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ABSTRACT 

In this paper we have proposed a general class of estimators for two-phase 
sampling to estimate the population mean in the case when non-responses occur 
at the first phase. Furthermore, several continuous and categorical auxiliary 
variable(s) have been simultaneously used while constructing the class. Also, it is 
assumed that the information on all auxiliary variables is not available for 
population, which is often the case. The expressions of the mean square error of 
the suggested class have been derived and several special cases of the proposed 
class have been identified. The empirical study has also been conducted. 

Key words: non-response, multi-auxiliary variables, regression-cum-ratio-
exponential estimators, no information case. 

1. Introduction 

The most common method of data collection in survey research is sending the 
questionnaire through mail. The reason may be the minimum cost involved in this 
method. But this method has a major disadvantage that a large rate of non-
response may occur, which may result in an unknown bias, while the estimate 
based only on responding units is representative of both responding and non-
responding units.  

A personal interview is another method of data collection which generally 
may result in a complete response, but the cost involved in personal interviews is 
much higher than the mail questionnaire method. We may conclude from the 
above discussion that the advantage of one method is the disadvantage of the 
other and vice versa. Hansen and Hurwitz (1946) combined the advantages of 
both procedures. They considered the issue of determining the number of mail 
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questionnaires along with the number of personal interviews to be carry out given 
non-response to the mail questionnaire in order to attain the required precision at 
minimum cost.  

Hansen and Hurwitz (1946) discussed the sampling scheme considering non-
response and constructed the following unbiased estimator for population meanY
of variable of interest y  as 

* '
1 1 1 1 1 ,ry w y w y              (1.1)

 
where 1y  and 1ry denote the means for the respondent and re-contacted sample 
respectively, and further it is assumed that there is no non-response at re-
contacted sample. The weights 1 11 1w n n and '

1 12 1w n n .  
 

The variance of (1.1) is 
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Singh et al. (2010) emphasized that precision of an estimator can be increased 
using auxiliary variable in estimation procedure when the study variable y is 
highly correlated with the auxiliary variable x. In the case of two phase sampling, 
Wu and Luan (2003) argue that when we take a large first phase sample from the 
population and a sub-sample from the first phase sample then there is an issue of 
small sample size and large non-response rate, and as a result the mean square 
error becomes larger. This effect can be compensated using auxiliary variables 
that are highly correlated with the study variable in the estimation procedure. The 
major advantage of using two-phase sampling is the gain in high precision 
without substantial increase in cost. 

The availability of population auxiliary information plays an important role in 
efficiency of estimators in two-phase sampling. In the case of at least two 
auxiliary variables, Samiuddin and Hanif (2007) show that auxiliary information 
can be utilized in three ways depending on the availability of auxiliary 
information for population. Firstly, No Information Case (NIC): when population 
information on all auxiliary variables is not available. Secondly, Partial 
Information Case (PIC): when population information on some auxiliary variables 
is available. Thirdly, Full Information Case (FIC): when population information 
on all auxiliary variables is available. Ahmad and Hanif (2010) clarify that case  
for a specific estimation procedure, - the estimator for FIC will be more efficient 
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then the estimator for PIC and the estimator for PIC will me more efficient then 
the estimator for NIC. 

Ahmad et al. (2009a, 2009b, 2010) and Ahmad and Hanif (2010) developed 
several univariate and multivariate classes of ratio and regression estimators using 
multi-auxiliary variables under these three cases of availability of auxiliary 
information for population. 

Many survey statisticians have used the quantitative auxiliary variables for 
constructing their estimators in two-phase sampling. Furthermore, some authors 
have used qualitative auxiliary variables for estimating the unknown population 
parameters (see Jhajj et al. (2006), Shabbir and Gupta (2007), Samiuddin and 
Hanif (2007), Shahbaz and Hanif (2009), Haq et al. (2009), Hanif et al. (2010)). 

As mentioned earlier, Hansen-Hurwitz (1946) dealt with non-response 
problem for simple random sampling and suggested an estimator without using 
auxiliary information. Many researchers such as Khair and Srivastava 
(1993,1995), Singh and Kumar (2008a, 2009a) developed different ratios, product 
and regression estimators to estimate population mean of study variables in two-
phase sampling when non-response occurs at the second phase. Tabasum and 
Khan (2004) revisited the ratio-type estimator by Khair and Srivastava (1993) and 
found that the cost of this estimator is lower than the cost gained by Hansen-
Hurwitz (1946) estimator. Singh et al. (2010) proposed two exponential-type 
estimators and/or auxiliary variables when non-response occurs during the study. 

Ahmad et al. (2012, 2013a, 2013b) proposed the class of generalized 
estimators to estimate the population mean using multi-auxiliary quantitative 
variables in the presence of non-responses at the first phase, second phase and 
both phases. 

After introducing the concept of estimating the mean of study variable using a 
mixture of auxiliary variables in the presence of non-responses, some important 
references regarding estimators of population mean in the presence of non-
responses in single and two-phase sampling using quantitative and qualitative 
auxiliary variables have been discussed separately in Section 1. In Section 2 we 
have proposed a generalized class of regression-cum-ratio-exponential estimators 
for estimating the mean of study variable using a mixture of auxiliary variables in 
the presence of non-responses at the first phase and its special cases are also given 
in this section. A detailed empirical study have been conducted and discussed in 
Section 3. Some conclusions are provided in Section 4.  

