clustering 

Table 1 presents values of the WCM coefficient for the solutions with two to 
five clusters for CLM, computed for the set of questions with binary answers. The 
quality of a particular cluster solution can be evaluated according to the within-
cluster variability expressed by the WCM coefficient. The lower the value of 
WCM, the better the cluster solution. For the two-cluster solution, most of the 
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measures, except for the Lin measure, provide the same results, i.e. 0.366. For 
cluster solutions for three and more clusters, the best results are provided by the 
recently developed similarity measures, i.e. IOF, Lin and OF, which have the 
same results. They are followed by the overlap measure and further by the both 
association measures. 

Table 1. Values of the WCM coefficient for clustering of binary variables (CLM) 
 WCM(2) WCM(3) WCM(4) WCM(5) 

Cramér’s V 0.366 0.320 0.255 0.186 
Coefficient U 0.366 0.320 0.254 0.186 
IOF measure 0.366 0.297 0.232 0.168 
OF measure 0.366 0.297 0.232 0.168 
Lin measure 0.375 0.297 0.232 0.168 
Overlap measure 0.366 0.301 0.236 0.172 
 

Another approach to evaluate the clustering performance is to use 
dendrograms, which are presented in Figure 1. When looking at the dendrograms, 
it is apparent that they can be separated into three groups from the point of view 
of the clustering structure. The first one comprises both the association measures, 
the second one includes the recently developed similarity measures and the last 
one contains only the overlap measure. Similarity measures in a particular group 
provide similar results. Since data dimension reduction is the primary goal of 
variable clustering, low-cluster solutions are preferred. 

When using SLM, as shown in Table 2, one might see that the results are very 
different from the results achieved by CLM. Generally, they are all worse. There 
are apparent interesting changes in behaviour of the similarity measures. Both 
association measures perform better than the recently developed similarity 
measures from the point of view of their within-cluster variability and the 
interpretation of dendrograms. Moreover, using SLM, the advantage of recently 
developed similarity measures, which is based on taking into account frequency 
distribution of categories, is not apparent in the results. Thus, their results are very 
similar to the overlap measure, which is also demonstrated by the similar structure 
of dendrograms of clustering with these measures in Figure 2. The best clusters 
are provided by Cramér’s V in the three-cluster solution. 
 

Table 2. Values of the WCM coefficient for clustering of binary variables (SLM) 
 WCM(2) WCM(3) WCM(4) WCM(5) 

Cramér’s V 0.378 0.299 0.232 0.186 
Coefficient U 0.372 0.333 0.232 0.186 
IOF measure 0.376 0.307 0.245 0.172 
OF measure 0.376 0.307 0.245 0.190 
Lin measure 0.376 0.307 0.245 0.190 
Overlap measure 0.376 0.307 0.245 0.190 
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Figure 1. Dendrograms for clustering of binary variables (CLM) 

It is important to note that the distances between pairs of variables are 
differentiated much worse by SLM than by CLM. This fact can cause a bad 
assignment of clusters into new ones when performing the agglomerative process, 
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because there are very small differences in their distance by SLM. Especially, 
such situations are noticeable by the uncertainty coefficient and the IOF measure 
in Figure 2. 

  

  

  
Figure 2. Dendrograms for clustering of binary variables (SLM) 
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CLM, as demonstrated in Figure 3. When examining the dendrograms, one can 
notice that the distances between clusters are not as large as by CLM, but they are 
considerably larger than by SLM. The best clusters are provided by the IOF 
measure. Actually, they are exactly the same as when using CLM. 

