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EDITOR’S  NOTE  AND  ACKNOWLEDGEMENTS 

As the last issue of the 2014, this volume gives us an opportunity to thanks all 
the journal's collaborators and supporters. On behalf of the Editorial Board and 
the whole Editorial Office, I would like to express our gratefulness to the authors 
of articles published during the past year, and to acknowledge generous help 
which both the authors and editors obtained from the peer-reviewers. The names 
of the reviewers are listed in the Acknowledgements to Reviewers, below.  

Two types of innovations mark this issue as an attempt to advance further our 
cooperation with authors and readers alike. The first one is addition of the Early 
View system for online printing of the articles which are still being under editorial 
processing though might give authors opportunity to improve them while viewing 
them in the printed format. The second is continuation of tentatively included into 
the previous issue of the section containing biographical notes about the authors, 
with information on their main fields of research interest and expertise. These 
both innovations are supposed to contribute to the journal's visibility and 
accessibility which are also enhanced by our continued efforts to have the journal 
included into the growing set of prestigious indexation bases − such as BazEkon 
(we still expect  confirmation from SCOPUS, RePEc, and so on).    

An overview of the contents of this issue embraces three groups of articles. 
In addition to traditional section devoted to Sampling methods and estimation, 
there is a section Research articles and communicates which contains papers of 
mixed status − next to papers with completed research results it presents 
'communicates' with results obtained within an early stage of a larger or still 
ongoing research project (the latter can also be seen as an innovation toward 
encouraging submission of fresh-made papers). The third section contains papers 
based on presentations at the Multivariate Statistical Analysis 2014, conference 
held in Lodz (on November, 17-19, 2014). 

The issue is opened with A General Class of Mean Estimators Using 
Mixture of Auxiliary Variables for Two-phase Sampling in the Presence of 
Non-response, by Zahoor Ahmad, Rahma Zubair and Ummara Shahid. The 
authors suggest a general class of estimators for two-phase sampling to estimate 
the population mean in the case when non-responses occur at the first phase. 
Several continuous and categorical auxiliary variable(s) have been simultaneously 
used while constructing the class. Also, it is assumed that the information on all 
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auxiliary variables is not available for population, which is often the case. The 
expressions of the mean square error of the suggested class have been derived and 
several special cases of the proposed class have been identified. The empirical 
study has also been conducted. This paper is also aimed at filling the gap in the 
literature through suggesting estimation of the finite population mean using both 
qualitative and quantitative multi-auxiliary variables in the presence of non-
response at the first phase under two-phase sampling.   

Janusz L. Wywiał's article On Conditional Simple Random Sample 
addresses the issue of estimation of the population average in a finite and fixed 
population on the basis of the conditional simple random sampling design 
dependent on order statistics of the auxiliary variable studied. The sampling 
scheme implementing the sampling design is proposed. The inclusion 
probabilities are derived. The well-known Horvitz-Thompson statistic under the 
conditional simple random sampling designs is considered as the estimator of 
population mean. It has been shown that the Horvitz-Thompson estimator under 
some particular cases of the conditional simple random sampling design is more 
accurate than the ordinary mean from the simple random sample. 

Marta Zalewska and Wojciech Zieliński discuss the problem of Statistical 
Analysis of a Questionnaire: Voluntary Health Insurance Implementation 
Among Patients Suffering from Allergy and Asthma. They propose to use a 
simultaneous confidence intervals in inference about true population proportions 
in situation when multiple answers in a questionnaire are allowed. A new method 
of calculating simultaneous confidence regions is provided. It is aimed at 
improving inference about the population based on such intervals. The inference 
about the respective population suffering from allergy and asthma proportions 
requires the construction of a two-dimensional confidence region. Much of 
authors' attention is paid to the case of three possible answers but the results may 
be generalized to any questionnaire with more than two excluding answers.  

The next section (with research articles and communicates) starts with Jacek 
Białek's paper Proposition of Stochastic Postulates for Chain Indices, which are 
based on the assumption that prices and quantities are stochastic processes, but 
the case when price processes are martingales is included too. General conditions 
which allow the chain indices to satisfy these postulates are discussed with 
intention to provide an alternative for the classic axiomatic price index theory. 
The novelty of the presented approach consists in treating the prices and 
quantities as stochastic processes, and the discussion is meant to introduce the 
author’s future research agenda on chain index theory.   
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It is followed by a paper Lag Length Specification in Engle-Granger 
Cointegration Test: A Modified Koyck Mean Lag Approach Based on Partial 
Correlation by Oluokun Kasali Agunloye, Dahud Kehinde Shangodoyin and 
Raghunath Arnab. The authors discuss the problem of limitations of the Engle-
Granger cointegration test due to its sensitivity to the choice of lag length and the 
poor performance of conventional lag selection criteria, such as standard 
information criteria. Testing for cointegration within the framework of the 
residual-based Engle-Granger cointegration methodology is the same as testing 
for the stationarity of the residual series via the augmented Dickey-Fuller test 
which is well known to be sensitive to the choice of lag length. The researchers 
are faced with the problem of deciding on the best optimal lag among the 
candidate optimal lag lengths. This paper introduces a new lag selection criterion 
called a modified Koyck mean lag approach based on partial correlation criterion 
for the selection of optimal lag length for the residual-based Engle-Granger 
cointegration test. Based on empirical findings, it has been observed that in some 
instances over-specification of lag length can bias the Engle-Granger 
cointegration test towards the rejection of a true cointegration relationship and 
non-rejection of a spurious cointegration relationship. Using real-life data, the 
authors present an empirical illustration which demonstrates that the proposed 
criterion outperformed the standard information criteria in selecting appropriate 
optimal truncation lag for the implementation of the Engle-Granger cointegration 
test using both augmented Dickey-Fuller and generalized least squares Dickey-
Fuller tests. 

Anna Turczak and Patrycja Zwiech discuss the issue of Variability of 
Household Disposable Income per capita by Types of Residence in Poland. 
They use micro-data for the years 1998-2012, though the analysis has been 
carried out separately for the subsequent years of this period. The study shows 
that households in Poland are differentiated with regard to income per capita by 
the classes of residence, with the differences within the groups being much bigger 
than the differences between the groups. What is particularly surprising is that the 
share of between-group variance in total variance in the population under study 
has been negligibly small (just a few percent) compared to the share of the mean 
within-group variance (more than 90 percent). In conclusion, the authors 
emphasize that the location of a household (city, small town or village) is also 
significant for the level of household disposable income per capita, but the 
differences are small in comparison to the differences between households of the 
same classes of residence. Consequently, the authors suggest that more 
appropriate way of dividing households would be the one explaining better the 
dispersion of household disposable income per capita. The authors are continuing 
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their analysis towards developing a new classification of households which will 
be adequate for the problem under study.  

In the next article, Evaluation of Selected Approaches to Clustering 
Categorical Variables, Zdeněk Šulc and Hana Řezanková consider a set of 
different similarity measures for defining their contribution to categorical variable 
clustering. They use three methods of hierarchical cluster analysis (complete, 
single and average linkage methods) and compare results of cluster analysis using 
three recent similarity measures (inverse occurrence frequency, occurrence 
frequency and Lin measures) with results obtained on a basis of two association 
measures for nominal variables (Cramér’s V and the uncertainty coefficient) and 
the simple matching coefficient (the overlap measure). The quality of clustering is 
evaluated by the within-cluster variability of created clusters (the lower values the 
better). The normalized within-cluster mutability coefficient is applied for this 
purpose. The calculations are made on data from two real datasets (from a social 
survey). 

Finally, two papers from the Multivariate Statistical Analysis 2014 conference 
constitute the last section of this issue. Daniel Kosiorowski compares four 
methods of forecasting functional time series in the article Functional Regression 
in Short-Term Prediction of Economic Time Series. Specifically, themes 
discussed are fully functional regression, functional autoregression FAR(1) 
model, and Hyndman and Shang principal component scores forecasting using 
one-dimensional time series method, and moving functional median. Both 
simulation studies and an analysis of empirical dataset concerning the Internet 
users’ behaviours for two Internet services in 2013 are employed. In effect, 
Hyndman & Shao predicting method is shown to outperform other methods in the 
case of stationary functional time series without outliers. Similarly, the moving 
functional median induced by Frainman & Muniz depth for functional data 
outperforms other methods in the case of smooth departures from stationarity of 
the time series, as well as in the case of functional time series containing outliers.  

Marta Małecka's paper Duration-Based Approach to VaR Independence 
Backtesting discusses the problem of low power of the VaR-based risk valuation 
models in investment companies. The problem becomes a particularly serious one 
in the case of finite-sample settings. A dynamic development in the area of VaR 
estimation and gradual implementation stimulate the need for statistical methods 
of VaR models evaluation. Following recent changes in Basel Accords, current 
UE banking supervisory regulations require internal VaR model backtesting, 
which gives another strong incentive for research on relevant statistical tests. An 
alternative to the popular Markov test is sought and the author presents an 
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overview of the group of duration-based VaR backtesting procedures along with 
their statistical properties, rejecting a non-realistic assumption of the infinite 
sample size. The Monte Carlo test technique has been adopted to provide exact 
tests, in which asymptotic distributions has been replaced with simulated finite 
sample distributions. A Monte Carlo study (based on the GARCH model) has 
been designed to investigate the size and the power of the tests. Through the 
comparative analysis it has been found that, in the light of observed statistical 
properties, the duration-based approach has been superior to the Markov test.   

 

Włodzimierz Okrasa 
Editor 
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SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and the Central Statistical 
Office of Poland, on a quarterly basis (during 1993–2006 it was issued twice and 
since 2006 three times a year). Also, it has extended its scope of interest beyond 
its originally primary focus on statistical issues pertinent to transition from 
centrally planned to a market-oriented economy through embracing questions 
related to systemic transformations of and within the national statistical systems, 
world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved 
in data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy 
makers and the general public – with a platform for exchange of ideas and for 
sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 
– as either a scientific domain (new research and data analysis methods) or as a 
domain of informational infrastructure of the economy, society and the state – are 
appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 
internationally recognized experts, who are guided in their decisions about the 
publication by criteria of originality and overall quality, including its content and 
form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
sit@stat.gov.pl., followed by a hard copy addressed to 
Prof. Wlodzimierz Okrasa, 
GUS / Central Statistical Office  
Al. Niepodległości  208, R. 287, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published previously 
and that it is not under review elsewhere. It should include an abstract (of not 
more than 1600 characters, including spaces). Inquiries concerning the submitted 
manuscript, its current status etc., should be directed to the Editor by email, 
address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 
on its Web site: http://stat.gov.pl/en/sit-en/guidelines-for-authors/ 

 

mailto:@stat.gov.pl
mailto:w.okrasa@stat.gov.pl


 

 



STATISTICS IN TRANSITION new series, Autumn 2014 

 

501

STATISTICS IN TRANSITION new series, Autumn 2014 
Vol. 15, No. 4, pp. 501–524 

A GENERAL CLASS OF MEAN ESTIMATORS USING 
MIXTURE OF AUXILIARY VARIABLES FOR  

TWO-PHASE SAMPLING IN THE PRESENCE OF  
NON-RESPONSE  

Zahoor Ahmad1, Rahma Zubair2, Ummara Shahid3 

ABSTRACT 

In this paper we have proposed a general class of estimators for two-phase 
sampling to estimate the population mean in the case when non-responses occur 
at the first phase. Furthermore, several continuous and categorical auxiliary 
variable(s) have been simultaneously used while constructing the class. Also, it is 
assumed that the information on all auxiliary variables is not available for 
population, which is often the case. The expressions of the mean square error of 
the suggested class have been derived and several special cases of the proposed 
class have been identified. The empirical study has also been conducted. 

Key words: non-response, multi-auxiliary variables, regression-cum-ratio-
exponential estimators, no information case. 

1. Introduction 

The most common method of data collection in survey research is sending the 
questionnaire through mail. The reason may be the minimum cost involved in this 
method. But this method has a major disadvantage that a large rate of non-
response may occur, which may result in an unknown bias, while the estimate 
based only on responding units is representative of both responding and non-
responding units.  

A personal interview is another method of data collection which generally 
may result in a complete response, but the cost involved in personal interviews is 
much higher than the mail questionnaire method. We may conclude from the 
above discussion that the advantage of one method is the disadvantage of the 
other and vice versa. Hansen and Hurwitz (1946) combined the advantages of 
both procedures. They considered the issue of determining the number of mail 
                                                        
1 Department of Statistics, University of Gujrat, Gujrat, Pakistan. E-mail: zahoor.ahmed@uog.edu.pk. 
2 Department of Statistics, University of Gujrat, Gujrat, Pakistan. E-mail: rahma_stat@ymail.com. 
3 Department of Statistics, University of Gujrat, Gujrat, Pakistan. E-mail: ummara.shahid@uog.edu.pk. 



502                        Zahoor Ahmad, Rahma Zubair, Ummara Shahid: A general class of … 

 

 

questionnaires along with the number of personal interviews to be carry out given 
non-response to the mail questionnaire in order to attain the required precision at 
minimum cost.  

Hansen and Hurwitz (1946) discussed the sampling scheme considering non-
response and constructed the following unbiased estimator for population meanY
of variable of interest y  as 

* '
1 1 1 1 1 ,ry w y w y              (1.1)

 
where 1y  and 1ry denote the means for the respondent and re-contacted sample 
respectively, and further it is assumed that there is no non-response at re-
contacted sample. The weights 1 11 1w n n and '

1 12 1w n n .  
 

The variance of (1.1) is 
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Singh et al. (2010) emphasized that precision of an estimator can be increased 
using auxiliary variable in estimation procedure when the study variable y is 
highly correlated with the auxiliary variable x. In the case of two phase sampling, 
Wu and Luan (2003) argue that when we take a large first phase sample from the 
population and a sub-sample from the first phase sample then there is an issue of 
small sample size and large non-response rate, and as a result the mean square 
error becomes larger. This effect can be compensated using auxiliary variables 
that are highly correlated with the study variable in the estimation procedure. The 
major advantage of using two-phase sampling is the gain in high precision 
without substantial increase in cost. 

The availability of population auxiliary information plays an important role in 
efficiency of estimators in two-phase sampling. In the case of at least two 
auxiliary variables, Samiuddin and Hanif (2007) show that auxiliary information 
can be utilized in three ways depending on the availability of auxiliary 
information for population. Firstly, No Information Case (NIC): when population 
information on all auxiliary variables is not available. Secondly, Partial 
Information Case (PIC): when population information on some auxiliary variables 
is available. Thirdly, Full Information Case (FIC): when population information 
on all auxiliary variables is available. Ahmad and Hanif (2010) clarify that case  
for a specific estimation procedure, - the estimator for FIC will be more efficient 
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then the estimator for PIC and the estimator for PIC will me more efficient then 
the estimator for NIC. 

Ahmad et al. (2009a, 2009b, 2010) and Ahmad and Hanif (2010) developed 
several univariate and multivariate classes of ratio and regression estimators using 
multi-auxiliary variables under these three cases of availability of auxiliary 
information for population. 

Many survey statisticians have used the quantitative auxiliary variables for 
constructing their estimators in two-phase sampling. Furthermore, some authors 
have used qualitative auxiliary variables for estimating the unknown population 
parameters (see Jhajj et al. (2006), Shabbir and Gupta (2007), Samiuddin and 
Hanif (2007), Shahbaz and Hanif (2009), Haq et al. (2009), Hanif et al. (2010)). 

As mentioned earlier, Hansen-Hurwitz (1946) dealt with non-response 
problem for simple random sampling and suggested an estimator without using 
auxiliary information. Many researchers such as Khair and Srivastava 
(1993,1995), Singh and Kumar (2008a, 2009a) developed different ratios, product 
and regression estimators to estimate population mean of study variables in two-
phase sampling when non-response occurs at the second phase. Tabasum and 
Khan (2004) revisited the ratio-type estimator by Khair and Srivastava (1993) and 
found that the cost of this estimator is lower than the cost gained by Hansen-
Hurwitz (1946) estimator. Singh et al. (2010) proposed two exponential-type 
estimators and/or auxiliary variables when non-response occurs during the study. 

Ahmad et al. (2012, 2013a, 2013b) proposed the class of generalized 
estimators to estimate the population mean using multi-auxiliary quantitative 
variables in the presence of non-responses at the first phase, second phase and 
both phases. 

After introducing the concept of estimating the mean of study variable using a 
mixture of auxiliary variables in the presence of non-responses, some important 
references regarding estimators of population mean in the presence of non-
responses in single and two-phase sampling using quantitative and qualitative 
auxiliary variables have been discussed separately in Section 1. In Section 2 we 
have proposed a generalized class of regression-cum-ratio-exponential estimators 
for estimating the mean of study variable using a mixture of auxiliary variables in 
the presence of non-responses at the first phase and its special cases are also given 
in this section. A detailed empirical study have been conducted and discussed in 
Section 3. Some conclusions are provided in Section 4.  

2.   Generalized class of regression-cum-ratio-exponential estimators  
 in two-phase sampling 

Most of the literature is devoted to the case when non-responses occur at the 
second phase, but in two-phase sampling, when auxiliary information is obtained 
at the first phase sample that is relatively larger than the second phase sample, the 
non-response rate will be high as compared to the second phase. The two-phase 
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sampling scheme when non-responses occur at the first phase is discussed as 
follows. 

Consider the total population (denoted by U) of N units is divided into two 
sections: one is the section (denoted by 1U ) of 1N units, which would be available 

at the first attempt at the first phase, and the other section (denoted by 2U ) of 2N

units, which are not available at the first attempt at the first phase but will be 
available at the second attempt. From N units, a first phase sample (denoted by 1u ) 

of 1n units is drawn by simple random sampling without replacement (SRSWOR). 
At the first phase let 1m units supply information which is denoted by 1v and 2m

units refuse to respond, which is denoted by 2v , where 1v = 1u ∩ 1U and 2v = 1u ∩
2U . A subsample (denoted by 2mv ) of 1r units is randomly taken from the 2m non-

respondents by applying the strategy defined by Hansen and Hurwitz (1946) and 
this subsample is specified by 1 2 1r m k , 1k >1. It is assumed that no non-response 
is observed in this subsample. A second phase sample (denoted by 2u ) of 2n  units 

(i.e. 2n < 1n  ) is drawn from 1n by SRSWOR and the variable of interest y is 
measured at the second phase. The above sampling scheme can be easily 
understandable from Figure 1. 

 
 
Figure 1.  Two-phase sampling scheme when non-responses occur at the first  
 phase  
 

The literature is evident that there is no estimator that can utilize auxiliary 
information on both quantitative and qualitative variables. But, in sample surveys, 

Subsample 

Sample (u1), Size (n1) 

Respondent Group (U1) 
Size (N1) 

Non-Respondent Group (U2) 
Size (N2) 

Population (U), Size (N) 

Sample from U 

Sample 

Sample (u2), Size (n2) 

Ist Phase Sample  

IInd Phase Sample   (n2<n1)  
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the information on both quantitative and qualitative variables is collected either at 
the first phase and/or the second phase. For example, we want to estimate the 
average CGPA of a student in BS (Honor). The information on variables like 
previous degree marks, attendance, number of hours spent in library, if a student 
is a member of rural or urban area, father's profession, having a laptop or not, 
having internet facility or not, etc., can be used as auxiliary information to 
estimate average CGPA with more efficiency. Hence, there is a need to develop 
an estimator that can utilize auxiliary information on both quantitative and 
qualitative variables. 

For the first time a combination of regression and ratio technique for simple 
random sampling called regression-cum-ratio estimator was used by Mohanty 
(1967) to estimate the population mean of study variable. Similarly, the sum of 
the ratio and exponential components with some suitable weights can be 
combined with regression component to develop a general class of regression-
cum-ratio-exponential estimators. Furthermore, the objective of suggesting such a 
class is to search for the best member from all members of the class.  

We have suggested the general class of estimators for two-phase sampling to 
estimate the population mean of the study variable in the case when non-response 
occurs at the first phase. Moreover, several quantitative and qualitative auxiliary 
variables have been used simultaneously while constructing the class. Also, it is 
assumed that population information is not available for all auxiliary variables 
that is the natural case.  
 

The proposed class is  
 

 1 2 3( ),mixt t t t                  (2.1) 
where 

   
1 2

* *
1 2 1 (1) (2) 2 (1) (2)

1 1

q q

i i i i i i
i i

t y a x x b      
 

      , 

 
43

3 4
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1(1)
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q q
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j jj j

z
t c

z
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





  

               
   

and         

   

   

   

5 6
* *

2 1 2 1

3 5 6* *
1 12 1 2 1

exp
q q

k k k k

k k
k kk k k k

w w
t e f l

w w

 
 

 
 

     
     

         
   for 1c e  , 

where a, b, c, d, e, f, h, l are constants to be chosen for generating members of this 
class and  & 'i s for all 1,2,..., 6i   are unknown constants to be determined by 

minimizing the mean square error of mixt  given in (2.1) and 
6

1

.i
i

q m


  Where

 y : denotes the study variable  

ix : denotes the thi auxiliary quantitative variables for 11, 2,3,...,i q   
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i  : denotes the thi auxiliary qualitative variables for 21, 2,3,...,i q    

jz : denotes the thj auxiliary quantitative variables for 31, 2,3,...,j q   

j  : denotes the thj auxiliary qualitative variables for 41,2,3,...,j q    

kw : denotes the thk auxiliary quantitative variables for 51, 2,3,...,k q  

k  : denotes the thk  auxiliary qualitative variables for 61, 2,3,...,k q   

1

1

N

i ti
t

X N x



  : denotes the population mean of thi  auxiliary variable 

1

1

N

i ti
t

N 
 



   : denotes the population proportion of thi  auxiliary attribute 

1

1

N

j tj
t

Z N z



  : denotes the population mean of thj  auxiliary variable 

1

1

N

j tj
t

N 
 



   : denotes the population proportion of thj  auxiliary attribute 

1

1

N

k tk
t

W N w



  : denotes the population mean of thk  auxiliary variable 

1

1

N

k t
t

N 




   : denotes the population proportion of thk   auxiliary attribute 

1
1

(1) 1
1

n

i ti
t

x n x



  : denotes the first phase sample mean of thi  auxiliary variable 

 
1

1
(1) 1

1

n

j t j
t

z n z




  : denotes the first phase sample mean of thj  auxiliary variable 

 
1

1
(1) 1

1

n

k t k
t

w n w




  : denotes the first phase sample mean of thk  auxiliary variable 

1
1

(1) 1
1

n

i ti
t

n 
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

  : denotes the first phase sample proportion of thi  auxiliary attribute 

 
1

1
(1) 1

1

n

j t j
t

n 
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

  : denotes the first phase sample proportion of thj  auxiliary  

       attribute 
1

1
(1) 1

1

n

k t k
t

n 
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

  : denotes the first phase sample proportion of thk   auxiliary  

                            attribute 

2y : denotes the mean of the study variable for the second phase sample  
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2
1

(2) 2
1

n

i ti
t

x n x



  : denotes the second phase sample mean of thi  auxiliary variable  

2
1

(2) 2
1

n

j t j
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z n z

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  : denotes the second phase sample mean of thj  auxiliary variable  
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2
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  : denotes the second phase sample proportion of thi  auxiliary  

                          attribute  
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                               attribute  
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  : denotes the subsample mean of thk  auxiliary variable  
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  1

*
1 (1) 2 ( )1 i r iix w x w x  : denotes the first phase sample mean of thi  auxiliary  

                                      variable considering non-response 



508                        Zahoor Ahmad, Rahma Zubair, Ummara Shahid: A general class of … 

 

 

  1

*
1 (1) 2 ( )1 j r jjz w z w z  : denotes the first phase sample mean of thj  auxiliary  

                                          variable considering non-response 

  1

*
1 (1) 2 ( )1 k r kkw w w w w  :  denotes the first phase sample mean of thk  auxiliary  

                                             variable considering non-response 

  1

*
1 (1) 2 ( )1 i r ii w w      :  denotes the first phase sample proportion of thi  auxiliary  

                                           variable considering non-response 

  1

*
1 (1) 2 ( )1 j r jj w w      :  denotes the first phase sample proportion of thj   

                                               auxiliary variable considering non-response 

  1

*
1 (1) 2 ( )1 k r kk w w      :  denotes the first phase sample proportion of thk    

                                             auxiliary variable considering non-response 
 

First, considering the regression component 1t  of (2.1), let (2) (2)ye y Y   be 

the sampling errors of y ,
 

* *
(1) (1)x i i ie x X   and * *

(1) (1)i i ie      be the sampling 

errors of thi  auxiliary variable and thi  auxiliary attributes respectively in the 

presence of non-responses at the first phase, and let    1 1 ix i ie x X   and 

 (1) 1i iie     be the sampling errors of thi  auxiliary variable and thi  auxiliary 

attribute respectively at the first phase. Using sampling errors form, and after 
simplification, 1t  becomes 

     
1 2

* *
1 (2) 1 (1) (2) 2 (1) (2)

1 1

q q

y i x i x i i i i
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t e Y a e e b e e      
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       , 

In matrix notation we can write 

 1 (2)yt e Y a b   t t
1 x 2 τα d α d ,              (2.2) 

where t
1α and t

2α are vectors of an unknown coefficients, and vectors  
11i q

d


t
xd , 

with  *
(2) (1)i x i x id e e   and  

21
,i q

d  
t

τd  with  *
(2) (1)i i id e e    . 

Now, considering the ratio component 2t of (2.1) let * *
(1) (1)z j j je z Z  , 

* *
(1) (1)j j je      be the sampling errors of thj auxiliary quantitative variable and 

thj  auxiliary qualitative variable at the first phase in the presence of non-

responses and (1) (1)z j j je z Z  ,  (1) 1j jje     be the sampling errors of thj  

auxiliary quantitative variable and thj  auxiliary qualitative  variable at the first 
phase. Then, simplifying and using binomial expansion up to the second order 
terms, 2t  becomes 

3
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Ignoring the third and higher order terms and writing in matrix notations, we 
have 

1 2 1
2 1 2 2t c h h h d     
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Now, considering the exponential component  3t  

of (2.1), let 
* *

(1) (1)w k k ke w W  , * *
(1) (1)k k ke      * *

(2) (2)k k ke      be the sampling errors of thk  

quantitative auxiliary variable and thk  qualitative auxiliary variable at the first 
phase with non-response and  (1) 1w k kke w W   ,  (1) 1k kke     be the sampling 

errors of thk  quantitative auxiliary variable and thk  qualitative auxiliary variable 
at the first phase.  Then, simplifying and using binomial expansion up to the 
second order term, 3t  becomes 
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or   
             5

2 12 1

2 1

2
**

*5
3 2

1

exp 1
2 2 4

k kk k

k k

q w ww wk
w w

k k k k

e ee ef
t e e e

W W W





    
     

  
 

    

    
           6

122 1

2 1

2
**

*6
2

1

1
2 2 4

kkk k

k k

q
k

k k k k

e ee el
e e

  

 

  

 



   

   
         

 

  

Using exponential series and writing in matrix notation, after ignoring the 
third and higher order terms 

  1 1
3 2 4t e ef ef   t t 2

5 w 5 wα Wd α W v 12 el t
6 fα Εd 14 el t 2

6 fα Ε v ,   (2.4) 
 
where t

5α  and t
6α are vectors of unknown coefficient,

 5 5

1 ;k q q
W



   W

51,2,3...k q  and 
6 6

1
k q q


   Ε ; 61,2,3...k q  are diagonal matrices and vectors 

 
51k q

d


t
wd with   *

(1)2k w kw kd e e  ,  
61k q

d  
td  with   *

(1)2k kkd e e   ,
 

 
51k q

v


t
wv  with  *

2 1

2 2

k kk w wv e e  and  
61k q

v  
tv  with  *

2 1

2 2

k kkv e e     . 

 
Substituting the expressions of 1t , 2t and 3t from (2.2), (2.3) and (2.4) in (2.1), 

we get 

  1 2
(2) 2mix yt e Y a b c ch ch         

tt t t 2 2
1 x 2 τ 4 ω 4 ωα d α d α Ψd α Ψ u     

12 ch cd chd  t 2 t t t
4 ω 3 x 3 x 4 ωα Ψ v α Zd α Zd α Ψd        

   1 2 1 12 2 2cd cd e ef     
t2 2 t 2 t

3 z 3 z 5 wα Z u α Z v α Wd                                

   1 1 14 2 4ef el el 
      

t 2 t t 2
5 w 6 6α W v α Εd α Ε v ; 1c e           (2.5) 

 
Ignoring the third and higher order terms of the expression given by (2.5) and 

applying the expectation, we get 

    1
31 2mixE t Y Y ch cd ef        t t t

4 4 3 5 5α Ψδ α Zδ α Wδ                  

            1 1 2
42 2el Y ch      

t

(2)

t 2 2 2 2
6 6 4 ω ωα Εδ α Ψ S S  

 1 2
42Y chd Y cd     

t

(2)

t 2 2 2 2
3 34 4 3 z zα ZΔ Ψα α Z S S                                       

   1 1
3 32 2Ych Ycd         

(2) (2)

t 2 2 2 t 2 2 2
4 ω ω 3 z zα Ψ S S α Z S S

  
   1 1

3 34 4Y ef Y el           
(2) (2)

t 2 2 2 t 2 2
5 w w 6α W S S α Ε S S

12ach acd aef  t t t
1 44 4 1 13 3 1 15 5α Δ Ψα α Δ Zα α Δ Wα

12 ael bch bcd  t t t
1 16 6 2 44 4 2 23 3α Δ Eα α Δ Ψα α Δ Zα

1 12 2bef bel  t t
2 25 5 2 26 6α Δ Wα α Δ Eα ,

                  
(2.6) 
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where
    

2
1

3 1iy x y q
E e S


    1 xδ d ,  

2
2

3 1iy y q
E e S

 
    2 τδ d ,  

2
3

3
1jy z y

q
E e S


    3 zδ d

 
2

4
3

1jy y
q

E e S
 

    4 ωδ d ,  
2

5
3 1ky w y q

E e S


    5 wδ d
 
,  

2
6

3 1ky y q
E e S 

 
    6δ d

   4E   
(2)

2 2
ω ω ωu S S ,    3E   

(2)

2 2
ω ω ωv S S  

    4 4 2 1;E        
2

2 2
z z zu S S , 

 
  3E   
2

2 2
z z zv S S ,  

  3E   
2

2 2
w w wv S S ,  

    3 3 2 1;E          
2

2 2v S S ,

( 2)
1 3

3( )
i j i jx z x z

q q
E S S 


    

t
13 x zΔ d d , 

( 2)
1 5

3( ) ,
i k i kx w x w

q q
E S S 


    

t
15 x wΔ d d

( 2 )
1 6

3( )
i k i kx x

q q
E S S   

  
    

t
16 xΔ d d , 

( 2 )
2 3

3( )
i j i jz z

q q
E S S  

  
    

t
23 τ zΔ d d ,

( 2)
2 5

3( )
i k i kw w

q q
E S S  

  
    

t
25 τ wΔ d d , 

( 2)
2 6

3( )
i k i k q q

E S S     
    

    
t

26 τΔ d d ,

( 2)
3 4

3( )
j j j jz z

q q
E S S  

  
    

t
34 z ωΔ d d , 

( 2 )
4 4

3( )
j j j j q q

E S S    
    

    
t

44 ω ωΔ d d . 