2.   Generalized class of regression-cum-ratio-exponential estimators  
 in two-phase sampling 

Most of the literature is devoted to the case when non-responses occur at the 
second phase, but in two-phase sampling, when auxiliary information is obtained 
at the first phase sample that is relatively larger than the second phase sample, the 
non-response rate will be high as compared to the second phase. The two-phase 
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sampling scheme when non-responses occur at the first phase is discussed as 
follows. 

Consider the total population (denoted by U) of N units is divided into two 
sections: one is the section (denoted by 1U ) of 1N units, which would be available 

at the first attempt at the first phase, and the other section (denoted by 2U ) of 2N

units, which are not available at the first attempt at the first phase but will be 
available at the second attempt. From N units, a first phase sample (denoted by 1u ) 

of 1n units is drawn by simple random sampling without replacement (SRSWOR). 
At the first phase let 1m units supply information which is denoted by 1v and 2m

units refuse to respond, which is denoted by 2v , where 1v = 1u ∩ 1U and 2v = 1u ∩

2U . A subsample (denoted by 2mv ) of 1r units is randomly taken from the 2m non-
respondents by applying the strategy defined by Hansen and Hurwitz (1946) and 
this subsample is specified by 1 2 1r m k , 1k >1. It is assumed that no non-response 
is observed in this subsample. A second phase sample (denoted by 2u ) of 2n  units 

(i.e. 2n < 1n  ) is drawn from 1n by SRSWOR and the variable of interest y is 
measured at the second phase. The above sampling scheme can be easily 
understandable from Figure 1. 

 
 
Figure 1.  Two-phase sampling scheme when non-responses occur at the first  
 phase  
 

The literature is evident that there is no estimator that can utilize auxiliary 
information on both quantitative and qualitative variables. But, in sample surveys, 
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the information on both quantitative and qualitative variables is collected either at 
the first phase and/or the second phase. For example, we want to estimate the 
average CGPA of a student in BS (Honor). The information on variables like 
previous degree marks, attendance, number of hours spent in library, if a student 
is a member of rural or urban area, father's profession, having a laptop or not, 
having internet facility or not, etc., can be used as auxiliary information to 
estimate average CGPA with more efficiency. Hence, there is a need to develop 
an estimator that can utilize auxiliary information on both quantitative and 
qualitative variables. 

For the first time a combination of regression and ratio technique for simple 
random sampling called regression-cum-ratio estimator was used by Mohanty 
(1967) to estimate the population mean of study variable. Similarly, the sum of 
the ratio and exponential components with some suitable weights can be 
combined with regression component to develop a general class of regression-
cum-ratio-exponential estimators. Furthermore, the objective of suggesting such a 
class is to search for the best member from all members of the class.  

We have suggested the general class of estimators for two-phase sampling to 
estimate the population mean of the study variable in the case when non-response 
occurs at the first phase. Moreover, several quantitative and qualitative auxiliary 
variables have been used simultaneously while constructing the class. Also, it is 
assumed that population information is not available for all auxiliary variables 
that is the natural case.  
 

The proposed class is  
 

 1 2 3( ),mixt t t t                  (2.1) 
where 
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where a, b, c, d, e, f, h, l are constants to be chosen for generating members of this 
class and  & 'i s for all 1,2,..., 6i   are unknown constants to be determined by 

minimizing the mean square error of mixt  given in (2.1) and 
6
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 y : denotes the study variable  

ix : denotes the thi auxiliary quantitative variables for 11, 2,3,...,i q   
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i  : denotes the thi auxiliary qualitative variables for 21, 2,3,...,i q    

jz : denotes the thj auxiliary quantitative variables for 31, 2,3,...,j q   

j  : denotes the thj auxiliary qualitative variables for 41,2,3,...,j q    

kw : denotes the thk auxiliary quantitative variables for 51, 2,3,...,k q  

k  : denotes the thk  auxiliary qualitative variables for 61, 2,3,...,k q   
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2y : denotes the mean of the study variable for the second phase sample  
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where t
3α and t

4α are vectors of unknown coefficient,
 4 4

1
j q q


   Ψ ; 41,2,3... ,j q   

and
3 3

1
3; 1, 2,3...j q q

Z j q


   Z are diagonal matrices and vectors 
31j q

d


   
t
zd with 

  *
(1)2j z jz jd e e  , 

41j q
d  
   

t
ωd  with   *

(1)2j jjd e e   , 
41j q

u  
   

t
ωu with

 *

2 1

2 2

j jju e e     , 
31j q

u


   
t
zu with  *

2 1

2 2

j ij z zu e e  , 
41j q

v  
   

t
ωv  with 

 *

2 1

2 2

j jjv e e     and 
31j q

v


   
t
zv  with  *

2 1

2 2

i jj z zv e e  .

  
Now, considering the exponential component  3t  

of (2.1), let 
* *

(1) (1)w k k ke w W  , * *
(1) (1)k k ke      * *

(2) (2)k k ke      be the sampling errors of thk  

quantitative auxiliary variable and thk  qualitative auxiliary variable at the first 
phase with non-response and  (1) 1w k kke w W   ,  (1) 1k kke     be the sampling 

errors of thk  quantitative auxiliary variable and thk  qualitative auxiliary variable 
at the first phase.  Then, simplifying and using binomial expansion up to the 
second order term, 3t  becomes 

   

   

   

   

5 6
2 1 2 1

2 1 2 1

* *

3 5 6* *
1 1

exp
2 2

k k k k

k k k k

q q
w w

k k
k kw w k k

e e e e
t e f l

e e W e e

 

 

   

 


  

     
     