Table 3. Values of the WCM coefficient for clustering of binary variables (ALM) 
 WCM(2) WCM(3) WCM(4) WCM(5) 

Cramér’s V 0.366 0.320 0.254 0.186 
Coefficient U 0.366 0.333 0.232 0.186 
IOF measure 0.366 0.297 0.232 0.168 
OF measure 0.375 0.307 0.234 0.172 
Lin measure 0.366 0.300 0.232 0.168 
Overlap measure 0.375 0.307 0.238 0.177 

In the binary variable set, the best clusters are provided by IOF only when 
using SLM Cramér’s V provides better results. Unfortunately, it is not that they 
are good but because the other measures perform much worse. All the recently 
developed similarity measures have satisfying results when using CLM or ALM. 
In the end, the three-cluster solution of the IOF measure by CLM was chosen. 
The clusters look as follows. In the first cluster, there are variables regarding the 
kind of work (p27a – worked part-time, p27b – worked in shifts, p27c – worked 
flextime, p27i – cheated at work). The second cluster summarizes variables 
concerning changing a job (p27d – changed a job, p27e – changed a profession, 
p27f – moved). The third cluster describes variables regarding a refusal of a good 
offer in a job (p27g – refused a job offer, p27h – refused a promotion offer). 

4.3. Three-category variable clustering 

The within-cluster variability for two- to five-cluster solutions using CLM for 
three-category variables is contained in Table 4. The results are not as 
unambiguous as by the binary variables. In the two-cluster solution, the best 
results provide both the OF and the overlap measure. In the three-cluster solution, 
there is a different situation; both IOF and Lin have the best results. All the 
association measures provide worse results in comparison to other similarity 
measures, which have very similar results of the WCM coefficient. 

Table 4. Values of the WCM coefficient for clustering of three-category variables 
(CLM) 

 WCM(2) WCM(3) WCM(4) WCM(5) 
Cramér’s V 0.416 0.354 0.287 0.208 
Coefficient U 0.427 0.352 0.287 0.208 
IOF measure 0.385 0.317 0.259 0.208 
OF measure 0.381 0.322 0.261 0.196 
Lin measure 0.385 0.317 0.259 0.194 
Overlap measure 0.381 0.321 0.260 0.195 
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Looking at the dendrograms in Figure 4, it is apparent that they can be divided 
into three groups according to the clustering structure. The first group contains 
both the association measures, Cramér’s V and the uncertainty coefficient. These 
measures have a tendency to create unbalanced clusters; all of them provide at 
least one cluster comprising only one variable. The second group includes IOF and 
Lin, and in the last group, there are OF and overlap. According to dendrograms 
interpretation, the best results are provided by the Lin measure, which has, except 
for the five-cluster solution, the same results as the IOF measure. 

  

  

  
Figure 3. Dendrograms for clustering of binary variables (ALM) 
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When using SLM, the within-cluster variability of similarity measures in a 
particular cluster solution is expressed in Table 5. Similarly as by the binary data 
set, the clustering results are much worse than by CLM. Except for the IOF 
measure, all other similarity measures provide very unbalanced clusters, which 
often contain only one variable. 

  

  

  

Figure 4. Dendrograms for clustering of three-category variables (CLM) 
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Table 5. Values of the WCM coefficient for clustering of three-category 
variables (SLM) 

 WCM(2) WCM(3) WCM(4) WCM(5) 
Cramér’s V 0.416 0.352 0.295 0.248 
Coefficient U 0.427 0.352 0.287 0.240 
IOF measure 0.381 0.329 0.267 0.202 
OF measure 0.416 0.358 0.295 0.198 
Lin measure 0.416 0.358 0.257 0.202 
Overlap measure 0.416 0.358 0.295 0.198 
 

According to the dendrograms in Figure 5, the OF and overlap measures 
provide clusters in a similar way. Again, the advantage of recently developed 
similarity measures, which take into account the frequency distribution of 
categories, does not seem to have a big importance by SLM. The best clusters are 
provided by the IOF measure, but they do not reach the quality of the same 
measure by CLM. 

The values of the WCM coefficient for ALM are displayed in Table 6. They 
are very similar to those provided by CLM; they differ only in details. The 
overlap measure has the best results across all cluster solutions. It is closely 
followed by the recently developed similarity measures and then by the 
association measures. 