 
Expression given in (2.6) can be written as 

1
4( ) ( 1) 2mBias t Y cd a b Yd      

tt t 2 2 2
1 13 3 2 23 3 3 zα Δ Zα α Δ Zα α Z S    

    1
32 Y         

2 t 2 2 2 t
(2)z 3 z (2)z 3 3S α Z S S α Zδ           

  1
42 (ch a b Y d   

tt t 2 2 2
1 14 4 2 24 4 4 ωα Δ Ψα α Δ Ψα α Ψ S          

   1
32 Y       2 t 2 2 2 t

(2)ω 4 ω (2)ω 4 4S α Ψ S S α Ψδ           

  1 12 2Y d ef a b       
t t t
3 34 1 15 5 2 25 5α ZΔ Ψ α Δ Wα α Δ Wα         

  1 1 1
34 ( ) 2 2Y el a           

t 2 2 2 t t
5 w (2)w 5 5 1 16 6α W S S α Wδ α Δ Εα      

   1 1 1
6 32 4 2b Y            

t t 2 2 2 t
2 26 6 (2) 6 6α Δ Εα α Ε S S α Εδ .          (2.7) 

 
Bias(tmix) = Bias due to regression – cum – ratio (quantitative) + Bias due to 
regression – cum – ratio (qualitative) + Bias due to regression – cum – 
exponential (quantitative) + Bias due to regression – cum – exponential  
(qualitative) 

For obtaining the mean square error and optimum value of generalized class, 
ignoring the second and higher order terms after multiplication from (2.5), we 
have

 

(2)
( 1)mix yt Y e Y a b Y cd        t t t

1 x 2 τ 3 zα d α d α Zd        

      1 12 2Y ch Y ef Y el      t t t
4 ω 5 w 6α Ψd α Wd α Εd , 

or 

( 2 )
( 1)mix yt Y e Y      th H , 

where 
1 m

   
t t t t t t t

1 2 3 4 5 6h α α α α α α
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and 1 1

1
2 2

m
a b Y cd Y ch Y ef Y el     


    

t
x τ z ω wH d d Zd Ψd Wd Εd . 

 
Squaring and taking the expectation, we have 

 
( 2)

2 2( ) ( ( 1) )mix yE t Y E e Y      th H .     (2.8) 

To find the optimum value of the unknown vector of row vectors h for which 
mean square error will be the minimum, differentiating (4.8) with respect to h and 
equating to zero, we get 

( 2)
( ) ( 1) ( ) ( )yE e YE E    tH H HH h 0

    
 

or 

  Ω Λh 0 ,          (2.9) 
where 

2
( )yE e H Ω , with , 1 12 2a b Ycd Ych Yef Yel     

t
1 2 3 4 5 6Ω δ δ Zδ Ψδ Wδ Eδ , 

( )E H 0  and ( ) ij m m
E


    

tHH Λ .
                

(2.10) 

 
The elements in ij    are  

2 2( )a E a t
11 x x 11Λ d d Δ ,         ( ) ,aE b ab t

12 x τ 12Λ d d Δ

( ) ,acdYE acdY  t
13 x z 13Λ d d Z Δ Z        ( ) ,Y achE Y ach  t

14 x ω 14Λ d d Ψ Δ Ψ
1 12 ( ) 2 ,Y aefE Y aef     t

15 x w 15Λ d d W Δ W
1 1

62 ( ) 2 ,Y ael Y ael     t
16 x 1Λ d d E Δ E 2( ) ,tbE b b t

22 τ τ 22Λ d d Δ         

( ) ,bcdYE bcdY  t
23 τ z 23Λ d d Z Δ Z ( )Y bchE Y bch  t

24 τ ω 24Λ d d Ψ Δ Ψ ,
        

1 12 ( ) 2 ,Y befE Y bef     t
25 τ w 25Λ d d W Δ W

1 12 ( ) 2 ,Y belE Y bel     t
26 τ 26Λ d d Ε Δ Ε     

2 2( ) ( ) ( )cdY E cdY  t 2 2
33 z z 33Λ d d Z Δ Z , 

2 2( ) ( ) ( ) ,Y c dh E Y c dh  t
34 z ω 34Λ Z d d Ψ ZΔ Ψ

1 2 2 1 2 22 ( ) 2 ,Y cdef E Y cdef     t
35 z w 35Λ Z d d W ZΔ W

1 2 2 1 2 22 ( ) 2 ,Y cdel E Y cdel     t
36 z 36Λ Z d d Ε ZΔ Ε

2 2( ) ( ) ( ) ,Y ch E Y ch  t 2 2
44 ω ω 44Λ d d Ψ Δ Ψ

 1 2 2 1 2 22 ( ) 2 ,Y chef E Y chef     t
45 ω w 45Λ Ψ d d W ΨΔ W

 
1 2 2 1 2 22 ( ) 2 ,Y ehcl E Y ehcl      t

46 ω 46Λ Ψ d d ΨΔ Ε

   2 21 12 ( ) 2Y ef E Yef  t 2 2
55 w w 55Λ d d W Δ W , 

1 2 2 2 1 2 24 ( ) 4 ,Y e fl E Y e fl  t
56 w 56Λ W d d Ε WΔ Ε  

   2 21 12 ( ) 2 ,Y efl E Y efl    t 2 2
66 66Λ d d Ε Δ Ε  
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Now, (2.9) can be written as 
 -1h Λ Ω .          (2.11) 

From (2.8) 

  (2) (2)
( ) ( 1) ( 1)mix y yMSE t E e Y e Y         t th H h H  

or 

  (2) (2)( ) ( 1) ( 1)mix y yMSE t E e Y e Y         th H  
or 

     222
(2) (2)( ) ( 1)mix y yMSE t E e Y E e      th H

 
or 

2 2 2 2
2( ) ( 1)mix yMSE t S Y       th Ω .     

 
By using (2.11), we have 

   2 2 2 2
2( ) 2 1mix yMSE t Y S        t -1Ω Λ Ω

    
(2.12)

 
 

or 

  22 2( ) 2 1mixMSE t Y       ,
 

where      2
2 yS   t -1Ω Λ Ω . 

Differentiating MSE w.r.t    and equating to zero 
2 22 2 2 0Y Y     ,    

where  2 2Y Y    .
 

   1 12 2 21opt Y Y Y
       .

       
 

Then, the minimum MSE of the general class is  

    
2

1 22 2( ) 1 1 1mixMSE t Y Y Y
            

.
    

(2.13) 

Remark 1. The general class of Ahmad et al. (2012) is a member of our proposed 
class after substituting 0b h l   and 1  in (2.1). 

As the proposed class is general in nature, special cases of the proposed class 
(2.1) may be deduced under the assumption 1c e  using different values of 
generalizing constants. The special cases with their expressions of bias and 
MSE’s are given in the Remarks 2 and 3. Further, special cases for two and three 
components are given in Tables 1 and 2 respectively.  

Remark 2. (using two components of generalized class) 

We can obtain a regression (qualitative)-cum-ratio (quantitative) estimator by 
substituting 1,b c d      0a e f h l      in (2.1), i.e. 
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    
3

32
*
(1)*

2 2 (2)23 1
1 1 (2)

jqq
j

i imix i
i j j

z
t y

z



   
 

                 
       (2.14)  

The bias of (2.14) can be obtained by substituting 1,b c d    
0a e f h l      in (2.7) as 

   1
3 423( ) 2mixBias t Y    

tt 2 2 2 2
2 23 3 z (2)zα Δ Zα α Z S S

 1
32 Y    t 2 2 2 t

3 z (2)z 3 3α Z S S α Zδ . 

The optimum values are 

 2 2Y Z -1 -1 -1 -1 -1 -1
2 22 2 22 23 32 22 2 22 23 3α Δ δ Δ Δ M Δ Δ δ -Δ Δ M δ and 

 Y  -1 -1 -1
3 32 22 2 3α M ZΔ Δ δ M Zδ . 

Substituting 1,b c d     0a e f h l      in (2.12) and using (2.10) 
and Result-1 of the Appendix, the mean square error of (2.14) can be obtained as      

    2 2
223( ) ymixMSE t S Y  t -1 t -1 2 -1 -1 t 2 -1 -1

2 22 2 2 22 23 32 22 2 3 32 22 2δ Δ δ δ Δ Δ Z M Δ Δ δ -δ Z M Δ Δ δ  

 2 ,Y t -1 -1 t -1
2 22 23 3 3δ Δ Δ M Z -δ M Z Zδ  

where  1Y -1 -1M R  and   12 .Y
-1 2 -1 2

33 32 22 23R Δ Z -Δ Δ Δ Z

 

 
Remark 3. (using three components of generalized class) 

A regression-cum-ratio estimator using a mixture of auxiliary variables can be 
obtained by substituting 1, 0a b c d h e f l          in generalized class 
(2.1) and we get 

      
3

31 2
*
(1)* *

2 1 (2) 2 (1) (2)123 1
1 1 1 (2)

jqq q
j

i i i i imix i
i i j j

z
t y x x

z



     
  

                   
   .

              

(2.15) 

The bias of (2.15) can be obtained by substituting  1a b c d       and 
0h e f l    in (2.7) as 

   1
4123( ) 2mixBias t Y    

tt t 2 2 2 2
1 13 3 2 23 3 3 z (2)zα Δ Zα +α Δ Zα α Z S S      

  1
32 Y   t 2 2 2

3 z (2)zα Z S S  t
3 3α Zδ .     

where t
1α , t

2α and t
3α  are vectors of unknown constants of the vector th .  

Let 
11 m

   
t t t t

1 2 3h α α α , where 1 1 2 3m q q q   . 

The optimum value of th for which MSE of  123mixt will be the minimum can 

be written directly from (2.11) as: 


1 1 1 1

-1
m ×1 m ×m m ×1h = Λ Ω . 

The mean square error of (2.15) can be obtained by substituting 
1a b c d      and 0h e f l    in (2.13) as: 
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     1 1 11

21 22 2 2
( ) 1 1 1m m mmix mMSE t Y Y Y

             
   

,
 

where 
1

2
2m yS  

1 1 1 1

-1
1×m m ×m m ×1Ω Λ Ω ; 

11 12 13

21 22 23
2 2

31 32 33

Y

Y

Y Y Y

 
 
 
  

1 1m ×m

Δ Δ Δ Z

Λ = Δ Δ Δ Z

ZΔ ZΔ Δ Z

and 
Y

 
   
  

1

1

m ×1 2

3

δ

Ω δ

Zδ

. 

The inverse of 
1 1m ×mΛ  i.e.

1 1

-1
m ×mΛ can be obtained using the Result-1 given in 

the Appendix.  
The proposed general class comprises six components, three pairs are based 

on regression, ratio and exponential forms and each form utilizes categorical and 
continuous auxiliary variables separately.  Moreover, it is assumed that c + e = 1. 
Following the Remarks 2 and 3, special cases consist of four and five components 
and even the single case based on all the components can be deduced using 
suitable values of generalizing constants.  The special cases in which either c or e 
are involved, need no additional work, but the cases that involve both c and e 
need one extra step in finding the optimum value of either c or e. After finding 
this additional optimum value, the bias, existing optimum values and means 
square errors will be changed accordingly for these particular special cases. We 
have not included these cases in the article due to the limitation of length of the 
article. The special cases for two and three are given in the following tables.  

 

Table1. Special cases of generalized class using two components 

Estimator 
( , , , , , , , , )a b c d e f h l 

 

    
3

32
*
(1)*

2 2 (2)23 1
1 1 (2)

jqq
j

i imix i
i j j

z
t y

z



   
 

                 
   (0,1,1,1,0,0,0,0,1) 

   
61

*
(2) (1)*

2 1 (1) (2) 616 *
1 1 (2) (1)

exp
qq

k k
i i i kmix

i k k k

t y x x
 

 
 

 


   

                      
  (1,0,0,0,1,0,0,1,1) 

    
52

*
(2) (1)*

2 2 (2) 525 1 *
1 1 (2) (1)

exp
qq

k k
mix i i ki

i k k k

w w
t y

w w
    

 

                      
  (0,1,0,0,1,1,0,0,1) 

    
51

*
(2) (1)*

2 1 (2) 515 1 *
1 1 (2) (1)

exp
qq

k k
i i kmix i

i k k k

w w
t y x x

w w
 

 

                      
  (1,0,0,0,1,1,0,0,1) 
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Table1. Special cases of generalized class using two components (cont.) 

Estimator ( , , , , , , , , )a b c d e f h l   

    
62

*
(2) (1)*

2 2 (2) 626 1 *
1 1 (2) (1)

exp
qq

k k
mix i i ki

i k k k

t y
 

   
 

 
  

    

                      
  (0,1,0,0,1,0,0,1,1) 

 
4

41
*
(1)*

(14) 2 1 (1) (2)
1 1 (2)

jqq
j

mix i i i
i j j

t y x x











  

                 
   (1,0,1,0,0,0,1,0,1) 

     
1 2

* *
(12) 2 1 (2) 2 (2)1 1

1 1

q q

mix i i i ii i
i i

t y x x    
 

 
     
 

   (1,1,1,0,0,0,0,0,1) 

 
43

3 4
**
1(1)

(34) 2
1 1(2) (2)

jjq q
jj

mix
j jj j

z
t y

z

 







  

               
   (0,0,1,1,0,0,1,0,1) 

 
4

42
*
(1)*

(24) 2 2 (1) (2)
1 1 (2)

jqq
j

mix i i i
i j j

t y




  





  

   

                 
   (0,1,1,0,0,0,1,0,1) 

 
3

31
*
(1)*

(13) 2 1 (1) (2)
1 1 (2)

jqq
j

mix i i i
i j j

z
t y x x

z




 

                 
   (1,0,1,1,0,0,0,0,1) 

 

5 6
* *

(2) (1) (2) (1)
2 5 656 * *

1 1(2) (1) (2) (1)

exp
q q

k k k k
k kmix

k kk k k k

w w
t y

w w

 
 

 
 


   

                    
   (0,0,1,0,1,1,0,1,1) 

 

Table 2. Special cases of generalized class using three components 
Estimator ( , , , , , , , , )a b c d e f h l   

      
3

31 2
*
(1)* *

2 1 (2) 2 (1) (2)123 1
1 1 1 (2)

jqq q
j

i i i i imix i
i i j j

z
t y x x

z



     
  

                  
    (1,1,1,1,0,0,0,0,1) 

    
3 4

3 41
* *
(1) (1)*

2 1 (2)134 1
1 1 1(2) (2)

j jq qq
j j

i imix i
i j jj j

z
t y x x

z

 









   

                         
    (1,0,1,1,0,0,1,0,1) 
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Table 2. Special cases of generalized class using three components  (cont.) 
Estimator ( , , , , , , , , )a b c d e f h l   

   
3 4

3 42
* *
(1) (1)*

2 2 (1) (2)234
1 1 1(2) (2)

j jq qq
j j

i i imix
i j jj j

z
t y

z

 


  





  

    

                         
    (0,1,1,1,0,0,1,0,1) 

   
52 2

*
(2) (1)* *

(125) 2 2 (1) (2) 2 (1) (2) 5 *
1 1 1 (2) (1)

exp
qq q

k k
mix i i i i i i k

i i k k k

w w
t y

w w
           

   

                        
    (1,1,0,0,1,1,0,0,1) 

   
62 2

*
(2) (1)* *

(126) 2 2 (1) (2) 2 (1) (2) 6 *
1 1 1 (2) (1)

exp
qq q

k k
mix i i i i i i k

i i k k k

t y l
 

      
 

 
      

      

                        
    (1,1,0,0,0,1,0,1,1) 

  
5 62

* *
(2) (1) (2) (1)*

(256) 2 2 (1) 5 62 * *
1 1 1(2) (1) (2) (1)

exp
q qq

k k k k
mix i i k ki

i k kk k k k

w w
t y

w w

 
    

 
 

  
     

                                
    (0,1,0,0,1,1,0,1,1) 

  
5 61

* *
(2) (1) (2) (1)*

(156) 2 1 (1) 5 62 * *
1 1 1(2) (1) (2) (1)

exp
q qq

k k k k
mix i i k ki

i k kk k k k

w w
t y x x

w w

 
  

 
 


    

                                
    (1,0,0,0,1,1,0,1,1) 

     
4

41 2
(1)

*

* *
(124) 2 1 (1) 2 (1)2 2

1 1 1 (2)

j

j

h
qq q

mix i i i ii i
i i j j

t y x x




   






  
    

                 
    (1,1,1,0,0,0,1,0,1) 

3. Empirical study 

In this section we have empirically compared special cases that are discussed 
in sections 4.1 and 4.2.  For this comparison, the data of Census report of district 
Jhang (1998), Pakistan (see Ahmad et al. (2009)) is used. The population size is 
368 ( N ). From N , 276( 1N ) are considered as respondent group of population and 
the remaining 92( 2N ) are non-respondent group. A sample of 160( 1n ) is selected 

at the first phase sample and from first phase, a sample of 90( 2n ) is selected as 
the second phase sample. From the second phase sample, a sub-sample of 10( r ) 
is selected as the re-contacted sample and it is assumed that there is full response 
from this sample. 

The data set, which is considered for the empirical study, consists of three 
quantitative and three qualitative auxiliary variables along with one response 
variable. The variables description is given in Table 3. The variances and co-
variances and the mean of all variables for both complete and non-respondent 
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populations are given in Table 4 and Table 5 respectively. The bias and MSE’s of 
all special cases given in Table 1 and Table 2 are  given in Table 6 and Table 7 
respectively.  

 

Table 3. Description of variables (each variable is taken from rural locality) 

Description of Variables 

Y  Literacy ratio 

x   Household size 

z   Population of both sexes 

w  Household characteristics 

  Male above and below average education  

  Female above and below average education 

  Persons below and above average age 

 

Table 4. Variance co-variances and mean of complete population N = 368 
 Variance Co-variance Matrix 
Variable Mean y  x z  w      

y  29.831 62.860 0.548 5780.0000 593.123 1.936 0.5630 1.440 
x  6.372 0.548 0.266 138.7860 -7.139 0.015 0.0020 0.0110 
z  5901.46 5780.0 138.786 26660000.0 1262000.0 711.523 1191.0 1173.0 
w  897.71 593.123 -7.139 1262000.0 211500.0 113.702 162.718 157.043 
  0.35 1.936 0.015 711.5230 113.702 0.227 0.1060 0.1560 
  0.42 0.563 0.002 1191.0 162.718 0.106 0.2440 0.1740 

  0.43 1.440 0.011 1173.0 157.043 0.156 0.1740 0.2450 
 

Table 5. Variances co-variances and mean of non-respondent population  
               N2 = 92 

 Variance Co-variance Matrix 

Variable y  x  z  w        Mean 
y  40.0700 0.1680 7508.0 1176.00 1.5780 1.2480 1.5370 25.1467 

x  0.1680 0.1270 -17.55 -21.4730 0.0030 -0.0190 -0.0080 6.2130 

z  7508.00 -17.550 6239000.0 999300.0 668.870 1001.0 991.744 6164.5761 

w  1176.00 -21.4730 999300.0 163700.0 105.675 163.453 160.103 994.3152 

  1.5780 0.0030 668.87 105.6750 0.1950 0.0870 0.1360 0.2609 

  1.2480 -0.0190 1001.0 163.4530 0.0870 0.2510 0.1750 0.5435 

  1.5370 -0.0080 991.7440 160.1030 0.1360 0.1750 0.2430 0.4022 

 
From Table 6, biases of estimators show that some estimators are 

overestimating and some are underestimating the population mean of study 



STATISTICS IN TRANSITION new series, Autumn 2014 

 

519

variable except the regression estimator that is unbiased and similar information is 
described from Table 7 for estimators based on biases.  

From Table 6, the ranked absolute biases show that the estimator (13)mixt has 

larger bias as compared to others whereas (26 )mixt has smaller bias. The estimators 

at rank 2, 3, 4 and 5 have a very small amount of bias whereas the remaining ones 
have large amount of bias. Considering the ranks of MSE, the estimator (25)mixt  is 

more efficient then all others whereas (34)mixt is the least efficient. However, the 

differences in MSE’s for all estimators are very small but there is a lot of 
variation in biases. Considering the trade-off between biases and MSE’s, the sum 
of ranks of bias and MSE suggests that the biased estimator (26 )mixt is useful for 

practical situations where only qualitative variables are considered, (25)mixt is 

suitable when there is a mixture of auxiliary variables and (15)mixt  can be used for 

only quantitative auxiliary variables.  

Table 6. Bias and MSE of members of generalized class for two factors 

Estimators Bias 
Absolute 

Bias 

Ranked  
Absolute 

Bias 
MSE 

Ranked 
MSE 

Sum of 
Ranks 

Ranks 
of Sum 

(23)mixt  -
8.31E+03 

8310 09 15.3249 5 14 7 

(25)mixt  -
1.30E+03 

1300 6 15.3217 1 7 3 

(15)mixt  1.41E+03 1410 7 15.3601 8 15 8.5 

(26)mixt  1.74E-04 0.000174 2 15.3248 4 6 2 

(14)mixt  5.39E-04 0.000539 3 15.3620 10 13 6 

(12)mixt  0 0 1 15.3222 2 3 1 

(34)mixt  6.64E+04 66400 10 15.3693 11 21 11 

(24)mixt  1.35E-03 0.00135 5 15.3246 3 8 4 

(13)mixt  8.31E+04 83100 11 15.3608 9 20 10 

(56)mixt  -
2.17E+03 2170 8 15.3446 7 15 8.5 

 
In the case of estimators based on three components, from Table 7, the ranked 

absolute biases show that (124 )mixt  has smaller bias whereas (134 )mixt is highly biased. 

(126)mixt has also a very small amount of bias. Based on ranks of MSE, (256)mixt  is 

more efficient than all others whereas (134 )mixt is the least efficient. Considering the 

trade-off between bias and MSE’s, the sum of ranks of bias and MSE suggests 
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that (124 )mixt  is useful for practical situations when there is a mixture of auxiliary 

variables.  

Table 7. Bias and MSE of members of generalized class using three  
               components 

Estimators Bias 
Absolute 

Bias 

Ranked 
Absolute 

Bias 
MSE 

Ranked 
MSE 

Sum of 
Ranks 

Ranks 
of Sum 

(123)mixt  -8.31E+03 8310 6 15.3222 5 11 5 

(134)mixt  1.34E+08 134000000 8 15.4720 8 16 8 

(234)mixt  -2.82E+04 28200 7 15.3243 6 13 7 

(125)mixt  -1.17E+03 1170 3 15.3196 2 5 2.5 

(126)mixt  3.01E-04 0.000301 2 15.3220 4 6 4 

(256)mixt  -2.33E+03 2330 4 15.3181 1 5 2.5 

(156)mixt
 -5.72E+03 5720 5 15.3416 7 12 6 

(124)mixt
 1.81E-04 0.000181 1 15.3218 3 4 1 

 
As the suggested class consists of regression, ratio and exponential 

components, it is obvious that the regression component contributes in terms of 
reduction of MSE and ratio and exponential components will increase bias and 
decrease MSE. This statement can be verified from Table 6 and 7. For example, 
from Table 6 (15)mixt is a regression-cum-exponential estimator with one 

exponential component having bias 1410 and MSE 15.3601, and by adding 
another ratio component in this estimator we obtain the regression-cum-
exponential (156 )mixt (given in Table 7) with bias 5720 and MSE 15.3416 as the 

result. This type of change can be observed for other estimators with this 
property. 

What is specific to this empirical study is that the qualitative auxiliary 
variables are performing better than the continuous auxiliary variables. For 
example, (125)mixt [regression-cum-exponential (quantitative)] has bias 1170 and 

MSE 15.3196 whereas (126 )mixt [regression-cum-exponential (qualitative)] has bias 

0.000301 and MSE 15.3220. Similar information can be observed considering 
other such pairs of estimators.   

Summarizing the discussion on both tables, the three-component estimator 

(124 )mixt is better than all others while considering bias and MSE simultaneously. 

This estimator comprises two regression components of quantitative and 
qualitative auxiliary variables and one ratio component of qualitative auxiliary 
variables. 
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4. Conclusions 

In this paper, a general class of regression-cum-ratio-exponential estimators is 
developed for two-phase sampling in the presence of non-responses at the first 
phase. Both quantitative and qualitative auxiliary variables are used in the 
construction of the class to increase the efficiency of the class as well as its 
members. The general expression of bias and mean square error is also derived. 
As the proposed class is general in nature, some suitable special cases are deduced 
along with their bias and mean square errors. On the basis of the empirical study 
it is concluded that both types of auxiliary variables can play a role in reducing 
the bias and the mean square error of an estimator. The bias and mean square 
error can be reduced by increasing the number of auxiliary variables. An increase 
in ratio or exponential components increases the bias. Our findings show that an 
estimator based on three components performs better then all others. This 
estimator comprises two regression components of quantitative and qualitative 
auxiliary variables and one ratio component of qualitative auxiliary variables. 

This paper also fills the gap in the literature as it attempts to estimate the finite 
population mean using both qualitative and quantitative multi-auxiliary variables 
in the presence of non-response at the first phase under two-phase sampling. It 
can also provide an opportunity to the applied survey statisticians if they consider 
estimation of finite population mean using several qualitative and quantitative 
auxiliary variables.  
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APPENDIX 

Result 1. Inverse of matrix of matrices:  
 

Let T be a matrix of matrices of order 4 4,  
 

 
 
 
 
 
 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

T T T T

T T T T
T =

T T T T

T T T T

. 

 
The inverse of T is 

  

     
 

          

-1 -1 -1 -1 -1 -1-1
33 33 31 11 13 33 33 31 1133 31-1

-1 -1 -1
13 11 11 13 33 11

B + B B G B B - B B GB B
T = =

B B -G B B G
,

 
 

where  -1-1 -1
11 11 13 33 31G = B - B B B ,  

  

 
 
 
  

11 12 13

33 21 22 23

31 32 33

T T T

B = T T T

T T T

, 
 
 
 
  

14

31 24

34

T

B = T

T

,  13 41 42 43B = T T T  and 11 44B = T . 

and 

  

     
 

          

-1 -1 -1 -1 -1 -1-1
22 22 21 11 12 22 22 21 1122 12-1

33 -1 -1 -1
21 11 11 12 22 11

A + A A H A A - A A HA A
B = =

A A -H A A H
, 

 

where  -1-1 -1
11 11 12 22 21H = A - A A A , 

 

  

 
 
 

11 12
22

21 22

T T
A =

T T
, 

 
 
 

13
21

23

T
A =

T
,  12 31 32A = T T  and 11 33A = T . 

 
and 

  

     
 

          

-1 -1 -1 -1 -1 -1-1
11 11 12 22 21 11 11 12 2211 12-1

22 -1 -1 -1
21 22 22 21 11 22

T + T T R T T - T T RT T
A = =

T T -R T T R
, 

where  -1-1 -1
22 22 21 11 12R = T - T T T . 
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ON CONDITIONAL SIMPLE RANDOM SAMPLE

Janusz L. Wywiał 1

ABSTRACT

Estimation of the population average in a finite and fixed population on the ba-
sis of the conditional simple random sampling design dependent on order statistics
of the auxiliary variable is studied. The sampling scheme implementing the sam-
pling design is proposed. The inclusion probabilities are derived. The well known
Horvitz-Thompson statistic under the conditional simple random sampling designs
is considered as the estimator of population mean. Moreover, it was shown that the
Horvitz-Thompson estimator under some particular cases of the conditional simple
random sampling design is more accurate than the ordinary mean from the simple
random sample.
Key words: simple random sample, conditional sampling design, sampling scheme,
inclusion probabilities, auxiliary variable, order statistics.

1. Introduction

The sampling designs dependent on an auxiliary variables are constructed in
order to improve accuracy of population parameters estimation. Rao (1985) consid-
ered problems of conditional statistical inference in survey sampling. Applications
of auxiliary information to construction of the conditional versions of sampling de-
signs were discussed in the literature, for instance by Tillé (1998, 2006). This paper
was inspired by Royall and Cumberland (1981) proposition of conditional simple
sampling design.

Let U be a fixed population of size N . The observation of a variable under study
and an auxiliary variable are identifiable and denoted by yi and xi, i = 1, . . . , N ,
respectively. We assume that xi ≤ xi+1, i = 1, . . . , N − 1. Our main purpose is to
estimate the population average: ȳ = 1

N

∑
i∈U yi.

Let us consider the sample space S of the samples s of the fixed effective size
1 < n < N . The sampling design is denoted by P (s) where P (s) > 0 for all s ∈ S
and

∑
s∈S P (s) = 1. As it is well known the simple sampling design is defined as

follows:

P0(s) =

(
N

n

)−1
for all s ∈ S. (1)

1Department of Statistics, University of Economics in Katowice, 1 Maja 50, 40-287 Katowice,
Poland. E-mail:janusz.wywial@ue.katowice.pl.
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Royall and Cumberland (1981) considered drawing the simple random sample s
until the inequality |x̄s − x̄| ≤ c where x̄ = 1

N

∑
i∈U xi, c > 0, is fulfilled. This

sampling scheme can be called the conditional simple random sampling. Of course
conditions can be stated by means of other inequalities, see e.g. Wywiał (2003)
using computer simulation analysis because the inclusion probabilities of the con-
ditional simple random sampling design are not known. Derivation of those prob-
abilities is one of our purposes. In the considered case the condition is defined on
the basis of the properties of the order statistics of the auxiliary variable. In the next
section, the conditional simple random sampling design is defined and the inclusion
probabilities are derived. The sampling scheme described in the third section. In
the fourth section the Horvitz-Thompson estimator is considered. Next we can find
some general conclusions about the properties of the considered estimation strategy.
The proof of the theorems is in the Appendix.