            
   , 

or 

        

        
5 6

2 1 2 1

2 1 2 1

1 1* *

* *5 6
3

1 1

exp 1 1
2 2 2 2

k k k k

k k k k

q q
w w

k k
w w

k kk k k k

e e e ef l
t e e e e e

W W

 

 
   

 

 



   

     
         
          
 
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or   
             5

2 12 1

2 1

2
**

*5
3 2

1

exp 1
2 2 4

k kk k

k k

q w ww wk
w w

k k k k

e ee ef
t e e e

W W W





    
     

  
 

    

    
           6

122 1

2 1

2
**

*6
2

1

1
2 2 4

kkk k

k k

q
k

k k k k

e ee el
e e

  

 

  

 



   

   
         

 

  

Using exponential series and writing in matrix notation, after ignoring the 
third and higher order terms 

  1 1
3 2 4t e ef ef   t t 2

5 w 5 wα Wd α W v 12 el t
6 fα Εd 14 el t 2

6 fα Ε v ,   (2.4) 
 
where t

5α  and t
6α are vectors of unknown coefficient,

 5 5

1 ;k q q
W



   W

51,2,3...k q  and 
6 6

1
k q q


   Ε ; 61,2,3...k q  are diagonal matrices and vectors 

 
51k q

d


t
wd with   *

(1)2k w kw kd e e  ,  
61k q

d  
td  with   *

(1)2k kkd e e   ,
 

 
51k q

v


t
wv  with  *

2 1

2 2

k kk w wv e e  and  
61k q

v  
tv  with  *

2 1

2 2

k kkv e e     . 

 
Substituting the expressions of 1t , 2t and 3t from (2.2), (2.3) and (2.4) in (2.1), 

we get 

  1 2
(2) 2mix yt e Y a b c ch ch         

tt t t 2 2
1 x 2 τ 4 ω 4 ωα d α d α Ψd α Ψ u     

12 ch cd chd  t 2 t t t
4 ω 3 x 3 x 4 ωα Ψ v α Zd α Zd α Ψd        

   1 2 1 12 2 2cd cd e ef     
t2 2 t 2 t

3 z 3 z 5 wα Z u α Z v α Wd                                

   1 1 14 2 4ef el el 
      

t 2 t t 2
5 w 6 6α W v α Εd α Ε v ; 1c e           (2.5) 

 
Ignoring the third and higher order terms of the expression given by (2.5) and 

applying the expectation, we get 

    1
31 2mixE t Y Y ch cd ef        t t t

4 4 3 5 5α Ψδ α Zδ α Wδ                  

            1 1 2
42 2el Y ch      

t

(2)

t 2 2 2 2
6 6 4 ω ωα Εδ α Ψ S S  

 1 2
42Y chd Y cd     

t

(2)

t 2 2 2 2
3 34 4 3 z zα ZΔ Ψα α Z S S                                       

   1 1
3 32 2Ych Ycd         

(2) (2)

t 2 2 2 t 2 2 2
4 ω ω 3 z zα Ψ S S α Z S S

  
   1 1

3 34 4Y ef Y el           
(2) (2)

t 2 2 2 t 2 2
5 w w 6α W S S α Ε S S

12ach acd aef  t t t
1 44 4 1 13 3 1 15 5α Δ Ψα α Δ Zα α Δ Wα

12 ael bch bcd  t t t
1 16 6 2 44 4 2 23 3α Δ Eα α Δ Ψα α Δ Zα

1 12 2bef bel  t t
2 25 5 2 26 6α Δ Wα α Δ Eα ,

                  
(2.6) 
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where
    

2
1

3 1iy x y q
E e S


    1 xδ d ,  

2
2

3 1iy y q
E e S

 
    2 τδ d ,  

2
3

3
1jy z y

q
E e S


    3 zδ d

 
2

4
3

1jy y
q

E e S
 

    4 ωδ d ,  
2

5
3 1ky w y q

E e S


    5 wδ d
 
,  

2
6

3 1ky y q
E e S 

 
    6δ d

   4E   
(2)

2 2
ω ω ωu S S ,    3E   

(2)

2 2
ω ω ωv S S  

    4 4 2 1;E        
2

2 2
z z zu S S , 

 
  3E   
2

2 2
z z zv S S ,  

  3E   
2

2 2
w w wv S S ,  

    3 3 2 1;E          
2

2 2v S S ,

( 2)
1 3

3( )
i j i jx z x z

q q
E S S 


    

t
13 x zΔ d d , 

( 2)
1 5

3( ) ,
i k i kx w x w

q q
E S S 


    

t
15 x wΔ d d

( 2 )
1 6

3( )
i k i kx x

q q
E S S   

  
    

t
16 xΔ d d , 

( 2 )
2 3

3( )
i j i jz z

q q
E S S  

  
    

t
23 τ zΔ d d ,

( 2)
2 5

3( )
i k i kw w

q q
E S S  

  
    

t
25 τ wΔ d d , 

( 2)
2 6

3( )
i k i k q q

E S S     
    

    
t

26 τΔ d d ,

( 2)
3 4

3( )
j j j jz z

q q
E S S  

  
    

t
34 z ωΔ d d , 

( 2 )
4 4

3( )
j j j j q q

E S S    
    

    
t

44 ω ωΔ d d . 