Table 6. Values of the WCM coefficient for clustering of three-category variables 
(ALM) 

 WCM(2) WCM(3) WCM(4) WCM(5) 
Cramér’s V 0.416 0.352 0.295 0.209 
Coefficient U 0.427 0.352 0.287 0.208 
IOF measure 0.381 0.317 0.267 0.208 
OF measure 0.381 0.322 0.263 0.198 
Lin measure 0.385 0.323 0.259 0.202 
Overlap measure 0.381 0.316 0.256 0.198 
 

When looking at the dendrograms displaying the ALM clustering in Figure 6, 
one might see that some of them have a similar structure to CLM (the uncertainty 
coefficient, the overlap measure, and all the recently developed similarity 
measures). Thus, some measures provide similar results to SLM and some to 
CLM. The best results are provided by the overlap measure. 

Generally, in the three-category variable set, the best results are provided by 
the IOF measure. Outputs based on this measure are not the best in all cluster 
solutions; however, they are very robust in most situations. Actually, the best 
results by CLM, the Lin measure, and by ALM, the overlap measure, were the 
same as those provided by the IOF measure. By SLM, the IOF measure 
performed beyond competition. 
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The two-cluster solution obtained by CLM with the IOF measure was 
considered to be the best one. The first cluster deals with variables concerning 
getting a job (p13a – to get a job, p13b – to have better salary for the same job, 
p13c – to get a leadership, p13d – to be a director and p12 – a chance of 
success). The second cluster consists of variables regarding getting a better 
position in a respondent’s job: (p13e – to promote, p13f – for a salary increase, 
p13g – to gain benefits, p13h – to have authority, p13i – to keep a job). 

5. Conclusion 

In this paper, clustering performance of two kinds of similarity measures was 
examined: the association measures for nominal variables and the other similarity 
measures originally proposed for objects characterized by nominal variables. 
There were two main aspects of the comparison. Firstly, the final cluster solutions 
were evaluated from the point of view of the within-cluster variability; secondly, 
on the basis of dendrograms and judgments of the researcher. For the analysis, 
sets of binary and three-category variables were chosen. The influence of different 
types of linkage methods on resulting clusters was also examined. 
 

Overall, six similarity measures were evaluated in this paper. There were two 
association measures and four other similarity measures. The association 
measures, Crammer’s V and the uncertainty coefficient, focus on general 
dependence between two variables when determining their similarity. However, 
this way of similarity measuring may lead to a loss of some part of information, 
and thus, to worse dissimilarity determination. The results of the within-cluster 
mutability (WCM) coefficient and clusters unbalanced by this measures 
confirmed such a scenario. Therefore, the use of association measures is not 
suitable for clustering of nominal variables in cases where other possibilities can 
be considered. 
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Figure 5. Dendrograms for clustering of three-category variables (SLM) 
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Figure 6. Dendrograms for clustering of three-category variables (ALM) 
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mismatches on less frequent categories which allows it to be more sensitive to 
outliers in a data set. This approach proved to be more successful in comparison 
with the OF measure, which uses exactly the opposite weight system, which puts 
lower weights to those outliers. The Lin measure, as well as the OF measure, 
assigns lower weights to less frequent categories in the case of a mismatch, but 
more than that, it also assigns higher weights to more frequent categories in the 
case of a match. This makes its results very robust in comparison with the OF 
measure. The overlap measure offers no weight system. This measure provided 
similar results of the WCM coefficient with the rest of other similarity measures; 
however, the crucial difference was in cluster quality of resulting clusters. They 
were unbalanced and their dendrogram interpretation was worse than the rest of 
the other measures. On the whole, the IOF and Lin measures provided very good 
clusters of variables in both data sets from the aspects of the WCM coefficient as 
well as the dendrogram interpretation. Therefore, the use of one of these measures 
is highly recommended for variable clustering. 

When comparing the three linkage methods, the best results are provided by 
the complete one. It provides good differentiation of clusters; thus, it is easy to cut 
a dendrogram at a given point. Further, it creates clusters of a similar size, which 
is in accordance with reduction of a data set. The single linkage method provides 
very different results in comparison to the complete and average linkage methods. 
Moreover, the adjustments of recently developed similarity measures, which take 
into account frequency distribution of categories, do not seem to have any strong 
influence because of this method. On the whole, this method offers the worst 
results of all the examined linkage methods; therefore, it cannot be recommended 
for variable clustering. Thus, the complete or average linkage method should be 
preferred. 
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