Let s = {s1, i, s2} where s1 = {i1, ..., ir−1}, s2 = {ir+1, ..., in}, ij < i for
j = 1, ..., r, ir = i and ij > i for j = r + 1, ..., n. Hence, xi is one of the pos-
sible observations of the order statistic X(r) of the rank r (r = 1, ..., n) from the
sample s. Let S(r, i) = {s : X(r) = xi} be the set of all samples whose r -th
order statistic of the auxiliary variable is equal to xi where r ≤ i ≤ N − n + r.
Hence,

⋃N−n+r
i=r S(r, i) = S. The size of the set S(r, i) is denoted by g(r, i) =

Card(S(r, i)) and

g(r, i) =

(
i− 1

r − 1

)(
N − i
n− r

)
,

N−n+r∑
i=r

g(r, i) =

(
N

n

)
.

The probability that the r -th order statistic from simple random sample of an
auxiliary variable takes value xi is as follows (see Wilks (1962), pp. 243-244 or
Guenther (1975) or Hogg and Craig (1970)):

P
(
X(r) = xi

)
=
g(r, i)(
N
n

) , i = r, ..., N − n+ r.

E
(
X(r)

)
=

N−n+r∑
i=r

xiP
(
X(r) = xi

)
=

1(
N
n

) N−n+r∑
i=r

xig(r, i).

The sample quantile of order α ∈ (0; 1) is defined as Qs,α = X(r). The rank r
can be determined as follows: r = [nα] + 1 where [.] is the integer part of the value
nα. Hence, r = 1, 2, ..., n and X(r) = Qs,α for r−1

n ≤ α < r
n . So, it will be more

convenient to consider the order statistics than the quantiles.
The conditional (truncated) version of the order statistic distribution is as follows:

P
(
X(r) = xi|xu ≤ X(r) ≤ xw

)
=

P
(
X(r) = xi

)
P
(
xu ≤ X(r) ≤ xw

) =
g(r, i)

z(r, u, w)
=

= P
(
X(r) = xi|r, u, w

)
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where

P
(
xu ≤ X(r) ≤ xw

)
=
z(r, u, w)(

N
n

) ,

z(r, u, w) =
w∑
t=u

g(r, t). (2)

2. Sampling design

On the basis of the previous section we have obtained:

P0 (s ∈ S(r, i)) =
∑

s∈S(r,i)

P0(s) =
z(r, u, w)(

N
n

) = P
(
xu ≤ X(r) ≤ xw

)
.

Hence,

P0 (s|s ∈ S(r, i)) =
P0(s)

P0 (s ∈ S(r, i))
=

1

z(r, u, w)
=

=
P0(s)

P
(
X(r) = xi|r, u, w

) = P0

(
s|xu ≤ X(r) ≤ xw

)
= P0 (s|r, u, w) . (3)

Definition 2.1. The sampling design expressed by the equations (3) and (2) will
be called the conditional simple random sampling design.

So, the introduced sampling design provides such the simple random samples
where r-the order X(r) takes value from the interval [xu; xu] where u ≤ r ≤ w.

The inclusion probability of the first and second orders are defined by the follow-
ing equation: πk =

∑
{s:k∈s} P (s) and πk,t =

∑
{s:k∈s,t∈s k 6=t} P (s), respectively

where k, t = 1, ..., N. Let us assume that if x ≤ 0, δ(x) = 0 else δ(x) = 1. Let us
note that δ(x)δ(x− 1) = δ(x− 1).

In the Appendix the following theorem is proved on the basis of Wywial’s (2008)
results.

Theorem 2.1. The inclusion probabilities of the first order for the conditional
simple random sampling design P0(s|r, u, w) are as follows: if k < u,

π
(r)
k (u,w) =

δ(r − 1)δ(w − 1)δ(u− 1)

zr(u,w)

w∑
i=u

(
i− 2

r − 2

)(
N − i
n− r

)
,
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If u ≤ k ≤ w,

π
(r)
k (u,w) =

=
1

zr(u,w)

(
δ(n− r)δ(k − u)δ(k − 1)

k−1∑
i=u

(
i− 1

r − 1

)(
N − i− 1

n− r − 1

)
+

+

(
k − 1

r − 1

)(
N − k
n− r

)
+ δ(r − 1)δ(w − k)

w∑
i=k+1

(
i− 2

r − 2

)(
N − i
n− r

))
,

if k > w,

π
(r)
k (u,w) =

δ(n− r)δ(N − w)

zr(u,w)

w∑
i=u

(
i− 1

r − 1

)(
N − i− 1

n− r − 1

)
,

The inclusion probabilities of the second order for the conditional simple random
sampling design P0(s|r, u, w) are as follows:
If k < u, t < u and t 6= k,

π
(r)
k,t (u,w) =

δ(r − 2)δ(w − 2)δ(u− 2)

zr(u,w)

w∑
i=u

(
i− 3

r − 3

)(
N − i
n− r

)
.

If k > w, t > w and t 6= k,

π
(r)
k,t (u,w) =

=
δ(n− r − 1)δ(N − w − 1)δ(N − u− 1)

zr(u,w)

w∑
i=u

(
i− 1

r − 1

)(
N − i− 2

n− r − 2

)
.

If k < u and t > w or t < u and k > w,

π
(r)
k,t (u,w) =

δ(r − 1)δ(n− r)δ(u− 1)δ(N − w)

zr(u,w)

w∑
i=u

(
i− 2

r − 2

)(
N − i− 1

n− r − 1

)
.

If k < u and u ≤ t ≤ w or t < u and u ≤ k ≤ w,

π
(r)
k,t (u,w) =

=
δ(r − 1)

zr(u,w)

(
δ(n− r)δ(t− u)δ(t− 2)

t−1∑
i=u

(
i− 2

r − 2

)(
N − i− 1

n− r − 1

)
+

+ δ(t− 1)

(
t− 2

r − 2

)(
N − t
n− r

)
+

+ δ(r − 2)δ(w − t)δ(w − 2)δ(t− 1)

w∑
i=t+1

(
i− 3

r − 3

)(
N − i
n− r

))
.
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If u ≤ k ≤ w and t > w or u ≤ t ≤ w and k > w,

π
(r)
k,t (u,w) =

δ(n− r)
zr(u,w)

(
δ(n− r − 1)δ(k − u)δ(N − k)δ(k − 1)δ(N − u− 1)·

·
k−1∑
i=u

(
i− 1

r − 1

)(
N − i− 2

n− r − 2

)
+ δ(N − k)

(
k − 1

r − 1

)(
N − k − 1

n− r − 1

)
+

+δ(r−1)δ(w−k)δ(N−w)δ(w−1)δ(N−k−1)
w∑

i=k+1

(
i− 2

r − 2

)(
N − i− 1

n− r − 1

))
.

If u ≤ k < t ≤ w or u ≤ t < k ≤ w,

π
(r)
k,t (u,w) =

δ(w − u)

zr(u,w)

(
δ(n− r− 1)δ(k− u)δ(N − k)δ(k− 1)δ(N − u− 1)·

·
k−1∑
i=u

(
i− 1

r − 1

)(
N − i− 2

n− r − 2

)
+ δ(n− r)δ(N − k)

(
k − 1

r − 1

)(
N − k − 1

n− r − 1

)
+

+δ(r−1)δ(n−r)δ(t−k−1)δ(t−2)δ(N−k−1)

t−1∑
i=k+1

(
i− 2

r − 2

)(
N − i− 1

n− r − 1

)
+

+ δ(r − 1)δ(t− 1)

(
t− 2

r − 2

)(
N − t
n− r

)
+

+ δ(r − 2)δ(w − t)δ(w − 2)δ(t− 1)
w∑

i=t+1

(
i− 3

r − 3

)(
N − i
n− r

))
.

Example 2.1. Let us assume that N = 11, n = 5, r = 3.
When u = 4 and w = 8, then πk = 0.431 and πt = 0.483 for k = 1, 2, 3, 9, 10, 11
and t = 4, 5, 6, 7, 8.
Whenu = 5 andw = 7, thenπk = 0.411 andπt = 0.571 for k = 1, 2, 3, 4, 8, 9, 10, 11
and t = 5, 6, 7.
When u = 6 and w = 6, then π6 = 1and πt = 0.4 for t 6= 6.
Finally, when u = 3 and w = 9, then πk = 5

11 = 0.45(45) for k = 1, ..., 11. In this
case the conditional simple random sampling design reduces to the simple random
sample drawn without replacement.

Hence, when the parameters u and w are closer and closer to each other then the
probability of selecting to the sample the central population elements increases.

3. Sampling scheme

The sampling scheme implementing the conditional simple random sampling de-
sign P0(s|r, u, w), where r ≤ u ≤ w ≤ N −n+ r is as follows. Firstly, population
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elements are ordered according to increasing values of the auxiliary variable. Next,
the i-th element of the population where i = u, u+ 1, ..., w, is drawn with the prob-
ability

P (X(r) = xi|xu ≤ X(r) ≤ xw) =
P (X(r) = xi)

P (xu ≤ X(r) ≤ xw)
=

g(r, i)∑w
j=u g(r, j)

(4)

where r = [nα] + 1.
Finally, two simple samples s1(i) and s2(i) are drawn without replacement from

the subpopulations U1 = {1, ..., i− 1} and U2 = {i+ 1, i+ 2, ..., N}, respectively.
The sample s1(i) is of the size r − 1 and the sample s2(i) is of the size n− r. The
sampling designs of these samples are independent and

P0(s1(i)) =
1(
i−1
r−1
) , P0(s2(i)) =

1(
N−i
n−r
) (5)

Hence, the selected sample is: s = {s1(i), i, s2)(i)} and its probability is:

P (X(r) = xi|xu ≤ X(r) ≤ xw)P0(s1(i))P0(s2(i)) = P0(s|r, u, w)

where r = u, u+ 1, ..., w.

4. The Horvitz-Thompson estimator

The well-known Horvitz-Thompson (1952) estimator is given by:

ȳHT,s =
1

N

∑
k∈s

yk
πk

(6)

The estimation strategy (ȳHT,s, P (s)) is unbiased for the population mean ȳ if πk >
0 for k = 1, ..., N , where πk is the inclusion probability of the sampling design
P (s). The variance of the strategy is:

V0 (ȳHT,s, P (s)) =
1

N2

(∑
k∈U

∑
l∈U

∆k,l
ykyl
πkπl

)
, ∆k,l = πk,l − πkπl (7)

Particularly, under the simple random sampling design P0(s) the strategy
(tHT,s, P (s)) reduces to simple random sample mean denoted by (ȳs, P0(s)),
where

ȳs =
1

n

∑
k∈s

yk. (8)

It is an unbiased estimator of the population mean and its variance is given by:

V0(ȳs) =
N − n
Nn

v∗(y), v∗(y) =
1

N − 1

∑
k∈U

(yk − ȳ)2.

Example 4.1. Let us assume that in the population of the sizeN = 11 the follow-
ing values (x, y) of the two dimensional variable is observed {(1, 2), (2, 6), (3, 10),
(4, 14), (5, 15), (6, 16), (7, 17), (8, 18), (9, 22), (10, 26), (11, 30)}. Let the sample
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of size n = 5 be selected from that population according to the conditional sampling
design. The variance of the simple sample mean is: V (ȳs) = V (ȳHTs, P0(s)) =
V (ȳHTs, P0(s|3, 3, 9)) = 7.353. The variances of the Horvitz-Thompson estimator
under the conditional design of simple sample are: V (ȳHTs, P0(s|3, 4, 8)) = 5.954,
V (ȳHTs, P0(s|3, 5, 7)) = 4.918, V (ȳHTs, P0(s|3, 6, 6)) = 3.694. The inclusion
probabilities of the conditional simple random sample are shown in the Example
2.1. Hence, the accuracy of estimation of the population mean on the basis of the
Horvitz-Thompson statistic under the considered variants of the conditional simple
random sample is better than the accuracy of the mean from the unconditional sim-
ple random sample.

5. Conclusions

The sampling design belonging to the class of the sampling designs dependent
on the sample parameters of an auxiliary variable was proposed. It is the condi-
tional version of the simple random sampling design explained by Definition 2.1
and denoted by P0(s|xu ≤ X(r) ≤ xw). Let Ms be the sample median of the aux-
iliary variable. So, when we assume that the distribution of an auxiliary variable is
symmetric then x̄ = M , where M is the population median of the auxiliary vari-
able. When we assume that the distribution of the sample median is approximation
of the distribution of the sample mean x̄s then the simple random sample design
P0(s|xu ≤ Ms ≤ xw) can be treated as approximation of the simple random sam-
pling design P0(s|xu ≤ x̄s ≤ xw), defined by Royall and Cumberland (1981). Our
consideration can be generalized to the case when the distribution of the auxiliary
variable is not necessary symmetric. It is possible to find such rank r of the order
statistic |E(X(r)) − x̄| = minim. So, when we assume that the distribution of the
sample mean x̄s is sufficiently approximated by the distribution of the order statistic
X(r) then the sampling design P0(s|xu ≤ x̄s ≤ xw) can be approximated by the
sampling design P0(s|xu ≤ X(r) ≤ xw).

We can expect that the sampling design can be useful in the case of censored
observations of the auxiliary variable as well as when the outliers exist. The preci-
sion of the Horvitz-Thompson estimator depends on the parameters u andw through
probabilities of the inclusion of the first and second order.

The derived properties of the sampling designs lead to the conclusion that with-
out an additional extensive analysis it is not possible to determine precisely how
the sampling strategies depend on the parameters of the conditional simple random
sampling design as well as on the joint distribution of the variable under study and
the auxiliary variable. This problem will be considered on the basis of computer
simulation analysis in another papers. Moreover, such analysis makes it possible
to compare the accuracy of the proposed estimation strategies with accuracy of the
strategies typically used in statistical research.
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APPENDIX

The theorems 4.1 formulated in the previous sections is proved here.
Let S(U(1, ..., i − 1), s1(i)) and S(U(i + 1, ..., N), s2(i)) be the sample spaces of
the samples s1(i) and s2(i) and s = s1(i)∪{i}∪s2(i), defined in Section 1. Hence,

S(r, i) = S(U(1, ..., i− 1), s1(i))× {i} × S(U(i+ 1, ..., N), s2(i))

and
S(r;u,w) = S(r, u)× S(r, u+ 1)× ...× S(r, i)× ...× S(r, w)

where S(r, i) was defined in Section 1.

Wywiał (2008) proposed the following conditional sampling design:

Definition 6.1. The conditional sampling design proportional to the values xi,
i = u, ..., w ≤ N − n+ r, u ≥ r, of the order statistic X(r) is as follows:

Pr(s|u,w) =
xi∑w

j=u xjg(r, j)

where i ∈ s ∈ S(r, i), r ≤ u ≤ i ≤ w ≤ N − n+ r.

Moreover, Wywiał (2008) proved the theorem:

Theorem 6.1. The inclusion probabilities of the first order for the conditional simple
random sampling design Pr(s|u,w) are as follows:
If k < u,

π
(r)
k (u,w) =

δ(r − 1)δ(w − 1)δ(u− 1)

zr(u,w)

w∑
i=u

(
i− 2

r − 2

)(
N − i
n− r

)
xi,

If u ≤ k ≤ w,

π
(r)
k (u,w) =

=
1

zr(u,w)

(
δ(n− r)δ(k − u)δ(k − 1)

k−1∑
i=u

(
i− 1

r − 1

)(
N − i− 1

n− r − 1

)
xi+

+

(
k − 1

r − 1

)(
N − k
n− r

)
xk + δ(r − 1)δ(w − k)

w∑
i=k+1

(
i− 2

r − 2

)(
N − i
n− r

)
xi

)
,

if k > w,

π
(r)
k (u,w) =

δ(n− r)δ(N − w)

zr(u,w)

w∑
i=u

(
i− 1

r − 1

)(
N − i− 1

n− r − 1

)
xi,



534 J. L. Wywiał: On conditional simple ...

When we replace xi by 1 for all i = 1, ..., N , then the above definition 6.1 and the
expression (3) lead to the Definition 2.1. The same operation and the above Theorem
6.1 lead straightforward to the derivation of the first order inclusion probabilities of
the conditional simple random sampling design P0(s|r, u, v), given by expressions
(2) and (3). The inclusion probabilities of the second order presented by Theorem
6.1. can be straightforward derived in the same way but on the basis of the appro-
priate theorem proven by Wywiał (2008).
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ABSTRACT

We consider statistical analysis of multiple answers in a questionna-
ire. We propose a new method of calculating simultaneous confidence
regions. In a communication presented at the European Academy of
Allergy and Clinical Immunology the authors (Borowicz et al. (2009))
reported the proportions of respondents which gave one of three po-
ssible exclusive answers in a questionnaire concerning the role of vo-
luntary health insurance. There were three possible answers. Apart
from percentages of answers confidence intervals of every single an-
swer have been reported. Unfortunately inference about the popula-
tion based on such intervals may lead to imprecise conclusions.

The inference about the respective population suffering from allergy
and asthma proportions requires the construction of two-dimensional
confidence region. We propose the use of a simultaneous confidence
intervals to inference about true population proportions.

Most of our attention is given to the case of three possible answers
but the results may be generalized to any questionnaire with more
than two excluding answers.
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1. Introduction

We consider statistical analysis of multiple answers in a questionnaire. We
propose a new method of calculating simultaneous confidence regions. In our
article we concentrate on the example of voluntary health insurance imple-
mentation among patients suffering from allergy and asthma. There is an
obligatory health insurance system in Poland. Unfortunately this system does
not work efficiently, mainly because of incorrect diversification of funds. For
these reasons together with the obligatory health insurance system we have
the optional voluntary health insurance system (VHI) based on voluntary pre-
mium. Quite a large number of people in Poland participate in VHI system
but the reasons for participating in this system are different. Epidemiology
of Allergic Disease survey in Poland (presented during European Academy
of Allergy and Clinical Immunology congress in 2009) included a question
about the reasons for participating in VHI with three possible answers: ad-
ditional, supplementary and substitutive (question number 566, and answers
566 1, 566 2 and 566 3 respectively). The results of the questionnaire given in
Borowicz et al. (2009) are presented in Table 1.

Table 1. Results of the questionnaire (Borowicz et al. (2009))
The role of voluntary health insurance (question 566) Frequency Percentage

additional-increasing health service standard (answer 566 1) 1653 36.5

supplementary-expanding range of health service (answer 566 2) 1668 36.9

substitutive-enabling abandonment of public health care (answer 566 3) 1205 26.6

The results were obtained on the basis of the questionnaire based on the
International Study of Asthma and Allergies in Childhood and the European
Community Respiratory Health Survey II ECRHS II. All investigated subjects
were randomly selected from PESEL (Personal Identification Number). Data
acquisition was done by the Computer Assisted Personal Interviewing with
GSM transmission to update the main database at the Medical University of
Warsaw (http://ecap.pl/eng www).
The question is: what are the population suffering from allergy and asthma

percentages π1, π2 and π3 of the Polish citizens participating in VHI system
from the appropriate reasons (additional, supplement and substitutive). The
standard approach is to construct individual confidence intervals. Unfortuna-
tely this approach may lead to wrong conclusions. Therefore, in what follows
we propose to construct a confidence region for percentages π1, π2 and π3
simultaneously.
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2. Statistical model

Let X denote the random variable describing answers. It may be assumed
that X is multinomially distributed:

Pπ{X = 1} = π1, Pπ{X = 2} = π2, Pπ{X = 3} = π3,

where π = (π1, π2, π3) and 0 < π1, π2, π3 < 1, π1 + π2 + π3 = 1. Values of X
symbolize answers to questions in the questionnaire (i.e. X = 1 means that
the answer is 566 1, X = 2 means that the answer is 566 2 and X = 3 - the
answer 566 3). Probabilities π1, π2 and π3 are (multiplied by 100%) population
suffering from allergy and asthma (population to be short) percentages of
obtaining answers to the questions.
Assume that in a sample of size n, value 1 was observed n1 times, value 2 -

n2 times and value 3 - n3 times. Of course n1+n2+n3 = n. It is known that the
maximum likelihood estimator of π is: π̂1 = n1/n, π̂2 = n2/n and π̂3 = n3/n.
The problem is in the interval estimation of π, the vector comprising the
probabilities of answers.
In standard approach, each of the probabilities is estimated separately. It

means, that three confidence intervals are obtained, usually on the basis of
normal approximation, i.e. a confidence interval of the form is built for πi (at
the confidence level 1− α)(

π̂i −
√
π̂i(1− π̂i)√
n

z, π̂i +

√
π̂i(1− π̂i)√
n

z

)
,

where z is the quantile of the order 1−α/2 of the standard normal distribution
(i.e. N(0, 1) distribution) and

π̂i =
ni
n
.

This approach gives the results (at 95% confidence level, i.e. 1−α = 0.95)
presented in Table 2.

Table 2. Individual confidence intervals for percentages
Frequency Estimated Percentage Left end Right end

ni π̂i

π1 (answer 566 1) 1653 36.5 35.12 37.93

π2 (answer 566 2) 1668 36.9 35.45 38.28

π3 (answer 566 3) 1205 26.6 25.34 27.94

Classical inference is such that the population percentage of the answers to
the first question is any number between 35.12% and 37.93%; to the second
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question - the number from the interval (35.45%, 38.28%) and to the third one
is from the interval (25.34%, 27.94%). But this kind of inference may lead to
wrong conclusions. Namely, it may be stated, that the percentage of popula-
tion answers to the question 566 1 is 36%, to the second question (566 2) is
also 36% and to the third question is 26% (i.e. (π1, π2, π3) = (0.36, 0.36, 0.26)).
Summing up those three values one obtains 98% of the population instead of
expected 100% (2% of population is ”missed”!). The other situation is also
possible, i.e. stated population percentages may give more than 100% (for
example: the percentage of answers to the first question is 37%, to the second
- 38% and to the third question 27%). It appears also that the real confidence
level of such conclusion is less than the nominal 95%. It means that the risk
of wrong conclusions is too high: it is greater than the nominal 5%.
We are interested in simultaneous interval estimation of probabilities π =

(π1, π2, π3).

3. Confidence region

There are a lot of papers devoted to the problem of simultaneous confidence
intervals for probabilities of multinomial distribution. An extensive review of
construction methods may be found in Biszof and Mejza (2004), Correa (2001),
May and Johnson (1997). The general rule of construction is based on the set
of inequalities

|π̂i − πi|√
πi(1− πi)

≤ c, i = 1, 2, 3,

where c is a constant such that the following equality holds

Pπ

{
|π̂i − πi|√
πi(1− πi)

≤ c, i = 1, 2, 3

}
= 1− α, ∀π.

Those confidence regions are easy to calculate. However, simultaneous confi-
dence intervals have two disadvantages. Firstly, the obtained confidence in-
tervals may go out of (0, 1) interval and secondly, in their construction the
condition π1 + π2 + π3 = 1 was not exploited.
For example, let the following sample be given: n1 = 1, n2 = 1, n3 = 48. In

Table 3 the limits of some of known simultaneous confidence intervals (1−α =
0.95) are given.

Table 3. Simultaneous confidence intervals
QH GM NB FS

π̂1=0.02 0.0025 0.1402 0.0026 0.1361 -0.1493 0.1893 -0.1303 0.1703

π̂2=0.02 0.0025 0.1402 0.0026 0.1361 -0.1493 0.1893 -0.1303 0.1703

π̂3=0.96 0.8300 0.9916 0.8340 0.9914 0.7907 1.1293 0.8097 1.1103
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QH denotes Quesenberry and Hurst (1964) construction:

ni(π̂i − πi)2 ≤ χ2(α, 2)πi(1− πi), i = 1, 2, 3.

GM denotes Goodman (1965) construction:

ni(π̂i − πi)2 ≤ χ2(α/3, 1)πi(1− πi), i = 1, 2, 3.

NB denotes naive binomial construction:

ni(π̂i − πi)2 ≤ χ2(α, 1)(1/4), i = 1, 2, 3.

FS denotes Fitzpatrick and Scott (1987) construction:

ni(π̂i − πi)2 ≤ γ, i = 1, 2, 3.

where γ = 1 for α = 0.1, γ = 1.13 for α = 0.05 and γ = 1.40 for α = 0.01.
Note that the left ends of some of the calculated confidence intervals are

negative or the sum of admissible probabilities is greater than one.
In what follows we propose another way of inference. We show how to built

a confidence region for all three percentages simultaneously, such that:
1. all percentages in the confidence region will sum up to 100%;
2. the confidence level of conclusion will be equal to the nominal one.
Let us start with the very well known chi-square statistic Bland (2000),

Greenwood and Nikulin (1996), Peacock and Peacock (2011) of the Pearson
goodness-of-fit test:

χ2 = n ·

((
n1
n − π1

)2
π1

+

(
n2
n − π2

)2
π2

+

(
n3
n − π3

)2
π3

)
.

To satisfy the first requirement the statistic above is transformed to

χ2(π1, π2) = n ·

((
n1
n − π1

)2
π1

+

(
n2
n − π2

)2
π2

+

(
n3
n − (1− π1 − π2)

)2
(1− π1 − π2)

)
.

This statistic may be used in the construction of the confidence region in
the following way. Let χ2(α; 2) denote the chi-square critical value with two
degrees of freedom and the confidence level 1−α. Then the confidence region
for π = (π1, π2, π3) is obtained as a solution with respect to π of the inequality
χ2(π1, π2) < χ2(α; 2):{

(π1, π2, π3) : χ2(π1, π2) < χ2(α; 2), π3 = 1− π1 − π2
}
.
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The theoretical background for constructing a confidence region for proba-
bilities π may be found in Harton and Zieliński (2005) and Zieliński (2008).
Explicit formulae for the confidence region may also be found in those papers.
Note that the above construction tacitly assumes that the population in qu-
estion is infinite. Of course, this is not exactly true because the population of
adults in Poland is finite, but it is sufficiently large to accept this assumption
as a reasonable approximation. Some remarks on the application of statistical
methods devoted to the analysis of infinite populations to finite ones may be
found in Zieliński (2011).

4. Results

We apply the constructed above confidence region to the problem of estima-
ting the role of voluntary health insurance (question 566). In the questionnaire
the n = 4526 answers were obtained. Among them there were n1 = 1653 an-
swers to the first question, n2 = 1668 answers to the second question and
n3 = 1205 answers to the third one. As a confidence level 95% were taken,
so the critical value of the chi-square distribution with two degrees of fre-
edom equals 5.99. After some calculations the confidence region for π1 and π2
was obtained and is presented in Figure 1 (all computations were done using
R-project with statistical computing (R Development Core Team (2008)); the
computer codes in R were written by ourselves - see Appendix).
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Figure 1. Confidence region for frequency of opinions of the role of health insurance

The letters π1, π2 and π3 denote the proportion of answers to the first, se-
cond and third question, respectively in the population of interest (the graph
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shows only π1 and π2 because π3 = 1 − π1 − π2). Recall that the first an-
swer is “additional-increasing health service standard”; the second answer -
“supplementary-expanding range of health service” and the third answer is
“substitutive - enabling abandonment of public health care”.
The confidence region for π1 and π2 is inside the contour presented in Figure

1. We have to remember that this two dimensional graphs in fact inform us
about three proportions (three possible answers to a given question). The dot
“in the center of the confidence region” corresponds to the proportions in the
sample: π̂1 = 0.365 (36.5%), π̂2 = 0.369 (36.9%)- these two are presented in
the graph - and π̂3 given by π̂3 = 1− π̂1 − π̂2 = 0.266 (26.6%).
The interpretation of this confidence region is similar to that of a confidence

interval but two-dimensional. Roughly speaking we trust that combinations
of values π1 and π2 lie inside the region. More precisely, we make statements
with probability of error 0.05 for all three proportions together. For example,
a combination of proportions π1 = 0.375 (37.5%) and π2 = 0.36 (36%) may be
true with high confidence because the point with coordinates 0.375 (37.5%)
and 0.36 (36%) lies inside the contour shown in Figure 1 (i.e. (π1, π2, π3) =
(0.36, 0.375, 0.265)). On the other hand the combination π1 = 0.355 and π2 =
0.36 we treat as extremely unlikely because the point with coordinates 0.355
(35.5%) and 0.36 (36%) lies outside the contour. This last statement is true in
spite of the fact that π1 = 0.355 (35.5%) considered separately is possible and
π2 = 0.36 (36%) considered separately is also possible, but both these values
together are unlikely (see Figure 2).
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Figure 2. Confidence region for frequency of opinions of the role of health insurance.
The rectangle shows two confidence intervals separately for π1 and π2.
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In Figure 2 the elliptical confidence region is drawn along with the rectan-
gular region of standard approximate confidence intervals. The analysis we
present gives more precise information than conventional onedimensional con-
fidence intervals. It might be argued that the interpretation of two-dimensional
confidence regions is more difficult than that of one dimensional confidence
intervals. However, easily accessible modern computer graphics allows us to
show the relations between two or three variables and to understand and
explain to the users the meaning of the confidence region.

5. Conclusions

The construction of the confidence region for three probabilities may be
easily generalized to the problem of estimating more than three percentages.
Of course, if there is a problem of estimating more than three proportions, the
graphical illustration is impossible. For k possible mutually excluding answers
it is sufficient to consider the statistic

χ2(π1, . . . , πk) = n ·
k∑
i=1

((
ni
n − πi

)2
πi

)

and as the confidence region at the confidence level 1− α{
(π1, . . . , πk) : χ2(π1, . . . , πk) < χ2(α; k − 1), π1 + · · ·+ πk = 1

}
.