 
Expression given in (2.6) can be written as 

1
4( ) ( 1) 2mBias t Y cd a b Yd      

tt t 2 2 2
1 13 3 2 23 3 3 zα Δ Zα α Δ Zα α Z S    

    1
32 Y         

2 t 2 2 2 t
(2)z 3 z (2)z 3 3S α Z S S α Zδ           

  1
42 (ch a b Y d   

tt t 2 2 2
1 14 4 2 24 4 4 ωα Δ Ψα α Δ Ψα α Ψ S          

   1
32 Y       2 t 2 2 2 t

(2)ω 4 ω (2)ω 4 4S α Ψ S S α Ψδ           

  1 12 2Y d ef a b       
t t t
3 34 1 15 5 2 25 5α ZΔ Ψ α Δ Wα α Δ Wα         

  1 1 1
34 ( ) 2 2Y el a           

t 2 2 2 t t
5 w (2)w 5 5 1 16 6α W S S α Wδ α Δ Εα      

   1 1 1
6 32 4 2b Y            

t t 2 2 2 t
2 26 6 (2) 6 6α Δ Εα α Ε S S α Εδ .          (2.7) 

 
Bias(tmix) = Bias due to regression – cum – ratio (quantitative) + Bias due to 
regression – cum – ratio (qualitative) + Bias due to regression – cum – 
exponential (quantitative) + Bias due to regression – cum – exponential  
(qualitative) 

For obtaining the mean square error and optimum value of generalized class, 
ignoring the second and higher order terms after multiplication from (2.5), we 
have

 

(2)
( 1)mix yt Y e Y a b Y cd        t t t

1 x 2 τ 3 zα d α d α Zd        

      1 12 2Y ch Y ef Y el      t t t
4 ω 5 w 6α Ψd α Wd α Εd , 

or 

( 2 )
( 1)mix yt Y e Y      th H , 

where 
1 m

   
t t t t t t t

1 2 3 4 5 6h α α α α α α
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and 1 1

1
2 2

m
a b Y cd Y ch Y ef Y el     


    

t
x τ z ω wH d d Zd Ψd Wd Εd . 

 
Squaring and taking the expectation, we have 

 
( 2)

2 2( ) ( ( 1) )mix yE t Y E e Y      th H .     (2.8) 

To find the optimum value of the unknown vector of row vectors h for which 
mean square error will be the minimum, differentiating (4.8) with respect to h and 
equating to zero, we get 

( 2)
( ) ( 1) ( ) ( )yE e YE E    tH H HH h 0

    
 

or 

  Ω Λh 0 ,          (2.9) 
where 

2
( )yE e H Ω , with , 1 12 2a b Ycd Ych Yef Yel     

t
1 2 3 4 5 6Ω δ δ Zδ Ψδ Wδ Eδ , 

( )E H 0  and ( ) ij m m
E


    

tHH Λ .
                

(2.10) 

 
The elements in ij    are  

2 2( )a E a t
11 x x 11Λ d d Δ ,         ( ) ,aE b ab t

12 x τ 12Λ d d Δ

( ) ,acdYE acdY  t
13 x z 13Λ d d Z Δ Z        ( ) ,Y achE Y ach  t

14 x ω 14Λ d d Ψ Δ Ψ
1 12 ( ) 2 ,Y aefE Y aef     t

15 x w 15Λ d d W Δ W
1 1

62 ( ) 2 ,Y ael Y ael     t
16 x 1Λ d d E Δ E 2( ) ,tbE b b t

22 τ τ 22Λ d d Δ         

( ) ,bcdYE bcdY  t
23 τ z 23Λ d d Z Δ Z ( )Y bchE Y bch  t

24 τ ω 24Λ d d Ψ Δ Ψ ,
        

1 12 ( ) 2 ,Y befE Y bef     t
25 τ w 25Λ d d W Δ W

1 12 ( ) 2 ,Y belE Y bel     t
26 τ 26Λ d d Ε Δ Ε     

2 2( ) ( ) ( )cdY E cdY  t 2 2
33 z z 33Λ d d Z Δ Z , 

2 2( ) ( ) ( ) ,Y c dh E Y c dh  t
34 z ω 34Λ Z d d Ψ ZΔ Ψ

1 2 2 1 2 22 ( ) 2 ,Y cdef E Y cdef     t
35 z w 35Λ Z d d W ZΔ W

1 2 2 1 2 22 ( ) 2 ,Y cdel E Y cdel     t
36 z 36Λ Z d d Ε ZΔ Ε

2 2( ) ( ) ( ) ,Y ch E Y ch  t 2 2
44 ω ω 44Λ d d Ψ Δ Ψ

 1 2 2 1 2 22 ( ) 2 ,Y chef E Y chef     t
45 ω w 45Λ Ψ d d W ΨΔ W

 
1 2 2 1 2 22 ( ) 2 ,Y ehcl E Y ehcl      t

46 ω 46Λ Ψ d d ΨΔ Ε

   2 21 12 ( ) 2Y ef E Yef  t 2 2
55 w w 55Λ d d W Δ W , 

1 2 2 2 1 2 24 ( ) 4 ,Y e fl E Y e fl  t
56 w 56Λ W d d Ε WΔ Ε  

   2 21 12 ( ) 2 ,Y efl E Y efl    t 2 2
66 66Λ d d Ε Δ Ε  

 



STATISTICS IN TRANSITION new series, Autumn 2014 

 

513

Now, (2.9) can be written as 
 -1h Λ Ω .          (2.11) 

From (2.8) 

  (2) (2)
( ) ( 1) ( 1)mix y yMSE t E e Y e Y         t th H h H  

or 

  (2) (2)( ) ( 1) ( 1)mix y yMSE t E e Y e Y         th H  
or 

     222
(2) (2)( ) ( 1)mix y yMSE t E e Y E e      th H

 
or 

2 2 2 2
2( ) ( 1)mix yMSE t S Y       th Ω .     

 
By using (2.11), we have 

   2 2 2 2
2( ) 2 1mix yMSE t Y S        t -1Ω Λ Ω

    
(2.12)

 
 

or 

  22 2( ) 2 1mixMSE t Y       ,
 

where      2
2 yS   t -1Ω Λ Ω . 

Differentiating MSE w.r.t    and equating to zero 
2 22 2 2 0Y Y     ,    

where  2 2Y Y    .
 

   1 12 2 21opt Y Y Y
       .

       
 

Then, the minimum MSE of the general class is  

    
2

1 22 2( ) 1 1 1mixMSE t Y Y Y
            

.
    

(2.13) 

Remark 1. The general class of Ahmad et al. (2012) is a member of our proposed 
class after substituting 0b h l   and 1  in (2.1). 

As the proposed class is general in nature, special cases of the proposed class 
(2.1) may be deduced under the assumption 1c e  using different values of 
generalizing constants. The special cases with their expressions of bias and 
MSE’s are given in the Remarks 2 and 3. Further, special cases for two and three 
components are given in Tables 1 and 2 respectively.  

Remark 2. (using two components of generalized class) 

We can obtain a regression (qualitative)-cum-ratio (quantitative) estimator by 
substituting 1,b c d      0a e f h l      in (2.1), i.e. 
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    
3

32
*
(1)*

2 2 (2)23 1
1 1 (2)

jqq
j

i imix i
i j j

z
t y

z



   
 

                 
       (2.14)  

The bias of (2.14) can be obtained by substituting 1,b c d    
0a e f h l      in (2.7) as 

   1
3 423( ) 2mixBias t Y    

tt 2 2 2 2
2 23 3 z (2)zα Δ Zα α Z S S

 1
32 Y    t 2 2 2 t

3 z (2)z 3 3α Z S S α Zδ . 

The optimum values are 

 2 2Y Z -1 -1 -1 -1 -1 -1
2 22 2 22 23 32 22 2 22 23 3α Δ δ Δ Δ M Δ Δ δ -Δ Δ M δ and 

 Y  -1 -1 -1
3 32 22 2 3α M ZΔ Δ δ M Zδ . 

Substituting 1,b c d     0a e f h l      in (2.12) and using (2.10) 
and Result-1 of the Appendix, the mean square error of (2.14) can be obtained as      

    2 2
223( ) ymixMSE t S Y  t -1 t -1 2 -1 -1 t 2 -1 -1

2 22 2 2 22 23 32 22 2 3 32 22 2δ Δ δ δ Δ Δ Z M Δ Δ δ -δ Z M Δ Δ δ  

 2 ,Y t -1 -1 t -1
2 22 23 3 3δ Δ Δ M Z -δ M Z Zδ  

where  1Y -1 -1M R  and   12 .Y
-1 2 -1 2

33 32 22 23R Δ Z -Δ Δ Δ Z

 

 
Remark 3. (using three components of generalized class) 

A regression-cum-ratio estimator using a mixture of auxiliary variables can be 
obtained by substituting 1, 0a b c d h e f l          in generalized class 
(2.1) and we get 

      
3

31 2
*
(1)* *

2 1 (2) 2 (1) (2)123 1
1 1 1 (2)

jqq q
j

i i i i imix i
i i j j

z
t y x x

z



     
  

                   
   .

              

(2.15) 

The bias of (2.15) can be obtained by substituting  1a b c d       and 
0h e f l    in (2.7) as 

   1
4123( ) 2mixBias t Y    

tt t 2 2 2 2
1 13 3 2 23 3 3 z (2)zα Δ Zα +α Δ Zα α Z S S      

  1
32 Y   t 2 2 2

3 z (2)zα Z S S  t
3 3α Zδ .     

where t
1α , t

2α and t
3α  are vectors of unknown constants of the vector th .  

Let 
11 m

   
t t t t

1 2 3h α α α , where 1 1 2 3m q q q   . 

The optimum value of th for which MSE of  123mixt will be the minimum can 

be written directly from (2.11) as: 


1 1 1 1

-1
m ×1 m ×m m ×1h = Λ Ω . 

The mean square error of (2.15) can be obtained by substituting 
1a b c d      and 0h e f l    in (2.13) as: 
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     1 1 11

21 22 2 2
( ) 1 1 1m m mmix mMSE t Y Y Y

             
   

,
 

where 
1

2
2m yS  

1 1 1 1

-1
1×m m ×m m ×1Ω Λ Ω ; 

11 12 13

21 22 23
2 2

31 32 33

Y

Y

Y Y Y

 
 
 
  

1 1m ×m

Δ Δ Δ Z

Λ = Δ Δ Δ Z

ZΔ ZΔ Δ Z

and 
Y

 
   
  

1

1

m ×1 2

3

δ

Ω δ

Zδ

. 

The inverse of 
1 1m ×mΛ  i.e.

1 1

-1
m ×mΛ can be obtained using the Result-1 given in 

the Appendix.  
The proposed general class comprises six components, three pairs are based 

on regression, ratio and exponential forms and each form utilizes categorical and 
continuous auxiliary variables separately.  Moreover, it is assumed that c + e = 1. 
Following the Remarks 2 and 3, special cases consist of four and five components 
and even the single case based on all the components can be deduced using 
suitable values of generalizing constants.  The special cases in which either c or e 
are involved, need no additional work, but the cases that involve both c and e 
need one extra step in finding the optimum value of either c or e. After finding 
this additional optimum value, the bias, existing optimum values and means 
square errors will be changed accordingly for these particular special cases. We 
have not included these cases in the article due to the limitation of length of the 
article. The special cases for two and three are given in the following tables.  