The interpretation is to some extent more complicated than in the case of
individual confidence intervals, but it avoids the errors of inference.
In many allergological questionnaires there are numerous questions with

multiple answers. We show that simultaneous inference is more appropriate
and more informative than the one-dimensional ones. The latter can lose some
relevant information while multidimensional analysis is more accurate.
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Appendix. The computer code in R which was employed to draw Figure 1.

n1=1653 #input n1
n2=1668 #input n2
n3=1205 #input n2
n=n1+n2+n3 #the overall number of observations
alpha=0.05 #confidence level
pu1=as.vector(prop.test(n1,n,conf.level =1-alpha/2)$conf.int)
pu2=as.vector(prop.test(n2,n,conf.level =1-alpha/2)$conf.int)
prop.test(n3,n,conf.level =1-alpha/2)
p1=n1/n #estimated proportion π1
p2=n2/n #estimated proportion π2
p3=n3/n #estimated proportion π3
chi=qchisq(1-alpha,2)/n #chi-square critical value
# assistant functions
delta= function(pi1){
delta=(chi*(-1+pi1)*pi1+pi1ˆ2+p1ˆ2+2*pi1*(p1*(-1+p2)-p2))ˆ2+
4*(-1+pi1)*pi1*(pi1+chi*pi1-p1ˆ2)*p2ˆ2
delta
}
p2L=function(pi1){
p2L=-(chi*(-1+pi1)*pi1+pi1ˆ2+p1ˆ2-2*pi1*(p1+p2-p1*p2)+
sqrt(delta(pi1)))/ (2*(pi1+chi*pi1-p1ˆ2))
p2L
}
p2P=function(pi1){
p2P=-(chi*(-1+pi1)*pi1+pi1ˆ2+p1ˆ2-2*pi1*(p1+p2-p1*p2)-
sqrt(delta(pi1)))/(2*(pi1+chi*pi1-p1ˆ2))
p2P
}
P1L=(chi+2*p1-sqrt(chi)*sqrt(chi+4*p1-4*p1ˆ2))/(2*(1+chi))
P1P=(chi+2*p1+sqrt(chi)*sqrt(chi+4*p1-4*p1ˆ2))/(2*(1+chi))
c(P1L,P1P)
pi1=seq(P1L,P1P,length.out =250)
pi2L=p2L(pi1)
pi2P=p2P(pi1)
#Plot of confidence regions for frequencies (π1,π2)
ymax=max(pi2P)
ymin=min(pi2L)
plot(pi1,pi2L,xlim=c(P1L,P1P),ylim=c(round(ymin,2),round(ymax,2)),type=”l”,las=1,
ylab=expression(pi[2]),xlab=expression(pi[1]),lwd=2)
lines(pi1,pi2P,lwd=2)
points(p1,p2,pch=16)
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PROPOSITION OF STOCHASTIC POSTULATES  
FOR CHAIN INDICES  

Jacek Białek1 

ABSTRACT 

This article presents and discusses a proposition of stochastic postulates for chain 
indices. The presented postulates are based on the assumption that prices and 
quantities are stochastic processes and we consider also the case when price 
processes are martingales. We define general conditions which allow the chain 
indices to satisfy these postulates.  

Key words: chain indices, price index theory, stochastic processes, martingales. 

1. Introduction 

The idea of chain index construction, with weights changed every year, was 
probably first suggested by Alfred Marshall (1887). Marshall was concerned only 
with the practical problem of allowing for introduction of new commodities into 
an index of prices. He thought that the index would be greatly facilitated if 
weights were changed every year and the successive yearly indices linked or 
changed together by simple multiplication. Francois Divisia (1925) also 
postulated that the price index should depend not only on prices and quantities at 
considered moments 0=t  and Tt =  but also on the movement of prices and 
quantities throughout the interval ],0[ T . Divisia defined the index of prices by 
using a differential equation the solution of which was a curvilinear integral, and 
under assumptions that all functions )(tpi  and )(tqi , describing values of 
(respectively) prices and quantities of the considered N commodities  
( },...,2,1{ Ni∈ ), exist at any point in time. Divisia’s approach seems to be 
related to chain indices although it has a more general character (see Hulten 
(1973), Banerjee (1979)). Some authors treat Divisia's approach as some kind of 
justification for chain indices (see von der Lippe (2007). In fact, in some authors’ 
opinion, all index formulas used in practice should approximate the Divisia index 
and chain indices should naturally translate the Divisia index into the reality of 

                                                        
1 Department of Statistical Methods, University of Łódź, Poland. E-mail: jbialek@uni.lodz.pl. 
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price observations at discrete points in time (see Feenstra, Reinsdorf (2000)). It 
should be added that there are infinitely many discrete approximations to the 
Divisia continuous time index because the value of this index depends on the path 
connecting moments  0=t  and Tt =  (see Samuelson and Swamy (1974), Vogt 
(1978)). The ideas of chain indices and Divisia's approach have many supporters 
and opponents (see Forsyth and Fowler (1981)) but we must admit with absolute 
certainty that chain indices play important role in practice (see for example Cho 
(2006)) and are recommended for deflation by the revised System of National 
Accounts1 (see Von der Lippe  (2001)). In this paper we try to supplement the 
theoretical background for chain indices by adding some new, stochastic 
postulates for them. According to NSA (News Stochastic Approach2) we treat the 
prices (and also quantities) of commodities as random variables. We claim that on 
the one hand these postulates are quite natural requirement but on the other hand 
some of them rules out known chain index formulas.  

2. Chain indices and their properties 

In the monograph of Von der Lippe (2007, p. 133) we can read: “A chain 
index is essentially a specific type of aggregation (over intervals in time) and 
description of a time series rather than a comparison of two states taken in 
isolation; it provides a measure of the cumulated effect of successive steps (and 
the shape of the path) from 0 to 1, 1 to 2, …, 1−t  to t ”. Let us denote by ττ ,1−P  
a direct price index formula (like Paasche, Laspeyres, Fisher or others).  The 
chain index tP ,0  calculated for the considered time interval ],0[ t can be expressed 

as a product of “links” 1, +ττP   

            ∏
−

=
+=

1

0
1,,0

t

t PP
τ

ττ ,                                                     (1) 

where each price index 1, +ττP compares moment 1+τ  with the preceding 
moment τ .  

In the literature we can meet a few major arguments for using chain indices in 
practice (Von der Lippe (2007)). We can list these arguments as follows:  a) the 
“base” to which a time series of indices or of year-to-year growth rates refers is 
more relevant and realistic in the case of chain indices than in the case of 
traditional direct indices; b) some advantages are derived from a superior 
flexibility and adaptability as regards the structure of weights and the appearance 

                                                        
1 According to the recommendations of System of National Accounts (SNA 1993) the chained 

Fisher price index should be used for both price level measurement and deflation (see also Von 
der Lippe (2007), p. 365).  

2 For more details see Clements and Izan (1987) and Selvanathan and Prasada Rao (1994). 
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of new and disappearance of old goods1; c) on the one hand chain indices are 
found unfavourable in the case of high price fluctuations or when cycles exist but 
on the other hand these indices are useful (in terms of desirable numerical results, 
like low inflation) “if individual prices and quantities tend to increase or decrease 
monotonically over time2”; d) in many authors’ opinion the chain index version of 
various index formulas will yield less divergent results than the corresponding 
direct index version (see Von der Lippe (2007)); e) chain indices are 
recommended for deflation procedure by SNA. It is worth adding that many 
statements presenting advantages of chain indices over the direct indices focus on 
the links rather than the chain and they give arguments in favour of the chain 
index approach from the simple fact that the interval ],0[ t is subdivided into a 
number of sub-intervals and the chain index is derived from multiplications of 
links. Although in Europe chain indices are made mandatory for official statistics, 
not everyone shares the above-mentioned opinions and some criticism of the 
presented arguments can be found in Von der Lippe (2007). For instance, the 
Boskin Commission (1996) did not recommend chain indices but rather direct 
“superlative” indices (like Fisher formula), with weights from periods 0 and t .  

However, we should also discuss axiomatic properties of chain indices to have 
a full list of arguments for or against these indices. It has to be mentioned here 
that from the axiomatic point of view the chain indices have many drawbacks. It 
is not only an easy theoretical possibility (see Von der Lippe (2007)) that chain 
indices may fail the mean value test3, this has been shown empirically already at 
least once (Szulc (1983)). It means that a chain index may exceed the greatest 
individual price relative or can be smaller than the smallest price relative. The list 
of unsatisfied tests is longer – chain indices fail also identity, monotonicity, or 
transitivity. Many of arguments advanced to justify chain indices suffer from a 
lack of axiomatic tools to evaluate their properties. Note that only the link is an 
index in the sense of axiomatic approach. In fact, a chain is not and index and can 
violate many of tests despite all indices, playing the role of links, satisfy them all.  
Moreover, as it was above-mentioned in the introduction, chain indices depend on 
how an interval is subdivided. Hence, chain indices provide a summary 
description of a process rather than a comparison of two moments. In the next part 
of the paper we propose quite natural postulates for this process, where the last of 
them comes from finance. In our opinion the above-mentioned postulates can play 
an axiom role and we show its connection with the traditional mean value 
property. 

 

                                                        
1 The revised SNA 93 treats chain indices as „indices whose weighting structures are as up-to-date 

and relevant as possible”. The SNA also found that chain indices make it “possible to obtain 
a much better match between products in consecutive time periods (…), given that products are 
continually disappearing from markets to be replaced by new product, or new qualities”.  

2 SNA 93, para. 16.44. 
3 To read more about tests and axioms for price indices see Balk (1995). 
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3. New postulates and their interpretation 

3.1. Stochastic model 

Let us consider a group of N commodities. We observe them in discrete 
moments },....,2,1,0{ Tt = . Let us define a probability space ),,( PℑΩ .  Let  

},...,2,1,0:{ TtF t =ℑ=  be a filtration, i.e. each tℑ  is an −σ algebra of Ω  

with ℑ⊆ℑ⊆ℑ⊆ℑ ts0  for any ts < . Without loss of generality, we assume 

=ℑ0 {Ø,Ω }. The filtration F  describes how the information about the market 
is revealed to the observer. We consider the following state-variables: 
   )(tpi  - a price of the −i th commodity at time  t , 

   )(tqi  - a quantity of the −i th fund at time  t , 

 )(tvi  = )()( tqtp ii  - value of the −i th commodity at time  t , 

 ∑
=

=
N

i
i tvtv

1
)()( , 

   )(/)()(* tvtvtv ii = - the percentage of a relative value of the −i th commodity at 
time  t . 

Here and subsequently, the symbol YX = means that the random variables 
X and Y  are defined on ),,( PℑΩ  and it holds that 1)( == YXP We assume 

that each )(tpi  and )(tqi  is adapted to },...,2,1,0:{ TtF t =ℑ= , which means 

that each )(tpi  and )(tqi  is measurable with respect to tℑ .  

3.2. Stochastic postulates 

As an initial stage of the discussion on postulates for chain indices we present 
the idea behind its definition. According to our best knowledge, the axiomatic 
price index theory is based on the deterministic approach and no test for indices is 
constructed for the case when prices and quantities are random. It would be quite 
interesting to rebuild the axioms on the stochastic case. For example, from the 
axiomatic approach (Balk (1995)) we know that one of the basic requirements for 
price indices is the so-called proportionality, which means that if all prices 
change −λ fold (from moment 0 to t ) then the value of price index tP ,0  is also 
changed byλ . In other words, from  

   λ=
)0(
)(

i

i

p
tp

, for Ni ,....,2,1= ,                                    (2) 

we implicate λ=tP ,0 . 
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The natural question is whether we should rebuild this axiom in stochastic 
case and require the following implication (let us call it stochastic 
proportionality) 

        λ=)
)0(
)(

(
i

i

p
tp

E , Ni ,....,2,1=   ⇒  λ=)( ,0 tPE ,                 (3) 

where )(XE denotes the expected value of a random variable X . 
Let us notice that in the special case, when 1=λ , we obtain the stochastic 

version of identity (constant prices test)  

        1)
)0(
)(

( =
i

i

p
tp

E , Ni ,....,2,1=   ⇒  1)( ,0 =tPE .                         (4) 

On the basis of the implication (4) we construct the first postulate for chain 
indices: 

Postulate 1 

The chain index tP ,0  should satisfy  

      1)
)(

)1(
( =

+
τ

τ

i

i

p
p

E , Ni ,....,2,1=  , 1,...,1,0 −= tτ  ⇒  1)( ,0 =tPE .           (5) 

As we know, for any random variables X  and Y the condition 
)()( YEXE = does not have to mean that 1)/( =YXE . Thus, we propose 

another postulate, which on the one hand seems to be natural but on the other 
hand may be very restrictive: 

Postulate 2 

The chain index tP ,0  should satisfy  

 constppE ii ==))(( τ , Ni ,....,2,1=  , t,...,1,0=τ  ⇒  1)( ,0 =tPE .       (6) 
If we assume that prices of commodities are martingales (see Williams 

(1991)), which means that each ∞<)(tpE i  and additionally 

 )()/)(( sptpE isi =ℑ ,  Ni ,....,2,1= ,                                (7) 

we get the following conditional expected value of the partial index 

       1
)(
)(

)/)((
)(

1)/
)(
)(

( ==ℑ=ℑ
sp
sp

tpE
spsp

tp
E

i

i
si

i
s

i

i .                       (8) 
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For 0=s  the equality (8) corresponds to the condition from the left side of 
the implication (4). Thus, we could expect that if the equality (7) holds for each 
price process, then the chain index should also behave like martingale and thus 
have the expected value constant in time. In other words, we form the following 
postulate for chain indices: 

Postulate 3 

If each process },...,2,1,0:)({ Tttpi =  is a −F martingale1 for },,...,2,1{ Ni∈  
then },...,2,1,0:{ ,0 TtP t =  is also a −F martingale. 

The postulate 3, although regarded as very important, seems to be less 
restrictive than postulates 1 and 2. In our opinion it has even axiomatic character 
because martingales have the expected value constant in time. Thus, the postulate 
3 can play a role of a minimum requirement for chain indices. It is worth adding 
that the concept of martingale in probability theory is quite old and it was 
introduced by Paul Lévy in 1934, though he did not name it: the term martingale 
was introduced later by Ville (1939), who also extended the definition to 
continuous martingales. However, martingales play important role in modern 
probability, statistics and finance (Mansuy (2009)).  In finance, in the case of 
measures of price dynamics on the given time interval, it is a very desirable 
property (see for example Gajek, Kałuszka (2000, 2001), Białek (2008)). 

4. Some general remarks on the proposed postulates 

In this section we discuss the general conditions for satisfying the presented 
postulates. In particular, we show some connections between traditional tests 
(postulates) for direct price indices and our postulates. We start our consideration 
from the theorem connected with the most fundamental postulate 3. 

Theorem 1   

If the direct price index formula (link) satisfies the mean value test1 then the 
chain index tP ,0 , which is based on this link, satisfies the postulate 3. 

                                                        
1 In probability theory, a martingale is a model of a fair game where knowledge of past events never 

helps predict the mean of the future winnings. In particular, a martingale is a sequence of random 
variables (i.e., a stochastic process) for which, at a particular time in the realized sequence, 
the expectation of the next value in the sequence is equal to the present observed value even given 
knowledge of all prior observed values at a current time. The assumption that prices are 
martingales is quite strong because it rules out any trends in relative prices. However, in this paper 
we discuss chain indices not only from the angle of official statistics but also from the angle of 
financial markets, where it is commonly considered assumption (see Samuelson (1965), Longstaff 
& Schwartz (2001), Mansuy (2009)). Moreover, we can use chain indices to construct measures of 
pension funds’ efficiency (Białek (2012, 2013)), where the martingale pricing is one of the 
theoretical approaches (see for instance Gajek, Kałuszka (2001)). 

http://en.wikipedia.org/wiki/Paul_L%C3%A9vy_%28mathematician%29
http://en.wikipedia.org/wiki/Martingale_%28probability_theory%29#CITEREFVille1939
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Realization_(probability)
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Realization_(probability)
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Proof 

We need to show that under the assumption that each process 
},...,2,1,0:)({ Tttpi =  is a −F martingale we would get for any moment t  

           1,01,0 )/( −− =ℑ ttt PPE .                                            (9) 

Let us notice that from the fact that each )(tpi  and )(tqi  is measurable with 

respect to tℑ  we conclude that also each stochastic process tP ,0  is measurable 

with respect to tℑ . Thus we have 

      )/()/()/( 1,1

2

0
1,1

1

0
1,1,0 −−

−

=
+−

−

=
+− ℑ⋅=ℑ=ℑ ∏∏ ttt

t

t

t

tt PEPPEPE
τ

ττ
τ

ττ .             (10) 

From the assumption about the mean value test we have that 

1)/
)1(

)(
max()/()/

)1(
)(

min(1 1},...,2,1{1,11},...,2,1{
=ℑ

−
≤ℑ≤ℑ

−
= −∈−−−∈ t

i

i

Nitttt
i

i

Ni tp
tp

EPE
tp

tp
E ,   

(11) 

and hence 
           1)/( 1,1 =ℑ −− tttPE .                                             (12) 

From (10) and (12) we confirm (9), namely 

      ∏∏
−

=
−+−

−

=
+− ==ℑ=ℑ

2

0
1,01,1

1

0
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Remark 1 
As it was mentioned above, the postulate 3 should be treated as a fundamental 

requirement. Let us notice that, by contraposition, if the chain index does not 
satisfy this postulate then the direct price index (link) does not fulfil the mean 
value property. It is worth adding that according to Pfouts (1966) the mean value 
test is one of the most essential properties of the index function. This fact is in 
conformity with our intuitive notion of an index to be a measure of 
a “representative” aggregated change. Moreover, the mean value test is included 
in systems of minimum requirements for price indices (see Eichhorn and Voeller, 
1976). The immediate conclusion from the theorem 1 is that all used in practice 
price indices (like Laspeyres, Paasche, Fisher, Törnqvist, Walsh and other 
formulas – see Appendix) fulfil the postulate 1. 
                                                                                                                                           
1 The mean value test denotes that a value of the price index formula lies between minimum and 

maximum price relative. For instance, the Laspeyres price index can be expressed as follows: 
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and thus, being a convex combination of partial indices, this index 
fulfils the mean value property. 
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Remark 2 

In Gajek and Kałuszka (2001) authors propose the stochastic definition of the 
average rate of return of a group of N  open pension funds. Their measure is as 

follows: ∏ ∑
−

= =

−++=
1

0 1

* ,1))1,()(1(),0(
T N

i
ii rvTR

τ

τττ  where )1,( +ττir denotes the rate 

of return of −i th fund.  
The major result of these authors is the theorem which allows one to state that 

),0( TR  is martingale provided that unit prices are also martingales. It is easy to 
show (see Białek (2012)) that the measure of Gajek and Kałuszka can be 
expressed as a Laspeyres chain price index1 and thus the links satisfy the mean 
value test. In other words, the thesis of the theorem by Gajek and Kałuszka is 
simply a consequence of the theorem 1. 

Theorem 2 

If any links ssP ,1−  and ttP ,1−  are independent (for ts ≠ ) and each link 

satisfies the mean value test then the chain index tP ,0  fulfils the postulate 1.  

Remark 3 
The proof of the theorem 2 is quite obvious and it is omitted. The thesis of 

this theorem is a simple consequence of the known fact that independent links 
allow one to write 
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Remark 4 

Let us notice that for any random variables X and Y we have (provided that 
the below expected values and standard deviations exist and 0)0( ==XP ) 
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where )/,( XYXρ  denotes the correlation coefficient between random variables 
X and XY / and )(XD denote the standard deviation of X . From (15) we get 

(if 0)( ≠XE ) 

                                                        
1 To read more about connections between measures of funds’ efficiency and chain indices see 

Białek (2013). 
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where ),cov(
X
YX denotes a covariance between random variables X and XY / . 

Thus, in the case of uncorrelated1 X and XY / , we obtain the equality 

              
)(
)()(

XE
YE

X
YE = .                                              (17) 

The immediate conclusion is the following: if price processes fulfil2 
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In other words we have the equivalence for each Ni ,....,2,1=  
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               (20)  

and it leads to the final conclusion that if the condition (18) holds then the 
postulates 1 and 2 are equivalent. Moreover, we can formulate the following 
theorem: 

Theorem 3 

If the direct price index formula (link) satisfies the mean value test and the 
circular test3 and, moreover, )0(ip  and )0(/)( ii ptp  are uncorrelated for each 

},...,2,1{ Ni∈ , then the chain index tP ,0 , which is based on this link, satisfies the 
postulate 2. 

Proof 
Let us assume, according to the assumptions from the postulate 2, that  

constppE ii ==))(( τ , Ni ,....,2,1=  , t,...,1,0=τ .                     (21) 
                                                        
1 For instance, such a theoretical situation was considered in Frishman (1971). 
2 It can be quite natural assumption because it requires that prices and relative price changes are 

uncorrelated. 
3 The circular test denotes that for any moments vts <<  it holds that vttsvs PPP ,,, = . The 

circularity is one of the most restrictive tests in price index theory but often considered in 
theoretical papers and monographs (see Balk (1995), von der Lippe (2007)).  
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The satisfied circular test leads to the following equality 

          ∏
−

=
−+ =⋅⋅⋅==

1

0
,0,12,11,01,,0 )()...()()(

t

tttt PEPPPEPEPE
τ

ττ .            (22) 

 The satisfied the mean value test leads to the following relation 
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for some },...,2,1{, Nmn ∈ . 
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and analogically    
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From (23), (24) and (25) we obtain 1)( ,0 =tPE , which confirms that the 
postulate 2 is fulfilled. 

5. Conclusions 

In the paper three stochastic postulates for chain indices are proposed, as an 
alternative for the classic axiomatic price index theory. The novelty of the 
presented approach is due to treating  the prices and quantities as stochastic 
processes. The presented postulates have different nature – the postulates 1 and 2 
are quite restrictive and we can treat them as some desirable properties but the 
postulate 3, connected with the mean value property, has axiomatic character. 
Under some additional condition the postulates 1 and 2 are equivalent (see 
Remark 4). If these postulates are not equivalent we can still show conditions 
which allow one to fulfil each of the postulates. The most restrictive assumption 
is in the theorem 3 because it requires the circularity. However, there are price 
index formulas satisfying the circular test, like the Walsh price index (see Von 
der Lippe (2007)). This discussion serves also as a kind of introduction to the 
author’s future  research agenda on chain index theory. In our opinion the 
theorems 1, 2 and 3 are a good starting point because all consideration begins 
from the basic  proportionality and identity.  
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Appendix 1. 

For example, according to the thesis of the theorem 1, the following direct 
price indices (links) guarantee that postulate 1 is satisfied: 

- the Laspeyres price index 
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- the logarithmic Laspeyres price index 
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- the Paasche price index 
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- the logarithmic Paasche price index 
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- the Törnqvist price index 
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- the Fisher price index 
PaLaF PPP 1,1,1, +++ = ττττττ ;                                                                

- the Walsh price index 
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LAG LENGTH SPECIFICATION IN ENGLE-GRANGER 
COINTEGRATION TEST: A MODIFIED KOYCK MEAN 
LAG APPROACH BASED ON PARTIAL CORRELATION 

Oluokun Kasali Agunloye1, Dahud Kehinde Shangodoyin2, 
Raghunath Arnab2 

ABSTRACT 

The Engle-Granger cointegration test is highly sensitive to the choice of lag 
length and the poor performance of conventional lag selection criteria such as 
standard information criteria in selecting appropriate optimal lag length for the 
implementation of the Engle-Granger cointegration test is well-established in the 
statistical literature. Testing for cointegration within the framework of the 
residual-based Engle-Granger cointegration methodology is the same as testing 
for the stationarity of the residual series via  the augmented Dickey-Fuller test 
which is well known to be sensitive to the choice of lag length. Given an array of 
candidate optimal lag lengths that may be suggested by different standard 
information criteria, the applied researchers are faced with the problem of 
deciding the best optimal lag among the candidate optimal lag lengths suggested 
by different standard information criteria, which are often either underestimated 
or overestimated. In an attempt to address this well-known major pitfall of 
standard information criteria, this paper introduces a new lag selection criterion 
called a modified Koyck mean lag approach based on partial correlation criterion 
for the selection of optimal lag length for the residual-based Engle-Granger 
cointegration test. Based on empirical findings, it was observed that in some 
instances over-specification of lag length can bias the Engle-Granger 
cointegration test towards the rejection of a true cointegration relationship and 
non-rejection of a spurious cointegration relationship. Using real-life data, we 
present an empirical illustration which demonstrates that our proposed criterion 
outperformed the standard information criteria in selecting appropriate optimal 
truncation lag for the implementation of the Engle-Granger cointegration test 
using both augmented Dickey-Fuller and generalized least squares Dickey-Fuller 
tests. 
Key words: modified Koyck mean lag, partial correlation criterion, Engle-
Granger cointegration test, optimal truncation lag, information criteria, 
augmented Dickey-Fuller test, generalized least square Dickey-Fuller test. 
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1. Introduction 

The residual-based Engle-Granger cointegration methodology is arguably the 
most widely used bivariate cointegration test in empirical analysis. One of the 
major specification decisions that poses a big challenge to analysts and applied 
researchers is selection of appropriate lag length for the implementation of unit 
root test for the estimated residuals from cointegrating regressions. A number of 
previous studies have demonstrated a strong influence of lag selection on the 
outcome of the Engle-Granger cointegration test. Gutierrez et al. (2009) show that  
misspecification of appropriate lag length may greatly affect the cointegration 
results such that under-specification of lag length could invalidate the 
cointegration test and over-specification of lag length could result in a loss of 
power. Hall (1991) pointed out that the choice of lag structure in the error 
correction model (ECM) is a vital specification decision because too few lags may 
lead to serial correlation problem, whereas too many lags specified in the ECM 
will consume more degree of freedoms leading to small sample problem. Li et al. 
(2009) also corroborated Hall (1991) position by arguing that appropriate 
specification of lag length is one of the most important specification decisions 
concerning implementation of the error correction process. Johansen (1991) 
proposed the use of appropriate information criterion or a sequence of likelihood 
ratio tests for the determination of lag length.  

This paper is primarily concerned with appropriate specification of lag length 
for the cointegration test as well as the error correction process (ECP) within the 
context of the Engle-Granger cointegration methodology. Standard information 
criteria such as Akaike Information Criterion (AIC), Akaike Final Prediction 
Error (FPE), the Bayesian Information Criterion (BIC) and Hannan-Quinn 
Information Criterion (HQIC) that are commonly employed for the choice of 
optimal lag structure have been shown to exhibit a strong tendency to either over-
specify or under-specify the lag length. Nishi (1988) and Lutkepohl (1993) 
showed that both Akaike Information Criterion (AIC) and Final Prediction Error 
(FPE) are not consistent estimators of the truncation lag order but the Bayesian 
Information Criterion (BIC) is strongly consistent. Bewley and Yang (1998) 
evaluated the performance of standard information criteria such as AIC and BIC 
in selecting appropriate lag structure for the cointegration test and showed that 
these conventional lag selection criteria appear to have problem of 
underestimation and overestimation of the lag structure. Clarke and Mirza (2006) 
argue that both AIC and FPE cannot be recommended as lag selection procedures 
since both criteria are well known to have a positive probability of overestimating 
the true lag order.  

In general, the major drawback of the commonly used standard information 
criteria lies with problem of underestimation and overestimation of lag length 
which are regarded as undesirable in cointegration analysis as demonstrated in 
Cheung and Lai (1993) and Gonzalo (1994). Given this demonstrated weaknesses 
of the standard information criteria, we therefore propose an alternative lag 
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selection criterion called a modified Koyck mean lag approach based on partial 
correlation criterion (MK-PCC) for the purpose of lag specification in the 
residual-based Engle-Granger cointegration test proposed by Engle and Granger 
(1987). 

The remaining part of this paper is organized as follows. Section 2 discusses 
specification of augmented Dickey-Fuller (ADF) and generalized least squares 
Dickey-Fuller (DF-GLS) tests for the implementation of the residual-based Engle-
Granger cointegration test. Section 3 introduces lag specification procedure based 
on the modified Koyck mean lag approach using partial correlation criterion. 
Section 4 presents preliminary data description and unit root tests. Section 5 
discusses the Engle-Granger cointegration tests, residual analysis and estimation 
of error correction models. Finally, section 6 concludes. 

2.  Specification of Engle-Granger cointegration test 

Consider two non-stationary time series variables that are integrated of the 
same order, say order 1, ( )1I  variables. Following Engle and Granger (1987), 

two variables, say x  and y are said to be cointegrated of order ( )1,1CI  if there 
exists a long-run equilibrium relationship between the two integrated variables 
such that the residuals of the estimated regression are stationary or integrated of 
order zero , ( )0I . 

The long-run equilibrium relationship is captured by the following regression 
models:  

0 1t t ty x wα α= + +                                                     (1) 

0 1t t tx y uβ β= + +                                                      (2)   

where x  and y  are  ( )1I  variables, 0α , 1α , 0β and 1β  are cointegrating 

parameters, tw and tu  are OLS residuals which capture divergences between the 
variables from an assumed equilibrium long-run relationship.  