 

Table1. Special cases of generalized class using two components 

Estimator 
( , , , , , , , , )a b c d e f h l 

 

    
3

32
*
(1)*

2 2 (2)23 1
1 1 (2)

jqq
j

i imix i
i j j

z
t y

z



   
 

                 
   (0,1,1,1,0,0,0,0,1) 

   
61

*
(2) (1)*

2 1 (1) (2) 616 *
1 1 (2) (1)

exp
qq

k k
i i i kmix

i k k k

t y x x
 

 
 

 


   

                      
  (1,0,0,0,1,0,0,1,1) 

    
52

*
(2) (1)*

2 2 (2) 525 1 *
1 1 (2) (1)

exp
qq

k k
mix i i ki

i k k k

w w
t y

w w
    

 

                      
  (0,1,0,0,1,1,0,0,1) 

    
51

*
(2) (1)*

2 1 (2) 515 1 *
1 1 (2) (1)

exp
qq

k k
i i kmix i

i k k k

w w
t y x x

w w
 

 

                      
  (1,0,0,0,1,1,0,0,1) 
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Table1. Special cases of generalized class using two components (cont.) 

Estimator ( , , , , , , , , )a b c d e f h l   

    
62

*
(2) (1)*

2 2 (2) 626 1 *
1 1 (2) (1)

exp
qq

k k
mix i i ki

i k k k

t y
 

   
 

 
  

    

                      
  (0,1,0,0,1,0,0,1,1) 

 
4

41
*
(1)*

(14) 2 1 (1) (2)
1 1 (2)

jqq
j

mix i i i
i j j

t y x x











  

                 
   (1,0,1,0,0,0,1,0,1) 

     
1 2

* *
(12) 2 1 (2) 2 (2)1 1

1 1

q q

mix i i i ii i
i i

t y x x    
 

 
     
 

   (1,1,1,0,0,0,0,0,1) 

 
43

3 4
**
1(1)

(34) 2
1 1(2) (2)

jjq q
jj

mix
j jj j

z
t y

z

 







  

               
   (0,0,1,1,0,0,1,0,1) 

 
4

42
*
(1)*

(24) 2 2 (1) (2)
1 1 (2)

jqq
j

mix i i i
i j j

t y




  





  

   

                 
   (0,1,1,0,0,0,1,0,1) 

 
3

31
*
(1)*

(13) 2 1 (1) (2)
1 1 (2)

jqq
j

mix i i i
i j j

z
t y x x

z




 

                 
   (1,0,1,1,0,0,0,0,1) 

 

5 6
* *

(2) (1) (2) (1)
2 5 656 * *

1 1(2) (1) (2) (1)

exp
q q

k k k k
k kmix

k kk k k k

w w
t y

w w

 
 

 
 


   

                    
   (0,0,1,0,1,1,0,1,1) 

 

Table 2. Special cases of generalized class using three components 
Estimator ( , , , , , , , , )a b c d e f h l   

      
3

31 2
*
(1)* *

2 1 (2) 2 (1) (2)123 1
1 1 1 (2)

jqq q
j

i i i i imix i
i i j j

z
t y x x

z



     
  

                  
    (1,1,1,1,0,0,0,0,1) 

    
3 4

3 41
* *
(1) (1)*

2 1 (2)134 1
1 1 1(2) (2)

j jq qq
j j

i imix i
i j jj j

z
t y x x

z

 









   

                         
    (1,0,1,1,0,0,1,0,1) 
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Table 2. Special cases of generalized class using three components  (cont.) 
Estimator ( , , , , , , , , )a b c d e f h l   

   
3 4

3 42
* *
(1) (1)*

2 2 (1) (2)234
1 1 1(2) (2)

j jq qq
j j

i i imix
i j jj j

z
t y

z

 


  





  

    

                         
    (0,1,1,1,0,0,1,0,1) 

   
52 2

*
(2) (1)* *

(125) 2 2 (1) (2) 2 (1) (2) 5 *
1 1 1 (2) (1)

exp
qq q

k k
mix i i i i i i k

i i k k k

w w
t y

w w
           

   

                        
    (1,1,0,0,1,1,0,0,1) 

   
62 2

*
(2) (1)* *

(126) 2 2 (1) (2) 2 (1) (2) 6 *
1 1 1 (2) (1)

exp
qq q

k k
mix i i i i i i k

i i k k k

t y l
 

      
 

 
      

      

                        
    (1,1,0,0,0,1,0,1,1) 

  
5 62

* *
(2) (1) (2) (1)*

(256) 2 2 (1) 5 62 * *
1 1 1(2) (1) (2) (1)

exp
q qq

k k k k
mix i i k ki

i k kk k k k

w w
t y

w w

 
    

 
 

  
     

                                
    (0,1,0,0,1,1,0,1,1) 

  
5 61

* *
(2) (1) (2) (1)*

(156) 2 1 (1) 5 62 * *
1 1 1(2) (1) (2) (1)

exp
q qq

k k k k
mix i i k ki

i k kk k k k

w w
t y x x

w w

 
  

 
 


    

                                
    (1,0,0,0,1,1,0,1,1) 