The use of the Engle-Granger (EG) cointegration methodology requires pair-
wise comparison of two cointegrating regressions because the EG method 
produces just only one cointegrating vector. We distinguish between the pair of 
cointegration regressions (1) and (2) above because unlike Johansen 
cointegration methodology, the Engle-Granger cointegration procedure is 
sensitive to the choice of dependent variable (see Dickey et al., 1991). 
Testing for the presence of cointegration in the context of the bivariate 
Engle-Granger cointegration test is essentially equivalent to testing for the 
presence of a unit root in the estimated residual series { }ˆtu  and { }ˆ tw for the 
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cointegrating regressions (1) and (2) where the Engle-Granger (EG) tests 
(which are akin to the standard Dickey-Fuller tests)  used for testing the 
stationarity of the residuals are specified as follows: 

1 1ˆ ˆt t tu uρ ε−∆ = +                                                        (3) 

2 1ˆ ˆt t tw wρ −∆ = +∈                                                        (4) 

The first difference of the residuals is regressed on the lagged level of the 
residuals without a constant, where 1ρ  and 2ρ  are parameters of interest 

representing the slope of each line, ˆtu∆ and ˆ tw∆  are the  first difference of the 

estimated residual series { }ˆtu and { }ˆ tw  respectively, 1ˆtu − and 1ˆ tw −   are  the 

estimated lagged residuals, tε  and t∈  are error terms which are expected to be 
serially uncorrelated. Equations (3) and (4) do not include intercept terms because 
the estimated residual series{ }ˆtu and { }ˆ tw   are obtained from regression 
equations (1) and (2) respectively. The EG test requires that error terms be serially 
uncorrelated. Due to the problem of serial correlation in standard EG test, it is a 
common practice to use the augmented Engle-Granger (AEG) test which 
accommodates more lags of the first difference of the residuals to eliminate the 
serial correlation problem that is associated with standard EG test. The 
corresponding AEG tests for (3) and (4)  are specified as follows: 

1 1
0

ˆ ˆ ˆ
p

t t i t i t
i

u u uρ ξ ε− −
=

∆ = + ∆ +∑                                                (5) 

2 1
0

ˆ ˆ ˆ
q

t t j t j t
j

w w wρ − −
=

∆ = + Ω ∆ +∈∑                                             (6) 

where 1ρ  and 2ρ  are parameters, iξ  and jΩ  are coefficients of lagged 

difference of the estimated residuals, ˆtu∆  and ˆ tw∆  are first difference of the 

estimated residual series { }ˆtu and{ }ˆ tw  respectively, ˆt iu −  and ˆ t jw −  are lags of  

the estimated residuals, tε and t∈  are error terms, p  and q  are optimal 
truncation lag parameters to be determined to whiten the error terms. AEG test 
can be utilized to perform unit root test on the estimated coefficients 1ρ  and 2ρ  
individually to establish the existence or non-existence of long-run equilibrium 
relationship. Any unit root test involving ADF is sensitive to the choice of lag 
length which is the number of lagged differences with which the regression is 
augmented. Since AEG test is a modification of ADF test, it also inherits the lag 
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selection problem that is commonly associated with ADF test due to its sensitivity 
to the choice of lag length. The main criticism of the Augmented Dickey-Fuller 
(ADF) test is that the power of the test is very low if the time series under test  is 
nearly non-stationary which implies that the time series is stationary but with a 
root close to 1 (see Brooks 2002). The focus of our present study is to employ the 
modified Koyck mean lag approach based on partial correlation criterion (MK-
PCC) for lag selection required for the implementation of AEG tests since enough 
lags need to be chosen for the error terms tε  and t∈  to be serially uncorrelated. In 
applying the MK-PCC, we consider a distributed lag re-parameterization of the 
augmented Engle-Granger (AEG) tests as follows:     

CASE 1: When y  is the dependent variable for the cointegrating regression, we 
have the following representation: 

( )
1 1

0

ˆ ˆ
p

t t i t i
i

y u u uρ ξ∗
− −

=

= ∆ − = ∆∑                                                   (7) 

CASE 2: When x is the dependent variable for the cointegrating regression, we 
have the following representation: 

( )
2 1

0

ˆ ˆ ˆ
q

t t j t j
j

x w w wρ∗
− −

=

= ∆ − = Ω ∆∑                                   (8) 

Using generalized least squares Dickey-Fuller (DF-GLS) test as an alternative 
unit root test to ADF, we repeat the same distributed lag re-parameterization for 
the DF-GLS test as follows: 

CASE 1: When y  is the dependent variable for the cointegrating regression, we 
have the following representation: 

( )
1

0

ˆ ˆ
p

d d d
t t i t i

i
y u u uρ ξ∗

−
=

= ∆ − = ∆∑                                        (9) 

CASE 2: When x is the dependent variable for the cointegrating regression, we 
have the following representation: 

( )
2 1

0

ˆ ˆ ˆ
q

d d d
t t j t j

j
x w w wρ∗

− −
=

= ∆ − = Ω ∆∑                                     (10) 

Interpretation of notations is the same as earlier given above except that the 
residual series are subjected to generalized least squares detrending. 
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3. Modified Koyck mean lag approach based on partial correlation 
criterion for lag selection (MK-PCC) 

Following Koyck (1954) mean lag model, we can assume the Koyck 
postulations as follows 

( )
( )

( )
,  1,..., 4

1
i

i
i

R
L i

R
= =

−
                                            (11) 

where ( )iL  is the mean lag for a particular unit root test, ( )iR  is the partial 
correlation coefficient computed for each of the model in equation (7) through 
equation (10) between ( )*y  and  lagged differences 1ty −∆ , 2ty −∆ ,……, 12ty −∆ (in 

case of monthly dataset) and it measures the rate at which ( )*y depends on these 
lagged differences. The main idea of MK-PCC is based on fitting simple linear 
regression model to the left-hand side of equation (7) through equation (10) to 
generate the parameters needed and to compute the partial correlation between the 
parameter on the left-hand side of equation (7) through equation (10) and different 
choices of lagged differences from the set of lagged differences 1ty −∆ , 2ty −∆
,……, 12ty −∆ on the right-hand side of equation (7) through equation (10) while 
controlling for the effects of other remaining lagged differences. For the first 
computation we compute partial correlation between ( )*y  and 1ty −∆  while 

controlling for 2ty −∆ ,……, 12ty −∆ . For the second computation we compute 

partial correlation between ( )*y  and the first two lagged differences (i.e. 1ty −∆  

2ty −∆ ) while controlling for  3ty −∆ ,……, 12ty −∆  and so on like that. We also 
repeat the same procedure for other specification of unit root tests as shown 
above. The partial correlation coefficient denoted by ( )iR is computed and 
adjusted for maximum lag until it gives a values less than 0.3 which is equivalent 
to lag 0 since for ( ) 0.3iR < , the mean lag will be assumed to be zero since the 

mean lag specified by ( )
( )

( )1
i

i
i

R
L

R
=

−
  for which ( ) 0.3iR <  is a fraction not up to 

0.5. It should be noted that to have a reasonable mean lag length we expect the 
absolute value of ( )iR  to be in the interval [ )0.5,0.999 (see Agunloye et al., 
2013).The same procedure is repeated for DF-GLS test by fitting simple linear 
regression model to the left-hand side of equations (9) and (10) to generate the 
parameters needed and to compute the partial correlation between the parameter 
on the left-hand side of equation (9) through equation (10) as earlier explained 
above for ADF test. 
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As indicated earlier in the introductory part of this paper, the residual-based 
Engle-Granger cointegration test is very sensitive to the choice of truncation lag 
parameters p and q . The problem of bias in cointegration is due to 
misspecification of lag length. Since the Engle-Granger cointegration test is 
equivalent to testing for the presence of unit root in the estimated residuals from 
the cointegrating regression it also shares the problem of low power that is 
commonly associated with unit root test when the estimated residual is closed to 
being a unit root process but not exactly a unit root process. For the purpose of the 
present study, we consider a situation when the estimated parameters of interest 
(i.e. 1ρ and 2ρ ) assume any of the following values:  0.9, 0.95 and 0.999 in 
equations (7), (8), (9) and (10) respectively. Our choice of these parameter values 
is informed due to the fact that the power of test for Augmented Dickey-Fuller 
(ADF)  is very low if the process is nearly non-stationary, which means the 
process is stationary but with a root close to the non-stationary boundary 
(Brooks 2002). 

4. Data description and unit root test 

For empirical analysis, we use two sets of data. One real dataset and one 
simulated dataset. The real dataset are US 3-Month Treasury Bills (USMTB) for 
short-term money market interest rate series and US 10-Month Government 
Security (USMGS) for long-term interest rate series. The data cover the period 
from January 1962 through February 2014 and are obtained from IMF Monthly 
Bulletin. A total of 626 observations are collected for USMGS and USMTB series 
respectively. 

This paper adopts the residual-based Engle-Granger (EG) cointegration test 
for empirical analysis. The implementation of EG methodology is carried out in 
two steps. The first step tests for the order of integration of time series variables. 
The order of integration of a variable is the number of times a variable is required 
to be differenced to attain stationarity. A condition applicable to EG test is that 
the variables entering the cointegrating equation should be integrated of the same 
order which is assumed to be order 1 in the context of EG test. To test for degree 
of integration of the USMGS and USMTB series two well-known tests are used in 
this paper. The first test is the Augmented Dickey-Fuller (ADF) (1984) test and 
the second test is the generalized least squares Dickey-Fuller (DF-GLS) test 
introduced by Elliot et al. (1996). The optimal lag length were determined using 
five lag length selection criteria comprising four conventional criteria and newly 
introduced criterion called MK-PCC. The results for the unit root tests are 
presented in tables 1 through table 4 below: 
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Table 1. Summary of results for ADF Unit root test for both series at level 
 AIC FPE BIC HQIC MK-PCC 
USMGS -1.543344(3) -1.543344(3) -1.435517(2) -1.435517 (3) -1.341465 (0) 
USMTB -2.577255(3) -2.577255 (3) -2.577255 (2) -2.577255 (3) -2.299976(0) 
The null hypothesis of unit root is rejected if the test statistic is less than the 5% 
critical value 

Table 2. Summary of results for DF-GLS unit root test for both series at level 

 AIC FPE BIC HQIC MK-PCC 
USMGS -0.780907(3) -0.780907 (3)  -0.684594 (2) -0.684594 (3) -0.609149(0) 
USMTB -1.649786(3) -1.649786 (3) -1.649786 (2) -1.649786 (3) -1.406009 (0) 
The null hypothesis of unit root is rejected if the test statistic is less than the 5% 
critical value 

Tables 1 and 2 present the results of unit root tests for the level of the two 
series under investigation using ADF and DF-GLS tests. The ADF test-statistic 
under different optimal lag lengths is greater than the critical value at 5% level of 
significance which is -3.417060. Similarly, the DF-GLS test-statistic under 
different optimal lag lengths is also greater than the critical value at 5% level of 
significance which is -2.890000. Consequently, we fail to reject the null 
hypotheses of unit root for the level of the two series. This implies that each of the 
series is non-stationary at level. In contrast to standard information criteria which 
had to fit higher lags such as lag 2 or lag 3 in order to establish non-stationarity of 
both series at levels, MK-PCC lag selection methodology established non-
stationarity of both series without fitting any lag. 

Table 3.  Summary of results for ADF unit root test for both series after first   
   difference 

 AIC FPE BIC HQIC MK-PCC 

USMGS∇  -12.88040(3) -16.88413 (3) -12.17434 (2) -17.17434 (3) -16.88413 (0) 

USMTB∇  -17.93451(3) -17.61138 (3) -17.93451 (2) -17.93451 (3) -17.61138 (0) 
The null hypothesis of unit root is rejected if the test statistic is less than the 5% 
critical value 

Table 4.  Summary of results for DF-GLS unit root test for both series after first 
   difference 

 AIC FPE BIC HQIC MK-PCC 

USMGS∇  -5.409803(3) -5.409803 (3) -6.478566 (2) -5.409803 (3) -10.67095 (0) 

USMTB∇  -17.95375(3) -17.63360(3) -17.95375(2) -17.95375 (3) -17.63360 (0) 
The null hypothesis of unit root is rejected if the test statistic is less than the 5% 
critical value 
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Tables 3 and 4 present the results of unit root tests for the first difference of 
the two series under investigation using ADF and DF-GLS tests. The ADF test-
statistic under different optimal lag lengths is less than the critical value at 5% 
level of significance which is -3.417060. Similarly, the DF-GLS test-statistic 
under different optimal lag lengths is also less than the critical value at 5% level 
of significance which is -2.890000. Consequently, we reject the null hypotheses 
of unit root for the two series at first difference. This implies that each series is 
integrated of order 1 since they become stationary after first difference. The 
empirical results shown in tables 3 and 4 above show that while stationarity of  
the first difference of both series was achieved at lag zero under MK-PCC lag 
selection methodology, the standard information criteria had to fit higher lags  
such as lag 2 or lag 3 in order to achieve the same results.  

5. Engle-Granger cointegration test  

We fit autoregressive models of order 1 to 12 to the residuals of the 
cointegrating regressions and the various optimal lag lengths suggested by 
different lag selection criteria are presented in brackets in table 5 below. The ADF 
and DF-GLS unit root tests are performed on the residuals from OLS estimation 
for USMGS and USMTB pairs. All regressions reported are cointegrated at the 5 
per cent level. This suggests that the estimated equations reflect a stable long‐run 
relationships. 

Table 5. Engle-Granger cointegration test using ADF test 
VARIABLE AIC FPE BIC HQIC MK-PCC 

USMGS-USMTB  
RESIDUAL -3.6199(5) -3.6199(5) -3.7089(4) -3.6199(5) -3.4822(0) 

USMTB-USMGS   
RESIDUAL -4.7785(10) -4.5175(10) -4.6322(4) -4.2392(4) -3.6883(0) 

The null hypothesis of “no cointegration” is rejected if the test statistic exceeds 
the 5% critical value. 

Table 5 presents the results of the Engle-Granger cointegration test using 
ADF unit root test for the stationarity of residuals from each regression equation. 
For cointegrating regression with USMGS as dependent variable, it is observed 
that the test statistic for the ADF version of the Augmented Engle-Granger (AEG) 
test at different optimal lag lengths suggested by conventional lag selection 
criteria and MK-PCC criterion exceeds the critical value at 5% level of 
significance. Consequently, we reject the null hypotheses of “no cointegration” at 
these various optimal lags. This implies that USMGS and USMTB series are 
cointegrated at these optimal lags. However, for cointegrating regression with 
USMGS as dependent variable, the test statistic for the ADF version of the 
Augmented Engle-Granger (AEG) test at different optimal lag lengths suggested 
conventional lag selection criteria is less than the critical value at 5% level of 
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significance except for MK-PCC for which the test statistic exceeds the critical 
value. Hence, we fail  to reject the null hypothesis of “no cointegration” under 
optimal lags suggested  by AIC, FPE, BIC and HQIC respectively indicating that  
USMTB and USMGS are not cointegrated at lag 10 and lag 4 that were suggested 
by standard information criteria but are cointegrated at lag 0 selected by MK-
PCC. 

Table 6. Engle-Granger cointegration test using DF-GLS test 

VARIABLE AIC FPE BIC HQIC MK-PCC 
USMGS-USMTB  
RESIDUAL -3.6722(5) -3.6722(5) -4.0692(4) -3.6722(5) -3.4563(0) 

USMTB-USMGS   
RESIDUAL -4.6524(10) -4.6967(10) -4.5326(4) -4.5326(4) -3.6005(0) 

The null hypothesis of “no cointegration” is rejected if the test statistic exceeds 
the 5% critical value. 

Table 6 presents the results of the Engle-Granger cointegration test using DF-
GLS unit root test for the stationarity of residuals from each regression equation. 
For cointegrating regression with USMGS as dependent variable, it is observed 
that the test statistic for the DF-GLS version of the Augmented Engle-Granger 
(AEG) test at different optimal lag lengths suggested by conventional lag 
selection criteria and MK-PCC criterion exceeds the critical value at 5% level of 
significance except for BIC which suggested optimal lag 4 for which the test 
statistic is less than critical value. Consequently, we reject the null hypotheses of 
“no cointegration” at these various optimal lags. This implies that USMGS and 
USMTB series are cointegrated under optimal lags suggested by AIC, FPE, HQIC 
and MK-PCC respectively but they are not cointegrated at lag 4 suggested by 
BIC. However, for cointegrating regression with USMTB as dependent variable, 
the test statistic for the DF-GLS version of the Augmented Engle-Granger (AEG) 
test at different optimal lag lengths suggested conventional lag selection criteria is 
less than the critical value at 5% level of significance except for MK-PCC for 
which the test statistic exceeds the critical value. Hence, we fail  to reject the null 
hypothesis of “no cointegration”under the optimal lags suggested by AIC, FPE, 
BIC and HQIC respectively  indicating that  USMTB and USMGS are not 
cointegrated at lag 10 and 4 that were suggested by these standard information 
criteria but are cointegrated at lag 0 selected by MK-PCC. 

 5.1. Estimation of Engle-Granger error correction model 

Following Engle and Granger (1987), we specify error correction model for 
the cointegrating relationship between USMGS and USMGTB as follows: 

( ) ( ) ( )
1 1

0 1 1
1 1

ˆ
p q

i j t tt t i t j
i j

usmgs usmgs usmtb uτ γ λ α ε−− −
= =

∆ = + ∆ + ∆ + +∑ ∑       (12) 
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( ) ( ) ( )
2 2

0 2 1
1 1

ˆ
p q

i j t tt t i t j
i j

usmtb usmtb usmgs wδ φ α −− −
= =

∆ = + ∆ + Φ ∆ + +∈∑ ∑      (13) 

where 1α  and  2α  are adjustment coefficients, 1p , 1q , 2p and 2q  are the optimal 
lags  required to whiten the error terms in (12) and (13) respectively. In equation 
(12), USMGS is taken as dependent variable and USMTB is explanatory variable. 
Similarly in equation (13), USMTB is taken as dependent variable and USMGS is 
taken as explanatory variable. However, in order for valid inferences to be made 
from ECM models specified in (12) to (13) above, it is necessary that the 
coefficients of the lagged residuals represented by 1α  and 2α  , which serve as 
the “speed of adjustment parameters”, are significant and their coefficients are 
negative. Mathematically, deviations from long-run equilibrium relationship 
between two variables can only be corrected if our cointegrating vector is 
negative. The value of adjustment parameter is a crucial parameter of interest that 
is expected to be less than 1 in absolute terms to guarantee the stability of the 
system and for the variables in the long-run relationship to be cointegrated. The 
number of lags to be included in the ECM equations is determined by the number 
of lags required to whiten the error terms. The ECM models constructed for 
USMGS and USMTB series were both valid based on the aforementioned criteria. 

5.2. Residual analysis  

Prior to estimation of the Engle-Granger error correction model, a crucial 
issue is whether the error terms are uncorrelated, homoscedastic and normally 
distributed. Residual analysis was conducted using Breusch-Godfrey LM test for 
serial correlation, ARCH-LM for heteroskedasticity and Jarque-Bera for 
normality test. The appropriate number of lags is 2 which is the optimal lag order 
required to whiten the error term. Bivariate analysis showed that both pairs of 
USMGS and USGMTB were cointegrated at 5% significance levels. The results 
of the diagnostic tests on residuals are presented in table 7 below. 

Table 7. Summary of results of diagnostic tests on residuals 

Tests Test Statistic p-value Conclusion 

Jarque-Bera 21.18518 0.000025 Normally distributed 

ARCH-LM 972.3744 0.0000 No Heteroskedaticity 

Breusch-Godfrey LM test 4194.212 0.0000 No Serial Correlation 

The p-values in table above are compared with 0.05 significance level. 
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Table 8.  The Engle-Granger Error Correction Model Estimates for     
   USMGS- USMTB Pair 

 Coefficient t-value Probability 

( ) 1t
USMGS

−
 0.396037 8.42717 0.04700 

( ) 2t
USMGS

−
 -0.267194 -5.60852 0.04764 

( ) 1t
USMTB

−
 -0.031421 -1.00462* 0.03128 

( ) 2t
USMTB

−
 0.050940 1.62607* 0.03133 

Residual -0.023292 -2.53590* 0.00918 
Constant -0.001496 -0.13809 0.01083 

2R  0.151445 

 

2.Adj R  0.144557 
Sum of Squares Residual 44.95889 
S.E  Equation 0.270158 
F-statistic 21.98793 
AIC 0.229978 
BIC 0.272740 
   *indicates significance at 5% level 

Table 8 presents the empirical result from the short-run dynamics based on the 
Engle-Granger error correction model when USMGS is taken as dependent 
variable in the cointegrating regression. In estimating this ECM model, two lags 
for the explanatory variable were found to be sufficient to whiten the residuals. In 
the Engle-Granger cointegration methodology, the coefficient of the lagged 
residual   shown in table 8 is of particular interest because it represents the speed 
of adjustment as well as stability of the system. The absolute value of the 
coefficient is 0.023292 which is less than 1 indicating that the system is stable. 
However, the coefficient is quite small which indicates that about 2.3292% of any 
deviation from the long-run path is corrected within a month which translates into 
about 27.95% adjustment per year.  

Table 9.  The Engle-Granger Error Correction Model Estimates for     
   USMTB-USMGS Pair   

 Coefficient t-value Probability 

( ) 1t
USMTB

−
 0.308307 6.53244 0.04720 

( ) 2t
USMTB

−
 -0.115712 -2.44775 0.04727 

( ) 1t
USMGS

−
 0.321225 4.52965* 0.04092 

( ) 2t
USMGS

−
 -0.213002 -2.96287* 0.04189 

Residual -0.023995 -1.78542* 0.01344 
Constant -0.003360 -0.20555 0.01635 
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Table 9.  The Engle-Granger Error Correction Model Estimates for     
   USMTB-USMGS Pair  (cont.) 

 Coefficient t-value Probability 
2R  0.189927 

 

2.Adj R  0.183352 
Sum of Squares Residual 102.3760 
S.E  Equation 0.407670 
F-statistic 28.88513 
AIC 1.052882 
BIC 1.095644 
   *indicates significance at 5% level. 

Table 9 presents the empirical result from the short-run dynamics based on the 
Engle-Granger error correction model when USMTB is taken as dependent 
variable in the cointegrating regression. In estimating this ECM model, two lags 
for the explanatory variable were also found to be sufficient to whiten the 
residuals. In the Engle-Granger cointegration methodology, the coefficient of the 
lagged residual shown in table 9 above is of particular interest because it 
represents the speed of adjustment as well as stability of the system. The absolute 
value of the coefficient is 0.023995 which is less than 1 indicating that the system 
is stable. However, the coefficient is quite small which indicates that about 
2.3995% of any deviation from the long-run path is corrected within a month 
which translates into about 28.79% adjustment per year.  

6. Conclusion 
This paper examined the problem of lag length selection within the 

framework of the Engle-Granger cointegration test. We demonstrated that the 
conventional lag selection criteria such as AIC, FPE, BIC and HQIC standard 
information criteria have the problem of over-specification of lag length. We 
introduced a new criterion called the modified Koyck mean lag approach based on 
partial correlation criterion (MK-PCC) which outperforms conventional standard 
information criteria by avoiding over-specification of lag length commonly 
associated with frequently used conventional lag selection criteria. 

REFERENCES 

AGUNLOYE, O. K., ARNAB, R., SHANGODOYIN, D. K., (2013). A New 
Criterion for Lag-Length Selection in Unit Root Tests. American Journal for 
Theoretical and Applied Statistics, Vol. 2, No. 6, 293–298.   

AKAIKE, H., (1969). Fitting autoregressive models for prediction. Annals of the 
Institute of Statistical Mathematics, 21, 243–247. 



572                 O. K. Agunloye, D. K. Shangodoyin, R. Arnab: Lag length specification … 

 

AKAIKE, H., (1973). Information theory and an extension of the maximum 
likelihood principle. 2nd International Symposium on Information Theory. In: 
B.N. Petrov and F. Csáki, (Eds) (Budapest: Académiai Kiadó), 267–281.        

BEWLEY, R., YANG, M., (1998). On the size and power of system tests for 
cointegration. The Review of Economics and Statistics, 80(4), 675–679. 

BROOKS, C., (2002). Introductory Econometrics for Finance, Cambridge 
University Press.  

CHEUNG, Y. W., LAI, K. S., (1993). Finite sample sizes of Johansen's likelihood 
ratio  test for  cointegration. Oxford Bulletin of Economics and Statistics, 55, 
313–328. 

CLARKE, J. A., MIRZA, S., (2005). A comparison of some common methods for 
detecting Granger noncausality. Journal of Statistical Computation and 
Simulation in press. 

DICKEY, D. A., JANSEN, D. W., THORNTON, D. L., (1991). A Primer on 
Cointegration with Application to Money and Income. Review, Federal 
Reserve Bank of St. Louis, issue Mar., 58–78. 

ELLIOTT, G., ROTHENBERG, T. J., STOCK, J. H., (1996). Efficient Tests for 
an Autoregressive Unit Root. Econometrica, 64, 4, 813–836. 

ENGLE, R. F., GRANGER, C. W. J., (1987). Cointegration and Error Correction 
Representation, Estimation and Testing. Econometrica, 55: 251–257. 

GONZALO, J., PITARAKIS, J. Y., (1999). Lag length estimation in large 
dimensional systems. Journal of Time Series Analysis, 23(4), 401–423.   

GUTIERREZ, C. E. C., SOUZA, R. C., GUILLEN, O. T. D. C., (2009). Selection 
of Optimal Lag-length in Cointegrated VAR models with Weak Form of 
Common Cyclical Features. Brazilian Review of Econometrics, Vol. 29, 
No. 1, 59–78. 

HANNAN, E. J., QUINN, B. G., (1978). “The determination of the order of an 
autoregression”. Journal of Royal Statistical Society, 41, 190–195. 

JOHANSEN, S., (1991). Estimation and hypothesis testing of cointegration 
vectors in Gaussian vector autoregressive models. Econometrica, 59(6), 
1551–1580.    

KOYCK, L. M., (1954). Distributed Lags and Investment Analysis, Amsterdam: 
North-Holland. 

LI, J., MOORADIAN, R. M., YANG, S. X., (2009). ”The Information Content of 
the NCREIF Index”, Journal of  Real  Estate Research, 31(1), 93–116.       

LÜTKEPOHL, H., (1993). Introduction to Multiple Time Series Analysis 
(2nd ed.) (Berlin: Springer-Verlag). 

NISHI, R., (1988). Maximum likelihood principle and model selection when the 
true model is unspecified. Journal of Multivariate Analysis, 27, 392–403.   

SAID, E. S., DICKEY, D. A., (1984). Testing for a Unit Root in Autoregressive 
Moving Average Models of Unknown Order. Biometrika, 71, 3, 599–607.   

SCHWARZ, G., (1978). Estimating the dimension of a model. Annals of 
Statistics, 6, 461–464. 



STATISTICS IN TRANSITION new series, Autumn 2014 

 

573 

STATISTICS IN TRANSITION new series, Autumn 2014 
Vol. 15, No. 4, pp. 573–590 

VARIABILITY OF HOUSEHOLD DISPOSABLE  
INCOME PER CAPITA BY TYPES OF RESIDENCE 

 IN POLAND 

Anna Turczak1, Patrycja Zwiech2 

ABSTRACT 

The dispersion of household disposable income per capita in each class of 
residence (i.e. six) was estimated for households in Poland. Then, the dispersion 
of income between the classes was analysed. The computation was carried out 
separately for subsequent years from 1998 to 2012. The study shows that the 
households in Poland are differentiated with regard to income per capita by types 
of residence, however, the differences within the groups are much bigger than the 
differences between the groups. What is particularly surprising, the share of 
between-group variance in total variance in the population under study was 
negligible small (just a few percent) compared to the share of the mean within-
group variance (more than 90 percent). 

Key words: disposable income per capita, type of residence, within-group and 
between-group variance. 

1. Introduction 

The analysis of diversification in household disposable income per capita is a 
significant study area as it helps to understand the inhomogeneous nature of living 
standard within a certain social group. Undoubtedly, the income level is a key 
variable varying the living standard of Polish residents. The aim of this article is 
to estimate the differences in available income per capita across households in 
various classes of residence, as compared to the variation of household’s 
disposable income per capita within classes. The nature of this article is the 
research one.  

This article describes separately six classes of residence (hereinafter referred 
to as classes or groups): 

• cities with 500,000 residents and more (on 24th July 2014 were in Poland 
5 such cities); 
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2 University of Szczecin, Poland. E-mail: patrycjazwiech@tlen.pl. 



574                                                       A. Turczak, P. Zwiech: Variability of household … 

 

 

• cities with 200,000 to 499,999 residents (on 24th July 2014 were in 
Poland 12 such cities); 

• towns with 100,000 to 199,999 residents (on 24th July 2014 were in 
Poland 23 such towns); 

• towns with 20,000 to 99,999 residents (on 24th July 2014 were in Poland 
183 such towns); 

• towns with less than 20,000 residents (on 24th July 2014 were in Poland 
691 such towns); 

• and villages (on 1st January 2015 were in Poland 43,068 villages). 

The above division is disjoint and exhaustive. 

In order to meet the article objective, three research tasks were determined, 
namely: 

1) to compare mean household  disposable income per capita across certain 
classes with mean household disposable income per capita in Poland; 

2) to compare the dispersion of household disposable income per capita within 
certain groups with the income dispersion in Poland;  

3) to analyse the between-group variance against the mean within-group 
variance. 

The analysis was carried out separately for each year from 1998 to 2012. The 
data come from the Household Budget Surveys (HBS) which are conducted 
annually by the Central Statistical Office of Poland, on a regular basis. The HBS 
data for the period from 1998 to 2012 were provided by the Central Statistical 
Office of Poland (GUS) pursuant to Contract No. 20/Z/DI-6-611/632/2013/RM 
concluded between GUS and the University of Szczecin. The said database 
includes detailed information on 31,756 Polish households in 1998, 31,428 in 
1999, 36,163 in 2000, 31,847 in 2001, 32,342 in 2002, 32,452 in 2003, 32,214 in 
2004, 34,767 in 2005, 37,508 in 2006, 37,366 in 2007, 37,358 in 2008, 37,302 in 
2009, 37,412 in 2010, 37,375 in 2011 and 37,427 in 2012. The household budget 
survey was carried out by the Central Statistical Office of Poland with the use of 
representative method which makes it possible to generalise the results to all the 
households in Poland (Budżety... 2012, 2013, p. 13). 

This article tests two research hypotheses. The first one states the highest 
mean household disposable income per capita in Poland is recorded in big cities 
and the less residents in a town there are, the lower the mean household 
disposable income per capita may be observed. But the lowest household 
disposable income is typical of villages. The second research hypothesis to be 
verified in this article states the variation of household disposable income per 
capita within classes of residence (i.e. groups) is significantly higher than the 
between-group variation. 
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2. Applied research tools 

The subject of analysis in this article is the quantitative characteristic X which 
is household disposable income per capita. Household disposable income is 
defined as a sum of household current incomes from various sources reduced by 
prepayments on personal income tax made on behalf of a tax payer by a tax-
remitter, by tax on income from property, taxes paid by self-employed persons 
and by social security and health insurance premiums. The disposable income 
covers both income in cash and in kind, including natural consumption (consumer 
goods and services taken to satisfy household's needs from self-employment – in 
and outside farming) as well as goods and services received free of charge. 
Disposable income is allocated to expenditures and savings increase  (Budżety… 
2012, 2013, p. 18). 

The study concerns the distribution of the said variable X within the examined 
statistical population. First of all, in order to describe the structure, the analysis of 
central tendency was carried out with the use of such a classical measure as the 
arithmetic mean. Let the mean value of variable X be denoted by x . On the other 
hand, to analyse the differences between individual observations of variable X, the 
variance will be applied as the classical measure of dispersion. The variance of 
variable X is denoted by )(2 xS . The variance is expressed in square units of the 
examined variable and is not interpreted (Pułaska-Turyna, 2005, p. 71). It is 
always non-negative (Bielecka, 2001, p. 134). 

Standard deviation is the absolute measure of variation and it is calculated as 
the square root of the variance. It is expressed in the same units as the statistical 
data and therefore it is interpreted (Aczel, 2005, p. 26). The standard deviation of 
characteristic X  is denoted by )(xS . 