     
4

41 2
(1)

*

* *
(124) 2 1 (1) 2 (1)2 2

1 1 1 (2)

j

j

h
qq q

mix i i i ii i
i i j j

t y x x




   






  
    

                 
    (1,1,1,0,0,0,1,0,1) 

3. Empirical study 

In this section we have empirically compared special cases that are discussed 
in sections 4.1 and 4.2.  For this comparison, the data of Census report of district 
Jhang (1998), Pakistan (see Ahmad et al. (2009)) is used. The population size is 
368 ( N ). From N , 276( 1N ) are considered as respondent group of population and 
the remaining 92( 2N ) are non-respondent group. A sample of 160( 1n ) is selected 

at the first phase sample and from first phase, a sample of 90( 2n ) is selected as 
the second phase sample. From the second phase sample, a sub-sample of 10( r ) 
is selected as the re-contacted sample and it is assumed that there is full response 
from this sample. 

The data set, which is considered for the empirical study, consists of three 
quantitative and three qualitative auxiliary variables along with one response 
variable. The variables description is given in Table 3. The variances and co-
variances and the mean of all variables for both complete and non-respondent 
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populations are given in Table 4 and Table 5 respectively. The bias and MSE’s of 
all special cases given in Table 1 and Table 2 are  given in Table 6 and Table 7 
respectively.  

 

Table 3. Description of variables (each variable is taken from rural locality) 

Description of Variables 

Y  Literacy ratio 

x   Household size 

z   Population of both sexes 

w  Household characteristics 

  Male above and below average education  

  Female above and below average education 

  Persons below and above average age 

 

Table 4. Variance co-variances and mean of complete population N = 368 
 Variance Co-variance Matrix 
Variable Mean y  x z  w      

y  29.831 62.860 0.548 5780.0000 593.123 1.936 0.5630 1.440 
x  6.372 0.548 0.266 138.7860 -7.139 0.015 0.0020 0.0110 
z  5901.46 5780.0 138.786 26660000.0 1262000.0 711.523 1191.0 1173.0 
w  897.71 593.123 -7.139 1262000.0 211500.0 113.702 162.718 157.043 
  0.35 1.936 0.015 711.5230 113.702 0.227 0.1060 0.1560 
  0.42 0.563 0.002 1191.0 162.718 0.106 0.2440 0.1740 

  0.43 1.440 0.011 1173.0 157.043 0.156 0.1740 0.2450 
 

Table 5. Variances co-variances and mean of non-respondent population  
               N2 = 92 

 Variance Co-variance Matrix 

Variable y  x  z  w        Mean 
y  40.0700 0.1680 7508.0 1176.00 1.5780 1.2480 1.5370 25.1467 

x  0.1680 0.1270 -17.55 -21.4730 0.0030 -0.0190 -0.0080 6.2130 

z  7508.00 -17.550 6239000.0 999300.0 668.870 1001.0 991.744 6164.5761 

w  1176.00 -21.4730 999300.0 163700.0 105.675 163.453 160.103 994.3152 

  1.5780 0.0030 668.87 105.6750 0.1950 0.0870 0.1360 0.2609 

  1.2480 -0.0190 1001.0 163.4530 0.0870 0.2510 0.1750 0.5435 

  1.5370 -0.0080 991.7440 160.1030 0.1360 0.1750 0.2430 0.4022 

 
From Table 6, biases of estimators show that some estimators are 

overestimating and some are underestimating the population mean of study 
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variable except the regression estimator that is unbiased and similar information is 
described from Table 7 for estimators based on biases.  

From Table 6, the ranked absolute biases show that the estimator (13)mixt has 

larger bias as compared to others whereas (26 )mixt has smaller bias. The estimators 

at rank 2, 3, 4 and 5 have a very small amount of bias whereas the remaining ones 
have large amount of bias. Considering the ranks of MSE, the estimator (25)mixt  is 

more efficient then all others whereas (34)mixt is the least efficient. However, the 

differences in MSE’s for all estimators are very small but there is a lot of 
variation in biases. Considering the trade-off between biases and MSE’s, the sum 
of ranks of bias and MSE suggests that the biased estimator (26 )mixt is useful for 

practical situations where only qualitative variables are considered, (25)mixt is 

suitable when there is a mixture of auxiliary variables and (15)mixt  can be used for 

only quantitative auxiliary variables.  

Table 6. Bias and MSE of members of generalized class for two factors 

Estimators Bias 
Absolute 

Bias 

Ranked  
Absolute 

Bias 
MSE 

Ranked 
MSE 

Sum of 
Ranks 

Ranks 
of Sum 

(23)mixt  -
8.31E+03 

8310 09 15.3249 5 14 7 

(25)mixt  -
1.30E+03 

1300 6 15.3217 1 7 3 

(15)mixt  1.41E+03 1410 7 15.3601 8 15 8.5 

(26)mixt  1.74E-04 0.000174 2 15.3248 4 6 2 

(14)mixt  5.39E-04 0.000539 3 15.3620 10 13 6 

(12)mixt  0 0 1 15.3222 2 3 1 

(34)mixt  6.64E+04 66400 10 15.3693 11 21 11 

(24)mixt  1.35E-03 0.00135 5 15.3246 3 8 4 

(13)mixt  8.31E+04 83100 11 15.3608 9 20 10 

(56)mixt  -
2.17E+03 2170 8 15.3446 7 15 8.5 

 
In the case of estimators based on three components, from Table 7, the ranked 

absolute biases show that (124 )mixt  has smaller bias whereas (134 )mixt is highly biased. 