Based on the value of arithmetic mean x  and the value of standard deviation 
)(xS , the classical coefficient of variation )(xV  may be calculated. It is defined 

as the quotient of standard deviation and arithmetic mean (Hoseini, Mohammadi, 
2012, p. 1). Therefore it can be assumed as the relative measure of dispersion of 
statistical units in terms of analysed statistical characteristic (Podgórski, 2005, p. 
68). The classical coefficient of variation is unitless, however, for interpretation 
purposes it is expressed as percentage (Kelley, 2007, p. 755). The higher 
coefficient )(xV  is, the more diverse statistical population is (Buga, Kassyk-
Rokicka, 2008, p. 47). The coefficient of variation is particularly useful for 
comparing the level of dispersion of a few variables in the same population or for 
comparing the level of dispersion of one variable in various populations 
(Żyżyński, 2000, p. 68). 

It is assumed that when the classical coefficient of variation is below 10%, the 
dispersion of the variable examined is statistically insignificant. On the other 
hand, in the population with high diversification, the classical coefficient of 
variance may be even higher than 100% (Kot and others, 2007, p. 179). The 
manner of determining the dispersion of examined statistical characteristic 
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depending on the value of classical coefficient of variation is shown in Table 1, 
but the thresholds determined there are only conventional.  

(a)  

Table 1. The manner of determining the level of dispersion based on the classical    
  coefficient of variation 

Range of 
coefficient )(xV   

Interpretation 
(determining the level of variability) 

0 − 10%  very low variability 
10 − 20%  low variability 
20 − 40%  moderate variability 
40 − 60%  high variability 

60% and more  very high variability 

Source: own compilation based on: (Pułaska-Turyna, 2005, p. 78). 
 

When the arithmetic mean and standard deviation are computed, then the 
typical data intervals may be determined. They include about 68% of all the 
observations in the statistical population (Makać, Urbanek-Krzysztofiak, 2001, p. 
99). The typical data interval based on the classical measures is determined by the 
formula below (Liskowski, Tauber, 2003, p. 66): 

)()( . xSxxxSx typ +<<− . 

Let the given population be divided into n  separate groups. Then, the mean 
value of statistical characteristic X for each group may be computed. It is 
expressed as ix  (i = 1, 2, …, n) for the purpose of this article. Thus, the 

arithmetic mean of all the means in considered groups is expressed as ix . Its 
value equals the total mean x  computed for all the observations from n  groups in 
total (i.e. xxi = ). 

For each i-th group, the within-group variance )(2
ixS , within-group standard 

deviation )( ixS  and classical within-group coefficient of variation )( ixV  can be 
computed – they are the within-group measures of dispersion. If the means of 
considered groups are not the same, so if nxxx ≠≠≠ ...21 , the variance computed 
for entire statistical population under study (i.e. )(2 xS ) is higher than the mean 

within-group variance )(2
ixS , the total standard deviation )(xS  is higher than 

the mean within-group standard deviation )( ixS  and finally the total coefficient 

of variation )(xV  is higher than the mean within-group coefficient )( ixV . 
Using between-group measures of variation we can determine the size of 

average differences between the observations of separate groups, i.e. the 
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differences between the means in the said groups (i.e. values 1x , 2x , …, nx ). In 
order to determine the degree of this variability, between-group variance )(2

ixS , 
between-group standard deviation )( ixS  and between-group coefficient of 
variation )( ixV  have to be computed. Obviously, the values of )(2

ixS  (and also 
)( ixS  and )( ixV ) are affected by not only the within-group means calculated, but 

also by the number of units in each group (Zeliaś, 2000, p. 62). 
The variance has a property which is very important for the purpose of this 

article. Namely, the sum of the between-group variance and the mean within-
group variance is always the same as the total variance computed for entire 
statistical population considered (Fabisiak, Kaźmierczak, 2012, p. 46). It may be 
expressed by the equation below (Western, Bloome, 2009, p. 4): 

)()()( 222
ii xSxSxS += , 

where: 

)(2 xS  – variance computed for the entire analysed population consisting of 
n groups; 

ix  – arithmetic mean computed for i-th group (i = 1, 2, …, n); 

)(2
ixS  – between-group variance; 

)(2
ixS  – within-group variance computed for i-th group; 

)(2
ixS  – mean within-group variance. 

 
The above equation enables drawing a conclusion that if each statistical unit 

from the i-th group was the same value concerning examined variable as the i-th 
group mean, then the within-group variances would equal zero, so the mean 
within-group variance would equal zero as well, and then the total variance would 
be the same as the between-group variance. 

If total variance )(2 xS  is the sum of two components, so by dividing each 

component by )(2 xS  we may compute the shares of )(2
ixS  and )(2

ixS  in the 

sum. Therefore, the ratio 
)(
)(

2

2

xS
xS i  is the share of the between-group variance in the 

total variance and the ratio 
)(
)(

2

2

xS
xS i  is the share of the within-group variance in the 

total variance. 
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3. Mean disposable income per capita in Poland and within the groups  
under study 

Based on information on the level of household disposable income and the 
size of household, the income per capita may be calculated. Such a value may be 
computed for each household surveyed by the Central Statistical Office of Poland 
in the household budget surveys. The database information provided by GUS 
made it possible to assign every household to relevant residence class, which, in 
turn, enabled computing the mean value of household disposable income per 
capita in each of the six groups. Then, the mean household disposable income per 
capita was computed for all households (i.e. in total regardless of the residence 
class). Such calculations were repeated fifteen times separately for each year from 
1998 to 2012. The obtained results are shown in Table 2. 

Table 2. Mean household disposable income per capita by class of residence 
   in years 1998-2012 (in PLN) 

Years 
Town by size in thousands of inhabitants 

Rural Total 500 and 
more 200–499 100–199 20–99 less 

than 20 
1998 744.85 597.49 562.24 535.39 482.76 408.58 512.53 
1999 843.59 642.91 613.58 574.83 522.85 436.31 554.87 
2000 927.83 733.10 695.54 624.01 567.28 477.71 603.10 
2001 960.25 786.35 736.90 689.06 591.06 508.33 649.45 
2002 1,001.24 819.06 754.18 708.84 625.69 522.96 673.70 
2003 1,068.05 824.53 754.36 721.55 661.49 529.12 693.86 
2004 1,115.93 847.02 750.91 764.74 677.18 544.09 717.37 
2005 1,124.06 912.08 800.65 775.77 695.16 581.44 731.61 
2006 1,258.11 1,019.90 858.50 841.37 766.54 653.14 798.90 
2007 1,416.02 1,128.12 978.85 937.18 844.55 742.94 899.20 
2008 1,609.84 1,238.35 1,157.61 1,068.21 1,001.76 841.17 1,022.95 
2009 1,765.16 1,301.87 1,242.92 1,167.13 1,061.35 904.34 1,099.80 
2010 1,912.92 1,417.51 1,294.78 1,243.32 1,130.86 972.44 1,180.55 
2011 1,955.99 1,465.86 1,349.00 1,273.10 1,197.04 998.15 1,219.25 
2012 2,036.65 1,525.18 1,355.82 1,311.55 1,233.59 1,065.17 1,276.92 

Source: own computation based on the household budget surveys carried by the Central 
Statistical Office of Poland. 

Based on the data in respective columns of Table 2, the following conclusion 
may be drawn: the mean household disposable income per capita is higher in 
cities/towns than in villages and the more residents are, the higher income is. The 
comparison of the within-group means obtained with the mean of the entire 
statistical population also allows to state that the mean household disposable 
income per capita in towns with at least 20,000 residents exceeds the total mean 
income per capita, while in the towns with less residents than 20,000 and villages 
the mean household disposable income per capita is lower than mean income per 
capita computed for all the groups in total. 



STATISTICS IN TRANSITION new series, Autumn 2014 

 

579 

4. Dispersion of disposable income per capita in Poland and within the 
groups under study 

As it was already mentioned, the mean value does not provide comprehensive 
information on the distribution of studied variable within the population. Since 
the mean is a measure of central tendency, it informs only on the value around 
which the observations are focused. Therefore – for example – two populations 
may have the same value of the arithmetic mean, although there are significant 
differences between the observed values of the variable in the first population, 
while such differences are very slight or even do not exist at all in the second one. 
Hence, in order to better know the structure of phenomenon concerned, not only 
the average was analysed but also the variation of units with regard to the 
statistical characteristic considered. 

The objective is to compare the dispersion within six groups into which the 
population was divided with the dispersion between the groups. In order to 
achieve the said objective, relevant measures of variability were computed, 
namely the variance and the standard deviation, as well as the classical coefficient 
of variation based on the standard deviation. Table 3 shows the values of variance 
computed for each group out of six residence classes as well as for the total 
number of surveyed households.  

Table 3. Variance (in PLN2) 

Years 
Town by size in thousands of inhabitants 

Rural Total 500 and 
more 200–499 100–199 20–99 less 

than 20 
1998 289,882.3 124,008.3 105,593.3 137,196.1 79,962.0 110,273.8 145,271.6 
1999 1,116,661.8 179,247.6 125,859.3 296,836.1 91,282.0 127,638.1 288,905.9 
2000 472,804.2 234,433.8 202,372.1 155,563.3 160,070.0 446,940.9 332,198.6 
2001 515,795.8 246,234.3 276,130.2 190,050.8 149,157.0 183,937.9 252,889.5 
2002 638,100.8 278,382.4 235,645.4 320,345.1 156,969.4 509,405.5 421,817.3 
2003 707,300.1 330,482.4 251,999.6 223,476.9 290,597.2 181,028.0 314,861.5 
2004 867,142.6 320,211.5 237,952.6 260,458.0 193,048.2 315,556.0 380,900.0 
2005 881,191.4 425,348.0 247,677.6 345,058.5 217,323.8 339,987.6 414,627.2 
2006 1,198,118.1 534,721.1 288,783.3 287,785.5 246,490.5 311,525.8 439,307.7 
2007 2,240,545.7 592,013.4 369,861.8 372,644.8 233,640.4 553,538.5 693,845.6 
2008 2,210,778.4 602,373.7 656,123.0 506,675.9 334,292.5 1,381,298.5 1,159,241.9 
2009 1,605,506.7 700,795.9 635,647.2 523,957.5 372,284.8 903,046.5 886,726.7 
2010 3,287,239.3 5,199,600.5 621,372.9 572,342.3 666,130.4 906,183.7 1,460,063.2 
2011 3,238,306.2 898,564.0 663,402.1 599,062.6 510,073.9 896,361.0 1,111,116.6 
2012 3,505,695.7 953,054.9 640,851.7 639,113.3 525,278.8 1,212,367.8 1,307,952.1 

Source: the same as in Table 2. 
 

Next, the square root of each value of variance was taken to obtain the 
corresponding values of standard deviation. Table 4 shows computed 105 values 
of standard deviation. 
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Table 4. Standard deviation (in PLN) 

Years 
Town by size in thousands of inhabitants 

Rural Total 500 and 
more 200–499 100–199 20–99 less 

than 20 
1998 538.41 352.15 324.95 370.40 282.78 332.08 381.15 
1999 1,056.72 423.38 354.77 544.83 302.13 357.26 537.50 
2000 687.61 484.18 449.86 394.42 400.09 668.54 576.37 
2001 718.19 496.22 525.48 435.95 386.21 428.88 502.88 
2002 798.81 527.62 485.43 565.99 396.19 713.73 649.47 
2003 841.01 574.88 502.00 472.73 539.07 425.47 561.13 
2004 931.20 565.87 487.80 510.35 439.37 561.74 617.17 
2005 938.72 652.19 497.67 587.42 466.18 583.08 643.92 
2006 1,094.59 731.25 537.39 536.46 496.48 558.14 662.80 
2007 1,496.85 769.42 608.16 610.45 483.36 744.00 832.97 
2008 1,486.87 776.13 810.01 711.81 578.18 1,175.29 1,076.68 
2009 1,267.09 837.14 797.27 723.85 610.15 950.29 941.66 
2010 1,813.07 2,280.26 788.27 756.53 816.17 951.94 1,208.33 
2011 1,799.53 947.93 814.49 773.99 714.19 946.76 1,054.10 
2012 1,872.35 976.25 800.53 799.45 724.76 1,101.08 1,143.66 

Source: own computation based on Table 3. 

Once standard deviation values were divided by relevant mean values, the 
coefficient values, which are relative measures of dispersion, were obtained. 
Since the numerator (the standard deviation) and the denominator (the mean) of 
the coefficient of variation are expressed in the same unit (PLN), then the 
obtained quotient will be a unitless measure, and in order to make the 
interpretation easier it was multiplied by 100%. The values of the coefficient of 
variation computed separately for each class of residence and for all statistical 
units examined are presented in Table 5. 

Table 5. Coefficient of variation by type of residence 

Years 

Town by size in thousands of inhabitants Rural 
 

CV (%) 

Total 
 

CV (%) 

500 and 
more 

CV (%) 

200–499 
CV (%) 

100–199 
CV (%) 

20–99 
CV (%) 

less  
than 20 
CV (%) 

1998 72.3 58.9 57.8 69.2 58.6 81.3 74.4 
1999 125.3 65.9 57.8 94.8 57.8 81.9 96.9 
2000 74.1 66.0 64.7 63.2 70.5 139.9 95.6 
2001 74.8 63.1 71.3 63.3 65.3 84.4 77.4 
2002 79.8 64.4 64.4 79.8 63.3 136.5 96.4 
2003 78.7 69.7 66.5 65.5 81.5 80.4 80.9 
2004 83.4 66.8 65.0 66.7 64.9 103.2 86.0 
2005 83.5 71.5 62.2 75.7 67.1 100.3 88.0 
2006 87.0 71.7 62.6 63.8 64.8 85.5 83.0 
2007 105.7 68.2 62.1 65.1 57.2 100.1 92.6 
2008 92.4 62.7 70.0 66.6 57.7 139.7 105.3 
2009 71.8 64.3 64.1 62.0 57.5 105.1 85.6 
2010 94.8 160.9 60.9 60.8 72.2 97.9 102.4 
2011 92.0 64.7 60.4 60.8 59.7 94.9 86.5 
2012 91.9 64.0 59.0 61.0 58.8 103.4 89.6 

Source: own computation based on Table 2 & 4. 
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Analysis of data presented in Table 5 allows stating that households in Poland 
vary significantly as far as household disposable income per capita is concerned. 
The variation is significant not only in entire statistical population studied in this 
article but also in each of six groups of the population. Special attention should be 
paid to exceptionally high value of the coefficient computed for villages and the 
largest cities. Risking a guess, with such a high dispersion, the mean looses its 
informative value. In order to prove such a conclusion, let us take data for any 
year within fifteen-year-study, say, 2012. So, lower and upper limits of the typical 
data intervals in the case of said groups in given year were the following: 

• cities with 500,000 residents and more: PLN 164.30 and PLN 3,909.00; 

• cities with 200,000 to 499,999 residents: PLN 548.93 and PLN 2,501.43; 

• towns with 100,000 to 199,999 residents: PLN 555.29 and PLN 2,156.35; 

• towns with 20,000 to 99,999 residents: PLN 512.10 and PLN 2,111.00; 

• towns with less than 20,000 residents: PLN 508.83 and PLN 1,958.35; 

• and villages: PLN −35.91 and PLN 2,166.25. 

Indeed, the households in cities with more than 500,000 residents have the 
mean household disposable income per capita higher by as much as PLN 971.48 
than the households in villages. However, the dispersion within the said two 
groups is so high that, for example, typical households from the cities with more 
than 500,000 residents are the households with income per capita in the amount 
of PLN 165, while simultaneously typical rural households are the households 
with income in the amount of even PLN 1,950. It provokes reflection, since the 
average differences between the households within given classes are much bigger 
that the differences between the households from various classes. Further part of 
this article will prove that statement, so the comparison of between-group and 
within-group variability will be carried out. 

5. Dispersion of disposable income per capita between groups and 
within-group dispersion 

Table 3 shows the results of computed within-group variances. The mean 
within-group variance may be calculated based on the above results and size of 
each group. Then the between-group variance may be estimated based on the 
means in these groups and the sizes of them. Table 6 shows the information on 
between-group variances and mean within-group variances in years concerned. 
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Table 6. Comparison of between-group and within-group variation 

Years 

Variance (in PLN2) Standard deviation 
(in PLN) 

Classical coefficient 
of variation (in %) 

The share in the total 
variance (in %) 

between 
group 

mean 
within- 
group 

between- 
group 

mean 
within- 
group 

between- 
group 

mean 
within- 
group 

of the 
between- 

group 
variance 

of the 
mean 

within- 
group 

variance 
1998 11,623.8 133,647.8 107.81 365.58 21.0 71.3 8.0 92.0 
1999 16,275.2 272,630.7 127.57 522.14 23.0 94.1 5.6 94.4 
2000 18,853.5 313,345.0 137.31 559.77 22.8 92.8 5.7 94.3 
2001 21,862.8 231,026.7 147.86 480.65 22.8 74.0 8.6 91.4 
2002 24,165.4 397,651.9 155.45 630.60 23.1 93.6 5.7 94.3 
2003 29,059.7 285,801.9 170.47 534.60 24.6 77.0 9.2 90.8 
2004 32,591.5 348,308.5 180.53 590.18 25.2 82.3 8.6 91.4 
2005 29,754.2 384,873.0 172.49 620.38 23.6 84.8 7.2 92.8 
2006 35,451.9 403,855.8 188.29 635.50 23.6 79.5 8.1 91.9 
2007 43,754.0 650,091.6 209.17 806.28 23.3 89.7 6.3 93.7 
2008 55,568.7 1,103,672.4 235.73 1,050.56 23.0 102.7 4.8 95.2 
2009 66,971.9 819,754.8 258.79 905.40 23.5 82.3 7.6 92.4 
2010 80,118.0 1,379,945.2 283.05 1,174.71 24.0 99.5 5.5 94.5 
2011 84,680.4 1,026,436.2 291.00 1,013.13 23.9 83.1 7.6 92.4 
2012 86,145.9 1,221,806.2 293.51 1,105.35 23.0 86.6 6.6 93.4 

Source: own computation based on Table 2 & 3. 

Comparing the value of between-group variance with the mean within-group 
variance in each year concerned makes it possible to state that the dispersion of 
entries within the classes of residence is significantly higher than the dispersion of 
entries between the classes. Obviously, the same conclusion may be drawn when 
comparing relevant values of standard deviation. What is interesting, the ratio of 
mean within-group standard deviation to between-group standard deviation in 
each year concerned was almost the same and from 1998 to 2012 the mean 
within-group standard deviation was about four times higher than the between-
group standard deviation. 

The mean value of variable in the entire analysed statistical population is the 
same as the mean of the means in groups into which the population was divided. 
Hence, the denominator of between-group coefficient of variation and the 
denominator of mean within-group coefficient of variation are the same and are 
equal to the denominator of total coefficient of variation (and the denominator is 
the mean value of examined characteristic), then the quotient of the mean within-
group coefficient and the between-group coefficient equals the quotient of 
relevant standard deviations and it will be around 4. Therefore, the average 
differences in the household disposable income per capita between two 
households of the same residence class are four times bigger that the average 
differences between two households with disposable income per capita at the 
mean level of two various classes. 
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As it was already mentioned in the first chapter of this article, the total 
variance equals the sum of the between-group variance and the mean within-
group variance. So, the total variance consists of two components and 
determining the structure of total variance makes it possible to know precisely the 
significance of each component. Hence, the share of the first component in total 
variance may be computed by dividing the between-group variance by the total 
variance. By analogy, the share of the second component in total variance may be 
computed by dividing the mean within-group variance by the total variance. The 
last two columns in Table 6 show the information on the impact of the between- 
and within-group variances on the total variance in 15 successive years. So, in 
each year taken into consideration the mean within-group variance was over 90% 
of the total variance and the share of the between-group variance was always 
below 10%. Undoubtedly, the average difference between disposable income per 
capita between households of the same group of residence is very big comparing 
to the differences between the means for households from various classes. 

6. Comparison of between-group variability of household disposable 
income in EU countries 

For statistical purposes a common classification into three disjoint and 
exhaustive groups of areas was prepared to be used by all of the European Union 
countries. This classification indicates the character of an area due to the degree 
of its urbanization. It is based on the share of local population living in urban 
clusters and in urban centres. The three types of areas are as follows (Eurostat 
website [1], date of access: 19.01.2015): 
• sparsely populated areas (alternate name: rural areas); 
• intermediate density areas (alternate name: towns and suburbs or small urban 

areas); 
• densely populated areas (alternate name: cities or large urban areas).  

The rules of classifying local administrative units of countries into these three 
groups were specified precisely. The methodology is based on a combination of 
criteria of geographical contiguity and minimum population threshold applied to 1 
km2 population grid cells. This approach, based on mapping the territory by a grid 
square cell of 1 km2, avoids distortions caused by using local administrative units 
varying in size and/or shape. 

With information on average annual income per capita in each class and on 
the number of people falling within these classes, it is possible to calculate 
absolute and relative dispersion of income between the classes. Results of 
calculations on between-group standard deviation, which is the absolute measure 
of between-group variability, have been presented in Table 7. The said table also 
featured results obtained for between-group coefficient of variation, which is a 
relative measure of between-group variability. Calculations were carried out 
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separately for four consecutive years from 2010 to 2013 inclusive, and for all 
twenty-eight countries of the European Union. 
 

Table 7. Comparison of between-group measures of income variation in all EU 
countries 

Countries 
Between-group 

standard deviation (in EUR) 
Between-group 

coefficient of variation (in %) 
2010 2011 2012 2013 2010 2011 2012 2013 

Austria 967.96 811.89 480.73 449.09 4.1 3.4 2.0 1.8 
Belgium 417.89 286.77 404.27 288.11 2.0 1.3 1.8 1.2 
Bulgaria 758.80 777.77 645.67 845.21 21.8 22.7 19.6 23.8 
Croatia 474.69 530.81 746.35 831.53 6.4 7.8 12.3 14.2 
Cyprus 2,090.70 1,822.52 2,233.53 2,290.97 11.0 9.3 11.0 11.7 
Czech Republic 635.68 611.20 680.83 570.33 8.0 7.3 7.8 6.6 
Denmark 682.30 1,879.82 614.79 1,029.54 2.5 6.6 2.1 3.5 
Estonia 714.57 559.44 693.79 767.27 10.6 8.5 9.7 9.8 
Finland 2,015.82 1,912.60 1,848.94 1,418.26 8.6 7.9 7.2 5.5 
France 780.34 1,359.16 1,404.84 1,533.12 3.3 5.7 5.7 6.2 
Germany 1,097.35 926.79 872.85 770.79 5.1 4.3 4.0 3.4 
Greece 1,933.76 1,065.04 1,020.62 1,043.57 13.9 8.5 9.4 10.8 
Hungary 627.89 798.16 757.65 791.97 13.5 15.5 14.2 15.4 
Ireland (-) (-) 2,618.31 (-) (-) (-) 11.9 (-) 
Italy 1,114.97 1,146.21 1,421.84 1,535.18 6.1 6.3 8.0 8.8 
Latvia 587.75 607.74 636.08 639.84 10.8 12.0 11.4 10.9 
Lithuania (-) (-) 886.99 796.13 (-) (-) 17.3 14.1 
Luxembourg 2,607.49 2,197.65 3,701.28 3,883.74 7.1 5.9 9.9 10.0 
Malta (-) (-) (-) (-) (-) (-) (-) (-) 
Netherlands 468.82 636.90 160.49 420.90 2.1 2.8 0.7 1.8 
P o l a n d 893.59 946.62 990.11 960.81 17.5 16.3 16.7 16.0 
Portugal 1,283.11 1,347.27 1,501.21 1,181.01 12.2 13.0 14.6 11.9 
Romania 593.58 588.53 655.56 465.08 24.9 24.3 27.1 19.5 
Slovakia 658.22 621.67 721.09 504.03 9.9 9.0 9.6 7.0 
Slovenia 763.91 745.44 577.46 565.06 6.0 5.8 4.5 4.5 
Spain 1,496.50 1,493.21 1,492.21 1,901.01 10.4 10.7 10.8 12.2 
Sweden 1,568.46 1,372.77 1,455.33 1,195.35 7.5 5.6 5.3 4.3 
United Kingdom 1,008.91 241.86 837.53 672.15 4.9 1.2 3.7 3.1 
EU (28) 2,547.71 2,526.74 1,436.92 1,730.17 15.1 14.8 8.2 9.8 

(-) no reliable data disposable 

Source: own computation based on Eurostat database: “Mean and median income by 
degree of urbanisation”: 
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ilc_di17&lang=en [date of 
access: 19.01.2015]; “Annual population by sex, age, degree of urbanisation and labour 
status”: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=lfsa_pgauws&lang=en 
[date of access: 19.01.2015]. 
 

When considering all countries of the European Union jointly, it is possible to 
see a significant decrease in the dispersion of between-group income per capita – 
coefficient of variation of more than 15% in 2010 dropped in 2013 below 10%. It 
is also worth noting that during the period under study, most of the twenty-eight 
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countries reported the value of the coefficient lower than 10%, i.e. this measure 
was at a level that may indicate very low between-group variability (see Table 1). 

Out of all countries of the European Union the smallest income variability per 
capita between regions with different degrees of urbanization could be observed 
in the case of Belgium. The classical coefficient of between-group variation was 1 
to 2% in the case of this country for each of the four years under analysis. The 
coefficient turned out to be at a similar level also in Austria and the Netherlands. 

The data summarized in Table 7 also allows drawing a conclusion that in 
Poland the fact of living in a given class of residence in a much greater extent 
affects the size of income achieved than in the case of other countries of the 
European Union. However, it should be borne in mind that in Poland – like in the 
entire European Union – dispersion of per capita income between regions 
differing in the degree of urbanization dropped dramatically over the period of 
2010–2013. The value of the classical coefficient of variation of 16.0% in 2013 
enables an observation that, although mean relative differences between average 
income of persons from sparsely populated areas, intermediate-density areas and 
densely populated areas were much higher in Poland than in most other EU 
countries, eventually, the variability in Poland should be assessed as low. 

Between-group dispersion of income higher than in Poland was only recorded 
in Romania and Bulgaria. Interestingly, in these countries the between-group 
standard deviation remained at a very low level, which in each year under analysis 
was lower than the between-group standard deviation observed in Poland. In 
Poland, however, the average income per capita is approximately 70% higher 
than in Bulgaria and more than 150% higher than in Romania; therefore, in 
relation to the average level of income in a given country, variability of the 
investigated variable in Poland was lower than in other two mentioned countries. 

7. Discussion on the need to mitigate social inequalities 

The following dimensions of inequality can be determined on the basis of 
social sciences (Wójcik-Żołądek, 2013, p. 2): 
• the economic dimension (including categories such as income, property, living 

conditions); 
• the social dimension (concerning education, lifestyle, participation in culture, 

social prestige); 
• the political dimension (referring to differences in participation in power and 

in civic engagement). 
Treating the economic aspect as the only dimension of inequality in society is 

therefore too much of an oversimplification. Income stratification is, however, 
construed in the literature on the subject as one of the most important measures of 
inequality, because the level of income is widely recognized as the most 
important determinant of social status. It is also stressed that income is a factor 
which influences the activity of individuals and households in almost all spheres 
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of life – from the development of material conditions through access to health 
care, provision of appropriate education, participation in culture, access to 
technological achievements, up to access to power. Therefore, encountering 
income limitations does not only narrow down the decision-making field of a 
household in terms of the size of realized consumption, but also determines the 
degree of failure to satisfy many other needs, including non-economic needs 
(Leszczyńska, 2014, p. 410). We may even be tempted to state that the size of 
income, having an impact on the achievement of a wide range of material and 
non-material objectives, is a major determinant of a sense of satisfaction with the 
overall quality of human life (Bal, 2012, p. 252). 

Representatives of various trends in economics present different, often 
radically extreme, approaches to the problem of occurrence of income inequalities 
in society. The differences in approach are based usually in personal beliefs on 
philosophical, ethical, sociological and psychological foundations of economics 
(Umiński, 2013, p. 210). The discussion on consequences of social inequality – 
especially the stratification of income – takes place not only on the ground of 
social sciences, but also in the public debate, often causing a lot of emotion. 
Nevertheless, there is a general consensus among researchers that excessive 
income inequality infringes the principle of social justice and has a negative 
impact on economic growth (Pliszka, 2004, p. 354). Often in scientific and 
political debates, it is also stressed that exceeding a certain threshold of income 
stratification threatens the maintenance of social cohesion (Kołodko, 2014, p. 32). 
Thus, determining which income inequalities must be considered excessive and 
which optimal becomes a key issue. The aim of social policy should be to 
eliminate only the unjustified, and not all, social inequalities. It seems that helpful 
in this regard will be addressing the issue of causes of the occurring inequalities. 
Now, the source of income stratification of society is the differences in 
environmental and genetic conditions and differences in preferences and 
ambitions. Reducing inequalities resulting from the first group of conditions is 
undeniable – it does not arouse much controversy and involves wide social 
acceptance. In turn, reduction of income disparities related to differing decisions 
of individuals is at least debatable. 

Thus, the basis for answering the question of which social inequalities are 
justified and which are not should be a distinction between two categories – 
possibilities and preferences. Justified inequalities are those for which the 
responsibility is borne exclusively by individuals through their autonomous 
decisions – whether educational, professional or those related to the degree of 
commitment to the improvement of their living conditions. On the other hand, 
unjust social inequalities are those independent of the will of a given individual, 
ones he or she cannot influence, does not control and is not able to change. There 
is no doubt that factors such as place of birth, environment of growing up, socio-
economic situation of parents, immediate environment, abilities and aptitudes 
largely influence the size of income that this individual will achieve during his or 
her adult life, and cause the principle of equal opportunities to be undermined. 
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Thus, in order for disparities in income to be fully justified, the playing field 
should be levelled. On the other hand, the way the players will behave on the field 
depends entirely on them and they alone bear responsibility for their actions 
(Bartak, 2014, p. 224). We can perceive as justified only a situation where 
personal effort determines the success in life rather than inherited wealth or 
favourable family environment in childhood, which equips the child with 
appropriate cultural capital right from the start and allows him or her to access 
better education (Woźniak, 2012, p. 27–28). 

The subject of analysis in this paper are income inequalities due to different 
conditions of life in big cities, in small towns and villages. These inequalities 
should undoubtedly be mitigated through the application of appropriately selected 
tools. A well-designed social policy should therefore limit inequalities arising 
from the fact that people do not start at the same position in the race for a better 
financial situation, a higher social status and the associated convenience. The best 
way to reduce income inequalities is to provide all social groups with access to 
modern education adapted to the requirements of a knowledge-based economy. It 
is also necessary to allow individual entities access to adequate infrastructure, to 
the use of achievements of technical and technological progress and to the entire 
spectrum of achievements of civilization. The priority of state policy should 
always be to give equal opportunities, eliminate barriers, stimulate innovation and 
ensure fair competition. In the modern economy, government policy cannot be 
reduced, therefore, to redistributive activities, as it is obvious that it would only 
strengthen demanding attitudes, reinforce learned helplessness, restrict 
professional activity and self-responsibility of people (Bartak, 2014, p. 220). 
Proper state policy as regards reducing income inequalities does not slow down 
the pace of modernization processes that are being carried out in the economy; on 
the contrary – it leads to their acceleration. Disparities between large urban 
agglomerations, small towns and rural areas should therefore be mitigated by 
supporting well-designed investment in human capital and improvement of 
infrastructure. 

8. Conclusions 

The aim of this article was to assess the dispersion of disposable income per 
capita between households in Poland from various classes of residence in 
comparison to the dispersion of income within these classes. The said objective 
was achieved by execution of three research tasks. 

In the article, two research hypotheses were verified. The first hypothesis 
stated that the highest household disposable income per capita in Poland is 
recorded in the cities with above 500,000 residents and the amount of the said 
income decreases with decreasing number of residents as well as the rural 
households have the lowest mean disposable income per capita. The hypothesis 
was verified positively on the basis of data from 1998 to 2012. The comparison of 
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the within-group means allowed drawing a conclusion that the said regularity is 
permanent as it occurred throughout fifteen years. 

The second tested hypothesis stated that in terms of disposable income per 
capita the households in Poland vary to a larger extent within all the classes of 
residence than between the classes. The above hypothesis was verified positively 
as well. The mean within-group standard deviation was a few times higher than 
the between-group standard deviation and the share of between-group variance 
was only a few per cent of the total variance. Hence, without any doubt, the 
amount of household disposable income is affected by many other factors which 
are more important than the class of residence. 

In conclusion, it should be also emphasized that the location of household 
(city, small town or village) is clearly significant for the level of household 
disposable income per capita, which has been proven by the occurring differences 
in the means computed for each group determined in the study. However, the 
differences between the said means should be considered slight, as compared to 
the average differences of the observed values between households of the same 
classes of residence. Therefore, the division for classes of residence proposed by 
the Central Statistical Office of Poland seems to be not a good one to show the 
variation of income per capita among Polish households because assigned class 
of residence explains at minimum extent the differences in the income levels. 
Therefore, a more appropriate way of division should be considered, namely the 
one better explaining the dispersion of household disposable income per capita. 
The authors of this article have already carried out such a study, and the results 
will be presented in further articles. 
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EVALUATION OF SELECTED APPROACHES TO 
CLUSTERING CATEGORICAL VARIABLES 

Zdeněk Šulc1, Hana Řezanková2 

ABSTRACT 

This paper focuses on recently proposed similarity measures and their 
performance in categorical variable clustering. It compares clustering results 
using three recently developed similarity measures (IOF, OF and Lin measures) 
with results obtained using two association measures for nominal variables 
(Cramér’s V and the uncertainty coefficient) and with the simple matching 
coefficient (the overlap measure). To eliminate the influence of a particular 
linkage method on the structure of final clusters, three linkage methods are 
examined (complete, single, average). The created groups (clusters) of variables 
can be considered as the basis for dimensionality reduction, e.g. by choosing one 
of the variables from a given group as a representative for the whole group. The 
quality of resulting clusters is evaluated by the within-cluster variability, 
expressed by the WCM coefficient, and by dendrogram analysis. The examined 
similarity measures are compared and evaluated using two real data sets from a 
social survey. 

Key words: variable clustering, nominal variables, association measures, 
similarity measures. 

1. Introduction 

When dealing with high dimensional data, reduction of the number of 
variables is often desired. It can spare both the computational time and costs for 
gathering the information in the future. The use of principal component analysis 
or factor analysis, as described, for example, by Jolliffe (2002), or their 
categorical counterparts, such as correspondence analysis Greenacre (2010), is 
very popular. These methods provide additional information about a data set, 
variables of which have significant loadings on a shared vector, see Palla et al. 
(2012). An approach based on multiple correspondence analysis for large data sets 
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is presented by D’Enza and Greenacre (2012). Another way to achieve the 
dimensionality reduction of a data set can be to create groups of similar variables 
using cluster analysis. One variable of each group can be chosen as a 
representative for further analysis. Hierarchical cluster analysis represents the 
basic approach used for variable clustering, see Gordon (1999), Gan et al. (2007). 
It is based on a proximity matrix, which contains dissimilarities of analyzed 
variables taken pairwise. More sophisticated approaches are represented, for 
example, by model-based clustering, see Chavent et al. (2010); Everitt et al. 
(2011). In R software, one might find a few variable clustering procedures in a 
package named ClustOfVar, see Chavent et al. (2012). The practical use of 
variable clustering can be found in various fields of use, e.g. in questionnaires 
surveys, actuarial sciences, chemistry, gene expression analysis, see Palla et al. 
(2012), or in getting rid of redundant variables in predictive models, see Payne 
and Edwards (1999). 

The paper focuses on comparison of two kinds of similarity measures which 
can be used in variable clustering with binary or nominal variables. The first ones 
are the association measures, Cramér’s V and the uncertainty coefficient, which 
express the dependency between two variables based on the chi-square statistic 
and the ANOVA method. The second kind is represented by recently developed 
similarity measures, IOF, OF and Lin, which were originally proposed for object 
clustering, but have been adjusted for variable clustering in this paper. Clustering 
with both kinds of measures is going to be compared with the simple matching 
coefficient, which is commonly used in categorical data clustering and thus it can 
serve as a reference measure. 

The IOF, OF and Lin measures have never been evaluated for variable 
clustering; they have only been studied for object clustering so far. Moreover, the 
evaluations of these measures were performed only with the known cluster 
membership, see Boriah et al. (2008), Chandola et. al. (2009); thus cluster 
analysis was treated more like a classification problem with supervised learning. 
Moreover, both publications were focused on the outlier detection performance of 
the similarity measures. 

In this paper, two data sets from a social survey are analyzed. The quality of 
clusters, obtained using different similarity measures, is evaluated from aspects of 
both the within-cluster variability, measured by the WCM (within-cluster 
mutability) coefficient, and the dendrogram analysis. To minimize the influence 
of clustering algorithm on clustering performance of the similarity measures, 
clusters obtained by three linkage methods are compared and evaluated.  

The rest of the paper is organized as follows. Section 2 introduces the 
association and other similarity measures. Section 3 describes evaluation criteria 
of cluster quality. The application of theoretical approach to real data is presented 
in Section 4. The final results are summarized in the Conclusion. 
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2. Nominal variable clustering 

A basic approach to variable clustering is to create a dissimilarity matrix, 
which contains dissimilarities of analyzed variables taken pairwise, and then to 
apply agglomerative hierarchical cluster analysis. A dissimilarity measure can be 
derived from a similarity measure. Many similarity measures have been proposed 
for categorical data. One can use association measures for nominal variables, see 
Anderberg (1973), or similarity measures determined for objects characterized by 
nominal variables. There are also several other approaches, for example, in 
Chavent et al. (2010), where the adjustment of existing centre-based method for 
categorical variable clustering is presented. It is not possible to compare all 
approaches or all measures; therefore, we focus only on the selected ones. 

Three linkage methods of hierarchical clustering are applied in this paper: 
complete method (CLM), single method (SLM) and average method (ALM). In 
CLM, the dissimilarity between the furthest variables from two different clusters 
is considered as the distance between these clusters. SLM takes the dissimilarity 
between the nearest variables from two different clusters for this purpose, and 
ALM takes the average distance of all dissimilarities between variables from two 
different clusters. 

2.1. Association measures 

Different types of association measures for nominal variables are used in 
multivariate analysis. Some of them are based on Pearson’s chi-squared statistic, 
some on the principle of dependence measurement in the ANOVA method. 

The measures based on the chi-square statistic compare observed and 
expected counts under the hypothesis of independence; these counts are 
frequencies of combinations of categories of two nominal variables. Pearson’s 
coefficient of contingency, Cramér’s V and the phi coefficient belong to this 
group. In this paper, Cramér’s V is applied because it takes values from the 
interval [0, 1] and takes into account the numbers of categories. It is calculated 
according to the formula 

)1(2 −χ= qnV , (1) 

where 2χ  is Pearson’s chi-squared statistic, n is the number of surveyed objects 
and q is a minimum number of categories of two analyzed variables. If at least 
one variable is dichotomous, then values of Cramér’s V equal the values of the 
phi coefficient. Cramér’s V can be transformed into a dissimilarity measure by 
subtracting its value from 1. 

In the ANOVA method, a directional dependence is considered. In such a 
case, a symmetric measure is calculated as the harmonic mean of two asymmetric 
measures. There are two symmetric coefficients for nominal variables derived 
from asymmetric measures which are based on the principle of ANOVA: the 
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lambda coefficient and the uncertainty coefficient. The former one is based only 
on frequencies of modal categories, the latter one takes into account frequencies 
of all combinations of categories. Therefore, the uncertainty coefficient is applied 
in our experiments. It takes values from the interval [0, 1] and it is based on the 
entropy as a variability measure. For the c-th and d-th variables it is calculated as 
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where Hc (Hd) is the entropy of the c-th (d-th) variable and Hcd is the within-group 
entropy. Generally, the entropy H is expressed as 
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where pu is a relative frequency of the u-th category and h is the number of 
categories if for all u pu ≠ 0. In the case of pu = 0, the corresponding addend 
equals 0 for this u. The uncertainty coefficient can be transformed into a 
dissimilarity measure by subtracting its value from 1. 

More association measures for variable clustering can be found in Řezanková 
(2014). 

2.2. Recently developed similarity measures 

Compared with association measures, which are based on frequencies in a 
contingency table, the other similarity measures considered in this paper compare 
categories taken pairwise for each object individually. The term the other 
similarity measures covers the recently developed similarity measures (IOF, OF 
and Lin) and the overlap measure, which serves as a reference measure. All these 
measures have a drawback which is that all analyzed variables must have the 
same number of categories and the categories must have the same meaning. The 
reason is as follows: if categories across the variables did not have the same 
meaning, it would make no sense to compare them. For this reason the same 
number of categories is considered. 

All formulas in this paper are based on the data matrix X = [xic], where i = 1, 
2, ..., n and c = 1, 2, ..., m (n is the total number of objects, m is the total number 
of variables). 

Originally, the IOF (inverse occurrence frequency) measure comes from an 
information retrieval, where it used to serve to determine a relative number of 
documents containing a specific word, see Sparck-Jones (1972, 2002). The 
original measure was designed to deal only with binary variables; later, it was 
adjusted to deal with nominal variables as well. The measure was constructed to 
assign higher weights to mismatches on less frequent values and lower weights to 
mismatches on more frequent values. When determining similarity between 
variables xc and xd for the i-th object, it can be expressed as 
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where f(xic) is a frequency of the category xic of the i-th object. Dissimilarity 
between variables xc and xd is expressed as 
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The OF (occurrence frequency) measure has an opposite system of weights to 
the IOF measure. It assigns higher weights to mismatches on more frequent 
values and otherwise, i.e. 
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Dissimilarity can be determined using Equation (5). 
The Lin measure, which was introduced by Lin (1998), represents an 

information-theoretic definition of similarity based on relative frequencies. It was 
derived from theoretic assumptions about similarity. The emphasis was put on the 
universality of use; thus, it can be used in various situations including 
determination of similarity between ordinal values. It assigns higher weights to 
more frequent categories in the case of a match and lower weights to less frequent 
categories in the case of a mismatch, i.e. 
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where p(xic) expresses a relative frequency of the category xic of the i-th object. 
The dissimilarity measure is defined as 
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Clustering with the measures mentioned above is compared with results 
obtained using the overlap measure, which takes into account only whether two 
observations match or not. When determining similarity between variables xc and 
xd for the i-th object, it assigns value 1 if the variables match and value 
0 otherwise. 
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Unlike recently developed similarity measures, the overlap measure does not 
take into account frequency distribution of categories of a given object, which 
could serve as an important factor for determining similarity between variables. 
The comparison of the above mentioned coefficients applied for an object 
clustering with respect to the within-cluster variability is described in Šulc and 
Řezanková (2014). 

3. Evaluation criteria of final clusters 

In this paper, the quality of final clusters is evaluated from the aspects of the 
WCM (within-cluster mutability) coefficient and by the dendrogram analysis. 

The within-cluster variability is an important indicator of cluster quality. With 
an increasing number of clusters, the within-cluster variability decreases, so the 
clusters become more homogenous. In this paper, the measurement of the within-
cluster variability is based on the Gini coefficient, which determines the 
variability (mutability) of nominal variables. It is expressed by the following 
equation 
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where mg is the number of variables in the g-th cluster (g = 1, ..., k), ngiu is the 
number of variables in the g-th cluster by the i-th object with the u-th category (u 
= 1, 2, ..., h; h is the number of categories). After standardization of this 
coefficient with the aim to get values from 0 to 1, and its extending for n objects 
and k clusters, it can be expressed in a form of the normalized within-cluster 
mutability coefficient: 
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where m is the number of variables. The WCM coefficient is based on the Gꞌ 
measure, which was proposed by Řezanková et al. (2011) for the purpose of 
evaluation of object clustering. 

When clustering a relatively small number of variables, the dendrogram 
analysis can be very helpful. Dendrograms visualize the process of agglomerative 
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hierarchical clustering calculation. They have a form of charts, which have the 
examined variables, e.g. on the Y axis, and the distance between clusters on the X 
axis. They can be cut at any point to get a particular cluster solution. 

4. Real data application 

To illustrate the influence of selected association and other similarity 
measures on variable clustering, two variable sets, which come from the research 
Men and Women with a University Degree, are chosen. This survey was 
conducted by the Institute of Sociology of the Academy of Sciences of the Czech 
Republic, see the archives of the institute (http://archiv.soc.cas.cz). 

The following software was used for the analysis: Matlab, IBM SPSS 
Statistics, STATISTICA and MS Excel. In Matlab, proximity matrices for all 
similarity measures were computed. In IBM SPSS, hierarchical cluster analyses 
using CLM, SLM and ALM were performed. In STATISTICA, dendrograms 
were created. In MS Excel, evaluation criteria for cluster quality evaluation were 
computed. 

4.1. Description of the variable sets 

Two batteries of questions were chosen for the analysis. The first battery 
consists of 9 variables; all with two possible answers yes or no. The questions are: 
From family reasons, have you ever: p27a – worked part-time, p27b – worked in 
shifts, p27c – worked flextime, p27d – changed a job, p27e – changed a 
profession, p27f – moved, p27g – refused a job offer, p27h – refused a promotion 
offer, p27i – cheated at work? The cases with missing values were omitted, so 
answers from 1,904 respondents were included. 

The second battery deals with gender equality. It contains 9 variables, which 
all have three possible answers: women have better opportunities than men, men 
and women have approximately equal opportunities and men have better 
opportunities than women. The variables are the following: p13a – to get a job, 
p13b – to have better salary for the same job, p13c – to get a leadership, p13d – 
to be a director, p13e – to be promoted, p13f – for a salary increase, p13g – to 
gain benefits, p13h – to have authority, p13i – to keep a job. There is one 
additional variable with the name: p12 – a chance of success which has the same 
categories as the previous battery of questions. For this reason, it can be added to 
the set of variables. Overall, answers from 1,886 respondents were used. 

4.2. Binary variable clustering 

Table 1 presents values of the WCM coefficient for the solutions with two to 
five clusters for CLM, computed for the set of questions with binary answers. The 
quality of a particular cluster solution can be evaluated according to the within-
cluster variability expressed by the WCM coefficient. The lower the value of 
WCM, the better the cluster solution. For the two-cluster solution, most of the 
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measures, except for the Lin measure, provide the same results, i.e. 0.366. For 
cluster solutions for three and more clusters, the best results are provided by the 
recently developed similarity measures, i.e. IOF, Lin and OF, which have the 
same results. They are followed by the overlap measure and further by the both 
association measures. 

Table 1. Values of the WCM coefficient for clustering of binary variables (CLM) 
 WCM(2) WCM(3) WCM(4) WCM(5) 

Cramér’s V 0.366 0.320 0.255 0.186 
Coefficient U 0.366 0.320 0.254 0.186 
IOF measure 0.366 0.297 0.232 0.168 
OF measure 0.366 0.297 0.232 0.168 
Lin measure 0.375 0.297 0.232 0.168 
Overlap measure 0.366 0.301 0.236 0.172 
 

Another approach to evaluate the clustering performance is to use 
dendrograms, which are presented in Figure 1. When looking at the dendrograms, 
it is apparent that they can be separated into three groups from the point of view 
of the clustering structure. The first one comprises both the association measures, 
the second one includes the recently developed similarity measures and the last 
one contains only the overlap measure. Similarity measures in a particular group 
provide similar results. Since data dimension reduction is the primary goal of 
variable clustering, low-cluster solutions are preferred. 

When using SLM, as shown in Table 2, one might see that the results are very 
different from the results achieved by CLM. Generally, they are all worse. There 
are apparent interesting changes in behaviour of the similarity measures. Both 
association measures perform better than the recently developed similarity 
measures from the point of view of their within-cluster variability and the 
interpretation of dendrograms. Moreover, using SLM, the advantage of recently 
developed similarity measures, which is based on taking into account frequency 
distribution of categories, is not apparent in the results. Thus, their results are very 
similar to the overlap measure, which is also demonstrated by the similar structure 
of dendrograms of clustering with these measures in Figure 2. The best clusters 
are provided by Cramér’s V in the three-cluster solution. 
 

Table 2. Values of the WCM coefficient for clustering of binary variables (SLM) 
 WCM(2) WCM(3) WCM(4) WCM(5) 

Cramér’s V 0.378 0.299 0.232 0.186 
Coefficient U 0.372 0.333 0.232 0.186 
IOF measure 0.376 0.307 0.245 0.172 
OF measure 0.376 0.307 0.245 0.190 
Lin measure 0.376 0.307 0.245 0.190 
Overlap measure 0.376 0.307 0.245 0.190 
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Figure 1. Dendrograms for clustering of binary variables (CLM) 

It is important to note that the distances between pairs of variables are 
differentiated much worse by SLM than by CLM. This fact can cause a bad 
assignment of clusters into new ones when performing the agglomerative process, 
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because there are very small differences in their distance by SLM. Especially, 
such situations are noticeable by the uncertainty coefficient and the IOF measure 
in Figure 2. 

  

  

  
Figure 2. Dendrograms for clustering of binary variables (SLM) 
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CLM, as demonstrated in Figure 3. When examining the dendrograms, one can 
notice that the distances between clusters are not as large as by CLM, but they are 
considerably larger than by SLM. The best clusters are provided by the IOF 
measure. Actually, they are exactly the same as when using CLM. 

Table 3. Values of the WCM coefficient for clustering of binary variables (ALM) 
 WCM(2) WCM(3) WCM(4) WCM(5) 

Cramér’s V 0.366 0.320 0.254 0.186 
Coefficient U 0.366 0.333 0.232 0.186 
IOF measure 0.366 0.297 0.232 0.168 
OF measure 0.375 0.307 0.234 0.172 
Lin measure 0.366 0.300 0.232 0.168 
Overlap measure 0.375 0.307 0.238 0.177 

In the binary variable set, the best clusters are provided by IOF only when 
using SLM Cramér’s V provides better results. Unfortunately, it is not that they 
are good but because the other measures perform much worse. All the recently 
developed similarity measures have satisfying results when using CLM or ALM. 
In the end, the three-cluster solution of the IOF measure by CLM was chosen. 
The clusters look as follows. In the first cluster, there are variables regarding the 
kind of work (p27a – worked part-time, p27b – worked in shifts, p27c – worked 
flextime, p27i – cheated at work). The second cluster summarizes variables 
concerning changing a job (p27d – changed a job, p27e – changed a profession, 
p27f – moved). The third cluster describes variables regarding a refusal of a good 
offer in a job (p27g – refused a job offer, p27h – refused a promotion offer). 

4.3. Three-category variable clustering 

The within-cluster variability for two- to five-cluster solutions using CLM for 
three-category variables is contained in Table 4. The results are not as 
unambiguous as by the binary variables. In the two-cluster solution, the best 
results provide both the OF and the overlap measure. In the three-cluster solution, 
there is a different situation; both IOF and Lin have the best results. All the 
association measures provide worse results in comparison to other similarity 
measures, which have very similar results of the WCM coefficient. 

Table 4. Values of the WCM coefficient for clustering of three-category variables 
(CLM) 

 WCM(2) WCM(3) WCM(4) WCM(5) 
Cramér’s V 0.416 0.354 0.287 0.208 
Coefficient U 0.427 0.352 0.287 0.208 
IOF measure 0.385 0.317 0.259 0.208 
OF measure 0.381 0.322 0.261 0.196 
Lin measure 0.385 0.317 0.259 0.194 
Overlap measure 0.381 0.321 0.260 0.195 



602                                                          Z. Šulc, H. Řezanková: Evaluation of selected … 

 

 

Looking at the dendrograms in Figure 4, it is apparent that they can be divided 
into three groups according to the clustering structure. The first group contains 
both the association measures, Cramér’s V and the uncertainty coefficient. These 
measures have a tendency to create unbalanced clusters; all of them provide at 
least one cluster comprising only one variable. The second group includes IOF and 
Lin, and in the last group, there are OF and overlap. According to dendrograms 
interpretation, the best results are provided by the Lin measure, which has, except 
for the five-cluster solution, the same results as the IOF measure. 

  

  

  
Figure 3. Dendrograms for clustering of binary variables (ALM) 
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When using SLM, the within-cluster variability of similarity measures in a 
particular cluster solution is expressed in Table 5. Similarly as by the binary data 
set, the clustering results are much worse than by CLM. Except for the IOF 
measure, all other similarity measures provide very unbalanced clusters, which 
often contain only one variable. 

  

  

  

Figure 4. Dendrograms for clustering of three-category variables (CLM) 
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Table 5. Values of the WCM coefficient for clustering of three-category 
variables (SLM) 

 WCM(2) WCM(3) WCM(4) WCM(5) 
Cramér’s V 0.416 0.352 0.295 0.248 
Coefficient U 0.427 0.352 0.287 0.240 
IOF measure 0.381 0.329 0.267 0.202 
OF measure 0.416 0.358 0.295 0.198 
Lin measure 0.416 0.358 0.257 0.202 
Overlap measure 0.416 0.358 0.295 0.198 
 

According to the dendrograms in Figure 5, the OF and overlap measures 
provide clusters in a similar way. Again, the advantage of recently developed 
similarity measures, which take into account the frequency distribution of 
categories, does not seem to have a big importance by SLM. The best clusters are 
provided by the IOF measure, but they do not reach the quality of the same 
measure by CLM. 

The values of the WCM coefficient for ALM are displayed in Table 6. They 
are very similar to those provided by CLM; they differ only in details. The 
overlap measure has the best results across all cluster solutions. It is closely 
followed by the recently developed similarity measures and then by the 
association measures. 

Table 6. Values of the WCM coefficient for clustering of three-category variables 
(ALM) 

 WCM(2) WCM(3) WCM(4) WCM(5) 
Cramér’s V 0.416 0.352 0.295 0.209 
Coefficient U 0.427 0.352 0.287 0.208 
IOF measure 0.381 0.317 0.267 0.208 
OF measure 0.381 0.322 0.263 0.198 
Lin measure 0.385 0.323 0.259 0.202 
Overlap measure 0.381 0.316 0.256 0.198 
 

When looking at the dendrograms displaying the ALM clustering in Figure 6, 
one might see that some of them have a similar structure to CLM (the uncertainty 
coefficient, the overlap measure, and all the recently developed similarity 
measures). Thus, some measures provide similar results to SLM and some to 
CLM. The best results are provided by the overlap measure. 

Generally, in the three-category variable set, the best results are provided by 
the IOF measure. Outputs based on this measure are not the best in all cluster 
solutions; however, they are very robust in most situations. Actually, the best 
results by CLM, the Lin measure, and by ALM, the overlap measure, were the 
same as those provided by the IOF measure. By SLM, the IOF measure 
performed beyond competition. 
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The two-cluster solution obtained by CLM with the IOF measure was 
considered to be the best one. The first cluster deals with variables concerning 
getting a job (p13a – to get a job, p13b – to have better salary for the same job, 
p13c – to get a leadership, p13d – to be a director and p12 – a chance of 
success). The second cluster consists of variables regarding getting a better 
position in a respondent’s job: (p13e – to promote, p13f – for a salary increase, 
p13g – to gain benefits, p13h – to have authority, p13i – to keep a job). 

5. Conclusion 

In this paper, clustering performance of two kinds of similarity measures was 
examined: the association measures for nominal variables and the other similarity 
measures originally proposed for objects characterized by nominal variables. 
There were two main aspects of the comparison. Firstly, the final cluster solutions 
were evaluated from the point of view of the within-cluster variability; secondly, 
on the basis of dendrograms and judgments of the researcher. For the analysis, 
sets of binary and three-category variables were chosen. The influence of different 
types of linkage methods on resulting clusters was also examined. 
 

Overall, six similarity measures were evaluated in this paper. There were two 
association measures and four other similarity measures. The association 
measures, Crammer’s V and the uncertainty coefficient, focus on general 
dependence between two variables when determining their similarity. However, 
this way of similarity measuring may lead to a loss of some part of information, 
and thus, to worse dissimilarity determination. The results of the within-cluster 
mutability (WCM) coefficient and clusters unbalanced by this measures 
confirmed such a scenario. Therefore, the use of association measures is not 
suitable for clustering of nominal variables in cases where other possibilities can 
be considered. 
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Figure 5. Dendrograms for clustering of three-category variables (SLM) 
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Figure 6. Dendrograms for clustering of three-category variables (ALM) 
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mismatches on less frequent categories which allows it to be more sensitive to 
outliers in a data set. This approach proved to be more successful in comparison 
with the OF measure, which uses exactly the opposite weight system, which puts 
lower weights to those outliers. The Lin measure, as well as the OF measure, 
assigns lower weights to less frequent categories in the case of a mismatch, but 
more than that, it also assigns higher weights to more frequent categories in the 
case of a match. This makes its results very robust in comparison with the OF 
measure. The overlap measure offers no weight system. This measure provided 
similar results of the WCM coefficient with the rest of other similarity measures; 
however, the crucial difference was in cluster quality of resulting clusters. They 
were unbalanced and their dendrogram interpretation was worse than the rest of 
the other measures. On the whole, the IOF and Lin measures provided very good 
clusters of variables in both data sets from the aspects of the WCM coefficient as 
well as the dendrogram interpretation. Therefore, the use of one of these measures 
is highly recommended for variable clustering. 

When comparing the three linkage methods, the best results are provided by 
the complete one. It provides good differentiation of clusters; thus, it is easy to cut 
a dendrogram at a given point. Further, it creates clusters of a similar size, which 
is in accordance with reduction of a data set. The single linkage method provides 
very different results in comparison to the complete and average linkage methods. 
Moreover, the adjustments of recently developed similarity measures, which take 
into account frequency distribution of categories, do not seem to have any strong 
influence because of this method. On the whole, this method offers the worst 
results of all the examined linkage methods; therefore, it cannot be recommended 
for variable clustering. Thus, the complete or average linkage method should be 
preferred. 
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FUNCTIONAL REGRESSION IN SHORT-TERM 
PREDICTION OF ECONOMIC TIME SERIES  

Daniel Kosiorowski1 

ABSTRACT 

We compare four methods of forecasting functional time series including fully 
functional regression, functional autoregression FAR(1) model, Hyndman & 
Shang principal component scores forecasting using one-dimensional time series 
method, and moving functional median. Our comparison methods involve 
simulation studies as well as analysis of empirical dataset concerning the Internet 
users behaviours for two Internet services in 2013. Our studies reveal that 
Hyndman & Shao predicting method outperforms other methods in the case of 
stationary functional time series without outliers, and the moving functional 
median induced by Frainman & Muniz depth for functional data outperforms 
other methods in the case of smooth departures from stationarity of the time 
series as well as in the case of functional time series containing outliers.  

Key words: functional data analysis, functional time series, prediction.  

1. Introduction  

A variety of economic phenomena directly leads to functional data: yield 
curves, income densities, development trajectories, price trajectories, life of a 
product, and electricity or water consumption within a day (see Kosiorowski et al. 
2014). The Functional Data Analysis (FDA) over the last two decades proved its 
usefulness in the context of decomposition of income densities or yield curves, 
analyses of huge, sparse economic datasets or analyses of ultra-high frequency 
financial time series. The FDA enables an effective statistical analysis when the 
number of variables exceeds the number of observations. Using FDA we can 
effectively analyse economic data streams, i.e., for example, perform an analysis 
of non-equally spaced observed time series, which cannot be predicted using, e.g. 
common moving average or ARIMA framework, by analysing or predicting a 
whole future trajectory of a stream rather than iteratively predict single 
observations. 
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Using a functional regression where both the predictor as well as the response 
are functions, we can express relations between complex economic phenomena 
without dividing them into parts. Recently proposed models for functional time 
series give us a hope for overcoming the so-called curse of dimensionality related 
to nonparametric analysis of huge economic data sets (see Horvath and Kokoszka, 
2012). From other perspective, functional medians defined within the data depth 
concept for functional objects may have useful applications in the context of 
robust time series analysis – in the case of existence paths of outliers in the data. 

The analysis of functional time series (FTS) was considered, among others, in 
the literature in the contexts of: breast cancer mortality rate modelling and 
forecasting, call volume forecasting, climate forecasting, demographical 
modelling and forecasting, electricity demand forecasting, credit card transaction 
and Eurodollar futures (see Ferraty, 2011 for an overview), yield curves and the 
Internet users behaviours forecasting (Kosiorowski et al. 2014b), extraction of 
information from huge economic databases (Kosiorowski et al. 2014a). 

The FTS undoubtedly brings up conceptually new areas of economic research 
and provides new methodology for applications. It is not clear, however, which 
approaches proposed in the FTS literature up to now are the most promising in the 
context of FTS prediction. The main aim of this paper is to compare main 
approaches for FTS prediction using real data set related to day and night Internet 
users behaviours in 2013. Our paper refers to similar simulation studies of the 
selected FTS prediction methods presented in Didieriksen et al. (2011) and Besse 
et al. (2000). Additionally, we considered Hyndeman and Shang (2010) 
nonparametric FTS prediction and moving Frainman & Muniz functional median 
forecasting methods.  