(126)mixt has also a very small amount of bias. Based on ranks of MSE, (256)mixt  is 

more efficient than all others whereas (134 )mixt is the least efficient. Considering the 

trade-off between bias and MSE’s, the sum of ranks of bias and MSE suggests 
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that (124 )mixt  is useful for practical situations when there is a mixture of auxiliary 

variables.  

Table 7. Bias and MSE of members of generalized class using three  
               components 

Estimators Bias 
Absolute 

Bias 

Ranked 
Absolute 

Bias 
MSE 

Ranked 
MSE 

Sum of 
Ranks 

Ranks 
of Sum 

(123)mixt  -8.31E+03 8310 6 15.3222 5 11 5 

(134)mixt  1.34E+08 134000000 8 15.4720 8 16 8 

(234)mixt  -2.82E+04 28200 7 15.3243 6 13 7 

(125)mixt  -1.17E+03 1170 3 15.3196 2 5 2.5 

(126)mixt  3.01E-04 0.000301 2 15.3220 4 6 4 

(256)mixt  -2.33E+03 2330 4 15.3181 1 5 2.5 

(156)mixt
 -5.72E+03 5720 5 15.3416 7 12 6 

(124)mixt
 1.81E-04 0.000181 1 15.3218 3 4 1 

 
As the suggested class consists of regression, ratio and exponential 

components, it is obvious that the regression component contributes in terms of 
reduction of MSE and ratio and exponential components will increase bias and 
decrease MSE. This statement can be verified from Table 6 and 7. For example, 
from Table 6 (15)mixt is a regression-cum-exponential estimator with one 

exponential component having bias 1410 and MSE 15.3601, and by adding 
another ratio component in this estimator we obtain the regression-cum-
exponential (156 )mixt (given in Table 7) with bias 5720 and MSE 15.3416 as the 

result. This type of change can be observed for other estimators with this 
property. 

What is specific to this empirical study is that the qualitative auxiliary 
variables are performing better than the continuous auxiliary variables. For 
example, (125)mixt [regression-cum-exponential (quantitative)] has bias 1170 and 

MSE 15.3196 whereas (126 )mixt [regression-cum-exponential (qualitative)] has bias 

0.000301 and MSE 15.3220. Similar information can be observed considering 
other such pairs of estimators.   

Summarizing the discussion on both tables, the three-component estimator 

(124 )mixt is better than all others while considering bias and MSE simultaneously. 

This estimator comprises two regression components of quantitative and 
qualitative auxiliary variables and one ratio component of qualitative auxiliary 
variables. 
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4. Conclusions 

In this paper, a general class of regression-cum-ratio-exponential estimators is 
developed for two-phase sampling in the presence of non-responses at the first 
phase. Both quantitative and qualitative auxiliary variables are used in the 
construction of the class to increase the efficiency of the class as well as its 
members. The general expression of bias and mean square error is also derived. 
As the proposed class is general in nature, some suitable special cases are deduced 
along with their bias and mean square errors. On the basis of the empirical study 
it is concluded that both types of auxiliary variables can play a role in reducing 
the bias and the mean square error of an estimator. The bias and mean square 
error can be reduced by increasing the number of auxiliary variables. An increase 
in ratio or exponential components increases the bias. Our findings show that an 
estimator based on three components performs better then all others. This 
estimator comprises two regression components of quantitative and qualitative 
auxiliary variables and one ratio component of qualitative auxiliary variables. 

This paper also fills the gap in the literature as it attempts to estimate the finite 
population mean using both qualitative and quantitative multi-auxiliary variables 
in the presence of non-response at the first phase under two-phase sampling. It 
can also provide an opportunity to the applied survey statisticians if they consider 
estimation of finite population mean using several qualitative and quantitative 
auxiliary variables.  
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APPENDIX 

Result 1. Inverse of matrix of matrices:  
 

Let T be a matrix of matrices of order 4 4,  
 

 
 
 
 
 
 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

T T T T

T T T T
T =

T T T T

T T T T

. 

 
The inverse of T is 

  

     
 

          

-1 -1 -1 -1 -1 -1-1
33 33 31 11 13 33 33 31 1133 31-1

-1 -1 -1
13 11 11 13 33 11

B + B B G B B - B B GB B
T = =

B B -G B B G
,

 
 

where  -1-1 -1
11 11 13 33 31G = B - B B B ,  

  

 
 
 
  

11 12 13

33 21 22 23

31 32 33

T T T

B = T T T

T T T

, 
 
 
 
  

14

31 24

34

T

B = T

T

,  13 41 42 43B = T T T  and 11 44B = T . 

and 

  

     
 

          

-1 -1 -1 -1 -1 -1-1
22 22 21 11 12 22 22 21 1122 12-1

33 -1 -1 -1
21 11 11 12 22 11

A + A A H A A - A A HA A
B = =

A A -H A A H
, 

 

where  -1-1 -1
11 11 12 22 21H = A - A A A , 

 

  

 
 
 

11 12
22

21 22

T T
A =

T T
, 

 
 
 

13
21

23

T
A =

T
,  12 31 32A = T T  and 11 33A = T . 

 
and 

  

     
 

          

-1 -1 -1 -1 -1 -1-1
11 11 12 22 21 11 11 12 2211 12-1

22 -1 -1 -1
21 22 22 21 11 22

T + T T R T T - T T RT T
A = =

T T -R T T R
, 

where  -1-1 -1
22 22 21 11 12R = T - T T T . 