The rest of the paper is organized as follows. In Section 2 we briefly describe 
selected approaches for FTS prediction. In Section 3 we compare the approaches 
using empirical examples. We conclude with Section 4 which discusses 
advantages and disadvantages of the approaches presented in Section 2. 

2. Functional time series prediction 

2.1. Preliminaries – functional time series 

Functions considered within the FDA are usually elements of a certain 
separable Hilbert space H  with certain inner product ,⋅ ⋅  which generates a 

norm ⋅ . A typical example is a space ( )2 2
0[ , ]LL L t t=  - a set of measurable 

real-valued functions x  defined on 0[ , ]Lt t satisfying
0

2 ( )
Lt

t

x t dt < ∞∫  . The space 

2L  is a separable Hilbert space with an inner product , ( ) ( )x y x t y t dt= ∫ . We 
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usually treat the random curve { }0( ), [ , ]LX X t t t t= ∈  as a random element of 
2L  equipped with the Borelσ  algebra. Recently, within a nonparametric FDA, 

authors have successfully used certain wider functional spaces, i.e. for example, 
Sobolev spaces (Ferraty and Vieu, 2006). 

In order to apply FDA into the economic researches, first we have to 
transform discrete observations into functional objects using smoothing, kernel 
methods or orthogonal systems representations. Then we can calculate and 
interpret functional analogues of basic descriptive measures such as mean, 
variance and covariance (for details see Ramsay and Silvermann, 2005; Górecki 
and Krzyśko, 2012).  

For the iid observations 1 2, ,..., NX X X  in 2L  with the same distribution as 
X , which is assumed to be square integrable we can define the following 

descriptive characteristics: 
( ) [ ( )]t E X tµ = ,  mean function,             (1) 

[ ]( , ) ( ( ) ( ))( ( ) ( ))c t s E X t t X s sµ µ= − − , covariancefunction,   (2) 

, ( )C E X Xµ µ = − ⋅ −  , covariance operator        (3) 

and correspondingly their sample estimators 
1

1

ˆ ( ) ( ),
N

i
i

t N X tµ −

=

= ∑
           

(4) 

1

1

ˆ ˆ ˆ( , ) ( ( ) ( ))( ( ) ( )),
N

i i
i

c t s N X t t X s tµ µ−

=

= − −∑
      

(5) 

1

1

ˆ ˆ ˆ( ) , ( ),
N

i i
i

C x N x x xµ µ−

=

= − −∑ 2 ,x L∈       (6) 

It is worth noting that Ĉ  maps 2L  into a finite dimensional subspace spanned 
by 1 2, ,..., NX X X . 

A functional analogue of the principal component analysis plays a central 
role in the FTS. For a covariance operator C , the eigenfunctions jv  and the 

eigenvalues jλ  are defined by ,j j jCv vλ= so if jv  is an eigenfunction, then so is 

jav – for any nonzero  scalar a . The jv  are typically normalized so that 1jv = . 

In a sample case we define the estimated eigenfunctions ˆ jv  and eigenvalues 
by 

 
ˆˆ ˆ ˆ( , ) ( ) ( )j j jc t s v s ds v tλ=∫ , 1, 2,...,j N= ,                                   (7) 

where ˆ( , )c t s  denotes estimated covariance function (see Górecki and Krzyśko, 
2012). 
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Let ( )ty x  denote a function, such as monthly income for the continuous age 
variable x  in year t . We assume that there is an underlying smooth function 

( )tf x which is observed with an error at discretized grid points of x . A special 

case of functional time series { }( )t t
y x

∈
 is when the continuous variable x  is 

also a time variable. For example, let { , [1, ]}wZ w N∈  be a seasonal time series 
which has been observed at N equispaced time points. We divide the observed 
time series into n  trajectories, and then consider each trajectory of length p  as a 
curve rather than p  distinct data points. The functional time series is then given 
by 

( ) { , ( ( 1), ]}t wy x Z w p t pt= ∈ −  , 1, 2,...,t n= .                            (8) 

The problem of interest is to forecast ( )n hy x+ , where h  denotes forecast 
horizon. 

In the context of FTS prediction, several methods have been considered in the 
literature up to now. Ramsay and Silverman (2005) and Kokoszka (2007) studied 
several functional linear models. Theoretical background related to the prediction 
using functional autoregressive processes can be found in Bosq (2000). 
Functional kernel prediction was considered in Ferraty and Vieu (2006), Ferraty 
(2011). An application of a functional principal component regression to FTS 
prediction can be found in Shang and Hyndeman (2011). 

For evaluating prediction quality of main approaches for FTS prediction in the 
case of our empirical data set related to the Internet users of certain services 
analysis, we refer to frameworks presented in two finite sample studies: Besse et 
al. (2000) and Didericksen et al. (2011). Within simulation studies, these authors 
have studied predictions at time n  errors nE and nR , 1 n N< < , defined in the 
following way: 

( )
0

2ˆ( ) ( )L

n n n

t

t
E X t X t dt= −∫ ,                                    (9) 

0

ˆ( ) ( )
L

n n n

t

t

R X t X t dt= −∫ ,       (10) 

for several N=50, 100, 200, several processes models and innovation processes. 

2.2. Prediction using fully functional model 

In the simple linear regression we consider observations from the following 
point of view 

0 1i i iY xβ β ε= + + , 1, 2,...,i N= ,           (11) 

where all random variables iY  as well the regressors ix are scalars. 
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In the case of a functional linear model, predictors, responses as well as 
analogues of the coefficients 0β  and 1β  may be curves and have to be 
appropriately defined. 

The fully functional model is defined as 

( ) ( , ) ( ) ( )i i iY t t s X s ds tψ ε= +∫ , 1, 2,...,i N=  ,                     (12) 

where responses iY  are curves and so are regressors iX . 

The fully functional model can alternatively be written as 

( ) ( ) ( , ) ( ),Y t X s s t ds tβ ε= +∫                                                 (13) 

where ( , ) ( , )s t t sβ ψ= , [ ]1( ) ( ),..., ( ) T
NY t Y y Y t= , [ ]1( ) ( ),..., ( ) T

NX s X s X s= , 

and [ ]1( ) ( ),..., ( ) T
Nt t tε ε ε= . 

Suppose { }, 1k kη ≥  and { }, 1l lθ ≥  are some bases which need not be 

orthonormal. Assume that the functions kη  are suitable for expanding the 

functions iX  and iθ  for expanding the iY . For estimating the kernel ( , )β ⋅ ⋅ , let 
us consider estimates of the form 

*

1 1
( , ) ( ) ( )

K L

kl k l
k l

s t b s tβ η θ
= =

=∑∑ ,      (14) 

in which K  and L  are relatively small numbers which are used as smoothing 
parameters.  

We obtain a least squares estimator by finding klb  which minimizes the 
residual sum 

2
*

1
( ) ( , ) .

N

i i
i

Y X s sβ
=

− ⋅∑ ∫
      

(15) 

Derivation of normal equations can be found in Horvath and Kokoszka 
(2012). Alternative estimators for (14) can be found in Ramsay and Silverman 
(2005), where authors used large K and L but introduced a roughness penalty on 
the estimates.  

Effective application of the model (12) relates to fulfilling an assumption that 
the conditional expectation [ ( ) | ]E Y t X  is a linear function of X . It is worth 
noting that within the functional regression setup it is possible to perform an 
analogue of regression diagnostics using functional residuals defined as  

ˆ ˆ( ) ( ) ( , ) ( ) ,i i it Y t t s X s dsε ψ= − ∫ 1,2,...,i N= ,     (16) 

and calculate an analogue of the coefficient of determination 



616                                                                     D. Kosiorowski: Functional regression … 

 

 

[ ]
[ ]

2 ( ) |
( ) ,

( )
Var E Y t X

R t
Var Y t
  =

       
(17) 

note that since [ ] [ ]( ) | ( )Var E Y t X Var Y t  ≤  , 20 ( ) 1R t≤ ≤ . The coefficient
2 ( )R t  quantifies the degree to which the functional linear model explains the 

variability of the response curves at a fixed point t . For the global measure we 
can integrate 2 ( )R t . 

2.3. Hyndman & Shang FPC regression  

Let [ ]1 2( ) ( ), ( ),..., ( ) T
nf x f x f x=f x  denote a sample of functional data. Note 

that at a population level, a stochastic process denoted by f  can be decomposed 
into the mean function and the products of orthogonal functional principal 
components and uncorrelated principal component scores. It can be expressed as  

1
k k

k
f µ β φ

∞

=

= +∑ ,                                           (18) 

whereµ  is the unobservable population mean function, kβ  is the kth principal 
component score. Assume that we observe n  realizations of f  evaluated on a 
compact interval 0[ , ]Lx t t∈ , denoted by ( )tf x  , for 1, 2,...,t n=  . At a sample 
level, the functional principal component decomposition can be written as 

,
1

ˆ ˆ ˆ( ) ( ) ( ) ( )
K

t t k k t
k

f x f x x xβ φ ε
=

= + +∑ ,                 (19) 

where 1

1
( ) ( )

n

t
t

f x n f x−

=

= ∑  is the estimated mean function, ˆ ( )k xφ  is the kth 

estimated orthonormal eigenfunction of the empirical covariance operator 

1

1

ˆ ( ) [ ( ) ( )][ ( ) ( )]
n

t t
t

C x n f x f x f x f x−

=

= − −∑ .    (20) 

The coefficient ,t̂ kβ  is the kth principal component score for year t. It is 

given by the projection of ( ) ( )tf x f x−  in the direction of kth eigenfunction
ˆ ( )k xφ , that is, 

,
ˆ ˆ ˆ( ) ( ), ( ) [ ( ) ( )] ( )t k t k t k

x

f x f x x f x f x x dxβ φ φ= − = −∫ ,             (21) 

where ˆ ( )t xε  is the residual, and K  is the optimal number of components, which 
can be chosen for example by cross validation. 
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By conditioning on the set of smoothed functions 

[ ]1 2( ) ( ), ( ),..., ( ) T
nf x f x f x=f x  and the fixed functional principal components 

1 2
ˆ ˆ ˆ( ), ( ),..., ( )

T

KB x x xφ φ φ =    , the Hyndman and Shangh-step-ahead forecast 

of ( )n hy x+  can be obtained as 

| | ,
1

ˆ ˆˆ ( ) [ ( ) | ( ), ] ( ) ( )
K

n h n n h n h n k k
k

y x E y x f x kβ φ+ + +
=

= = +∑f x B ,    (22) 

where | ,
ˆ

n h n kβ +  denotes the h-step-ahead forecast of ,n h kβ +  using univariate time 
series forecasting methods (i.e., for example, ARIMA, linear exponential 
smoothing). 

Note: because of orthogonality, the forecast variance can be approximated by 
the sum of component variances. 

2.4. Moving functional median 

For one dimensional sample 1 2{ , ,..., }N
NX X X X= and empirical 

cumulative density function (ecdf) { }1

1
( )

N

N i
n

F x N I X x−

=

= ≤∑  we can define the 

halfspace depth of iX as 

{ }( ) min ( ),1 ( )N i N i N iHD x F x F x= − .                              (23) 

We can obtain another one-dimensional depth using the following formula  

( ) 1 1/ 2 ( )N i N iD x F x= − − .                                       (24) 

For N functions{ }0( ), [ , ]i LX t t t t∈  and { }1
,

1
( ) ( )

N

N t i
n

F x N I X t x−

=

= ≤∑ we 

can define a functional depth by integrating one of the univariate depth (see Zuo 
and Serfling, 2000 or Kosiorowski, 2012 for a detailed introduction to the data 
depth concept). 

Frainman and Muniz (2001) proposed to calculate the depth of the curve as 

0

,( | ) 1 1/ 2 ( ( ))
Lt

n
N i N t i

t

FD X X F X t dt = − − ∫ .    (25) 

Frainman and Muniz median is defined as 

( ) arg max ( | )n n
FM i

i
MED X FD X X= .      (26) 
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We can predict next observations by means of the following formula  

1 ,
ˆ ( ) ( )n FM n kX t MED W+ = ,         (27) 

where ,n kW  denotes a moving window of length k  ending at moment n , i.e., 

, 1{ ( ),..., ( )}n k n k nW X t X t− += . 

3. Empirical example 

In order to check properties of the selected method of forecasting FTS we 
considered an empirical example related to behaviours of the Internet users of two 
services in 2012 and 2013. The services were considered with respect to the 
number of unique users and number of page views during an hour. Fig. 1 presents 
raw data for the year 2013. Fig. 2 presents the main idea of obtaining functional 
time series on the basis of a periodic one-dimensional time series (in the 
considered series the period equals 24 hours). Fig. 3 – 6 present obtained 
functional observations for the corresponding number of users in the first service, 
the number of users in the second service, the numbers of page views in the first 
service and the number of page views in the second service. Additionally, we 
added corresponding functional means and Frainman & Muniz functional 
medians to the Fig. 3 – 6.  

We considered a fully functional model, Hyndman and Shang principal 
component scores forecasting method, Ferraty and View (2006) functional kernel 
regression, functional autoregressive FAR(1) model described by Horvath and 
Kokoszka (2012) and estimated by their improved estimated kernel method and 
using moving Frainman and Muniz median. All calculations were conducted 
using fda (Ramsay et al., 2009), ftsa (Shang, 2013), fda.usc (Febrero-Bande and 
Oviedo de la Fuente, 2012) and DepthProc (Kosiorowski and Zawadzki, 2014). 
Below we present selected outputs for the methods which performed best within 
our empirical analysis. In all the situations we used 7–9 spline basis systems for 
transforming discrete data to the functional objects. 

 
Figure 1. The behaviour of Internet  
              users of two services in 2013 

Figure 2. An idea of transformation of  
               the data from univariate to 
               functional time series 
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Figure 3. Functional data – number of 
unique users during 24 hours 
in service 1 

Figure 4. Functional data – number of 
unique users during 24 hours 
in service 2 

 
Fig. 7 presents the results of a functional principal component analysis for 

functional data related to the number of users in the first considered service. We 
can see there the first two principal component functions and biplots for the 
observations. It is easy to propose an interpretation according to which the first 
component relates to using the service at work whereas the second component 
relates to using the Internet at home. Fig. 7 – 11 present the functional regression 
method proposed by Hyndman and Shang applied to the  corresponding number 
of users in the first service, the number of users in the second service, the 
numbers of page views in the first service and the number of page views in 
the second service. Each time we used three basis functions (upper panel) and 
calculated principal component scores (down panel).   

 
Figure 5. Functional data – number of 

page views during 24 hours 
in service 1 

Figure 6. Functional data – number of 
page views during 24 hours 
in service 2 
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Figure 7. Functional principal components for number of unique users in  
                 service 1 in 2013 
 
 
 

 
 

Figure 8. Hyndman & Shang functional PC scores method for number of users in 
service 1. Three basis function explaining 47%, 18% and 12% 
variability correspondingly 
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Figure 9. Hyndman & Shang functional PC scores method for number of users in 

service 2. Three basis function explaining 62%, 15% and 7% variability 
correspondingly 

 
Figure 10. Hyndman & Shang functional PC scores method for number of views 

in service 1. Three basis function explaining 42%, 20% and 12% 
variability correspondingly 

 
Figure 11. Hyndman & Shang functional PC scores method for number of views 

in service 2. Three basis function explaining 50%, 20% and 10% 
variability correspondingly 
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Fig. 12 – 13 present predictions for the considered examples using Hyndman 
and Shao method and ARIMA and linear exponential smoothing (ETS) for one-
dimensional time series of principal component scores (see Hyndman et al., 
2008). Fig. 14 – 15 present observed and predicted values of the number of users 
in the service 1 and the number of views in the service 1 using moving Frainman 
and Muniz median calculated from windows consisting of 50 functional 
observations. Fig. 16 presents observed and predicted values of the number of 
users in the service 1 calculated using fully linear regression model. Fig. 17 
presents residuals in this regression model and Fig. 18 – 19 present an estimated 
coefficient function for this regression model. 

 
 

 
 

Figure 12. FTS prediction of number of 
users in the Internet services 
using Hyndman and Shao 
FTSA method 

Figure 13. FTS prediction of number 
of page views in the 
Internet services using 
Hyndman and Shao FTSA 
method 

 
 
 

 
Figure 14. FTS prediction of number of 

users in the Internet service 
1 using moving Frainman & 
Muniz median 

Figure 15. FTS prediction of number 
of views in the Internet 
service 1 using moving 
Frainman & Muniz median 
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Figure 16. Prediction of number of users 

in the Internet service 1 using 
full regression model 

Figure 17. Prediction of number of 
users in the Internet 
service 1 using full 
regression model – 
functional residuals 

 
 

 
 
Figure 18. Contour plot:  prediction of 

number of users in the 
Internet service 1 using full 
regression model – estimated 
regression parameters  

Figure 19. Perspective plot: – 
prediction of number of 
users in the Internet 
service 1 using full 
regression model – 
estimated regression 
parameters 

 
For comparing the methods we divided the data set into two parts of equal 

sizes. We estimated prediction methods parameters using the first part of the data 
and tested them using the second part of the data. For testing the methods we used 
forecast accuracy measures proposed in Didieriksen et al. (2011) defined by 
formulas (9) and (10). According to our results the Hyndman and Shang method 
performed best, the moving Frainman and Muniz median performed the second 
best and the fully linear model was third. Surprisingly, the FAR(1) method as well 
as the kernel functional regression performed relatively poor in the case of our 
data set. This finding stays in a contrary to findings of Didieriksen et al. (2011), 
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where the simulation study was conducted. In the case of our data set, prediction 
effectiveness of Hyndman and Shang method (100%) in comparison to the 
moving Frainman and Muniz median and fully linear model was correspondingly 
as 100% to 91% to 87% in the case of the number of users prediction and as 
100% to 99% to 96% in the case of page views prediction. In the case of 
simulation studies with data simulated from simple nonstationary models (based 
on models from Didieriksen et al. (2011) for which we changed the mean function 
and the covariance function) – Frainman and Muniz median performed best.  

Additionally, Hyndman and Shang method exhibits the best properties in the 
context of economic interpretations. The estimated basis functions in a clear way 
decompose patterns of the Internet behaviour of users. We can easily notice 
components related to the Internet usage at work as well as the usage at home. 
The principal component scores time series show importance of the components 
within the considered period and may be effectively interpreted in a reference to 
certain political or social events. The eigenvalues corresponding to the 
eigenfunctions show importance of the particular components for the considered 
Internet service. We obtained the best predictions using linear exponential 
smoothing prediction for one-dimensional principal component scores. 

In the case of abrupt changes of the data generating mechanism we 
recommend using moving Frainman and Muniz median which easily adapt the 
prediction device. It is easy to notice that methods which are based on estimated 
principal component functions brake down when the covariance operator changes. 

Although fully functional model provides complex family of regression 
diagnostic and goodness of fit measures, its predictive power in the case of our 
example was below our expectations. Inspection of estimated coefficient function 
(Fig. 18 – 19) shows relative constant, as to the time arguments t and s, 
dependency of 24 hour activity of the Internet users. 

For all the considered methods, it is possible to calculate the prediction 
confidence bands. In this context, prediction confidence bands provided by 
Hyndman and Shang approach based on prediction bands for (uncorrelated) one-
dimensional time series prediction seem to be the most informative.  

4. Conclusions 

The forecasting quality of functional autoregression, fully functional 
regression and Hyndman & Shang method strongly depend on the stationarity of 
the underlying functional time series, the choice of a basis system, smoothness of 
the considered functions, the PCA algorithm used. For the considered empirical 
example, in the context of prediction as well as explanation of the considered 
phenomenon Hyndman & Shang method performed best. 

The moving Frainman and Muniz functional median performed best in the 
case of simulated processes containing additive outliers. Conceptually simple, the 
moving functional median seems to be the most promising in the context of 
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nonstationary functional time series analysis. The nonstationarity issues relate to 
our current and future studies. 
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DURATION-BASED APPROACH  
TO VAR INDEPENDENCE BACKTESTING 

Marta Małecka1 

ABSTRACT 

Dynamic development in the area of value-at-risk (VaR) estimation and growing 
implementation of VaR-based risk valuation models in investment companies 
stimulate the need for statistical methods of VaR models evaluation. Following 
recent changes in Basel Accords, current UE banking supervisory regulations 
require internal VaR model backtesting, which provides another strong incentive 
for research on relevant statistical tests. Previous studies have shown that 
commonly used VaR independence Markov-chain-based testing procedure 
exhibits low power, which constitutes a particularly serious problem in the case 
of finite-sample settings. In the paper, as an alternative to the popular Markov test 
an overview of the group of duration-based VaR backtesting procedures is 
presented along with exploration of their statistical properties while rejecting 
a non-realistic assumption of infinite sample size. The Monte Carlo test technique 
was adopted to provide exact tests, in which asymptotic distributions were 
replaced with simulated finite sample distributions. A Monte Carlo study, based 
on the GARCH model, was designed to investigate the size and the power of the 
tests. Through the comparative analysis we found that, in the light of observed 
statistical properties, the duration-based approach was superior to the Markov 
test.  

Key words: VaR backtesting, Markov test, Haas test, TUFF test, Weibull test, 
gamma test, EACD test. 
JEL Classification: C22, C52, D53, G11; 
AMS Classification: 62M10, 91B84, 62P05. 

1. Introduction 

In the context of business practice, value-at-risk (VaR) measure is by far the 
most popular approach to market risk valuation. Its increasing range of 
applications constantly boosts scientific discussion on various aspects of VaR. 
There is a parallel discussion in literature on VaR estimation methods and 
statistical evaluation of VaR models. Commonly used, Markov-chain-based test 
                                                        
1 University of Lodz, Department of Statistical Methods. E-mail: marta.malecka@uni.lodz.pl. 
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(Christoffersen, 1998), aimed at evaluating independence in VaR forecasts has 
been shown to exhibit unsatisfactory power (Lopez, 1999). For practical 
significance of the independence property, there has been a constant development 
in statistical testing procedures aimed at detecting various forms of dependence in 
VaR violation series. As an alternative to testing the number of exceptions and 
working on Markov property assumption, it was proposed to adopt a duration 
approach, which is based on transformation of the failure process into the duration 
series. 

The duration-based approach was primarily motivated by the concept of the 
time-until-first-failure test, in which the reverse of no-hit period is treated as an 
estimate of the success probability in the Bernoulli model (Kupiec, 1995). Both 
this test and its generalization in the form of the time-between-failures test (Haas, 
2001) were based on the Bernoulli process assumption. Another line of research 
explored the properties of the memory-free exponential distribution and included 
the regression-based exponential autoregressive conditional duration test (EACD 
test, Engle and Russel, 1998). Further approach utilizing the memory-free 
property was based on testing the assumption of the exponential distribution 
against the alternative of a wider class of probability distributions (Christoffersen 
and  Pelletier, 2004).  

The aim of this paper was to provide a revision of independence VaR tests 
based on durations between VaR exceptions and to present a comparative analysis 
of their statistical properties. We compared duration-based approach to the 
broadly used Markov independence test. Asymptotic probability distributions of 
the considered tests are known, however when the number of VaR violations is 
small, which is common in practice, there may be substantial differences between 
them and their finite sample analogues. Therefore statistical properties of all tests 
were evaluated with the use of Monte Carlo tests technique, which allowed us to 
obtain the null distribution of tests statistics in finite sample setting. Such a 
technique has a great advantage of providing exact tests based on any statistics 
whose finite sample distribution is intractable but can be simulated (Dufour, 
2006). Power properties of the tests were assessed in the simulation study in 
which GARCH-process assumption was adopted to stay in line with widely 
recognized facts about financial time series observed in daily intervals. 

Section 2 of this paper introduces the methodological framework for duration-
based testing. Section 3, dedicated to the simulation study, outlines the Monte 
Carlo tests procedure, provides details of the Monte Carlo study and contains 
simulation results. The final section summarizes and concludes the article. 
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2. Duration-based VaR tests 

VaR evaluation framework is based on the stochastic process of VaR failures: 

 1
1

1

1, ( )
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I

r VaR p
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 (1) 

where p −  tolerance level, tr −  value of the rate of return at time t , ( )tVaR p −  
value of the VaR forecast from moment t . Independence tests, based on the VaR 
failure process, use various forms of the alternative hypothesis. The alternative of 
the two-state Markov chain was proposed to test for serial correlation 
(Christoffersen, 1998). The null hypothesis in Christoffersen’s Markov test, 
formulated in terms of conditional probabilities of a single-step transition in the 
{ }tI  process, 0 01 11:H π π= , is verified by the statistic 

 𝐿𝑅𝑖𝑛𝑑 = −2log
𝜋�1
𝑡1(1− 𝜋�1)𝑡0
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where 1
1

0 1

ˆ t
t t

π =
+

, 0t −  number of non-exceptions, 1t −  number of exceptions,

ijπ − probability of transition from the state i  to the state j , 01
01

0

ˆ t
t

π = , 11
11

1

ˆ t
t

π = , 

ijt −  number of transitions form the state i  to the state j . State 0 in the above 
notation is interpreted as non-exception, while 1 represents VaR failure. Under 
the null, the probability of an exception at time t  does not depend on the state of 
the process at time 1t − , which means that null hypothesis is equivalent to the iid 
Bernoulli series. 

By contrast to testing the parameter restriction in the assumed Markov chain, 
duration-based tests use a transformation of the underlying { }tI  process into a 

duration series { }iV  defined as: 

 1i i iV t t −= − , (3) 

where it  denotes the day of the violation number i . The TUFF test (time-until-

first-failure test), based on the assumption that the { }tI  series is drawn from the 
Bernoulli process, investigates the time of no-hit sequence until the first VaR 
violation. The reverse of this time constitutes the estimate of the probability of 
success in the assumed Bernoulli model. The TUFF test generalization to the 
time-between-failures test (Hass, 2001), which requires all durations between 
violations, examines time-changeability of the Bernoulli process parameter. 
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The Haas test statistic, being a natural generalization of the TUFF statistic, takes 
the following form: 
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where 
1

i
i

p
V

= , 1V  – time until first failure, iV  – time between ( 1i − )th and i th 

violation.  
An alternative approach to duration testing is to utilize the exponential 

distribution as the only memory-free random distribution. The null hypothesis of 
the exponential distribution may be tested against the alternative distribution that 
allows dependence in the duration series. Similarly to the Markov and Haas test, 
the proposed exponential distribution tests are based on the LR framework 
(Domański et al., 2014), where the null model is nested in the alternative 
hypothesis. Therefore, the alternative family of distributions, in each variant of 
the test, involves the exponential distribution as a special case. 

The alternative distributions that nest the null hypothesis of the exponential 
distribution, proposed in the literature, involve Weibull and gamma distributions. 
In the case of the Weibull distribution, the pdf takes the form: 

 ( )1( )
b

iavb b
W i if v a bv e−−=  (5) 

and includes the exponential distribution as a special case for 1b = . Therefore, 
the null hypothesis takes the form H0:b=1 and the Weibull test requires fitting the 
unrestricted Weibull model and its restricted version for b=1. 

 Similarly for 1b =  the exponential distribution  is nested in the gamma 
distribution, given by the pdf: 

 
1

( )
( )

iavb b
i

i
a v ef v

b

−−

Γ =
Γ

. (6) 

As above, in an unrestricted case, it is necessary to maximize the gamma log 
likelihood function with respect to parameters a  and b  (Christoffersen and  
Pelletier, 2004). 

The above tests, based on a distribution of durations between VaR violations, 
do not take any account of the ordering of VaR failures, which is considered in 
the exponential autoregressive conditional duration (EACD) procedure (Engle and 
Russel, 1998). The EACD test verifies the independence of VaR failures utilizing 
the regression of the durations on their past values: 

 1 1( )i i iE V a bV− −= + . (7) 
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The exponential distribution assumption is also adopted, which gives the 
conditional pdf function of the duration iV  of the form:  

 1

1
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f v e
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−
−

+

−

=
+

, (8) 

which, for 0b = , nests the null model with the exponential distribution. 
The above tests require computation of the log likelihood function for the 

unrestricted and restricted case, which, if we take account of possible presence of 
censored durations at the beginning and at the end of the series, takes the 
following form: 

 

1

1 1 1 1
2

ln ( , ) ln ( ) (1 )ln ( ) ln ( )

ln ( ) (1 )ln ( )

N

i
i

N N N N

L V C S V C f V f V

C S V C f V

−

=

Θ = + − +

+ + −

+∑  (9) 

where iC  takes the value of 1 if the duration iV  is censored and 0 otherwise, S  

is the survival function of the variable iV  and N  is the number of VaR failures 
(Christoffersen and  Pelletier, 2004). 

3. Size and power properties 

With regard to practical implementation of the considered tests, which 
normally involves finite sample setting, we used a Monte Carlo (MC) tests 
technique. Such a technique provides exact tests based on any statistic whose 
finite sample distribution can be simulated (Dufour, 2006). Following MC tests 
procedure, we generated 9999M =  realizations of the test statistic iS  from the 
null model and replaced the theoretical distribution of the test statistic F  by its 
sample analogue based on 1,..., MS S . To generate the { }tI  series under the null, 
we used the Bernoulli distribution with the probability of success p , equal to the 
assumed level of VaR failure tolerance. Having calculated the survival function: 

 
1
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we computed the empirical quantiles of the test statistic distribution. For the test 
statistic 0S , the corresponding Monte Carlo p-value was obtained according to 
the formula: 
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The simulated distributions showed that all tests tend to be oversized in finite 
samples and they do not converge to the nominal test size of 5% with lengthening 
time series [Tab. 1]. The differences between the empirical and theoretical 
distribution quantiles were confirmed by the graphical comparison of the 
simulated and theoretical densities (Fig. 1-5). The Haas and EACD test statistics 
exhibited the largest discrepancies in the shape of the simulated and theoretical 
probability density function, which indicated that practical application of these 
tests shouldn’t be based on the asymptotic distributions. The empirical 
distribution of the Haas test was moved to the right off the theoretical shape, 
hence theoretical quantiles tended to be too small, translating into increased 
rejection rates. In the case of the EACD test the empirical distribution lied to the 
left of the theoretical curve, which gave undersized rejection rates. 

Table 1. Empirical size of the duration-based tests compared to Markov test 
 Series length 
 250 500 750 1000 1250 1500 

Markov test 0.078 0.084 0.117 0.130 0.125 0.111 
Haas test 0.112 0.135 0.183 0.195 0.223 0.199 

Weibull test 0.076 0.073 0.084 0.088 0.108 0.114 
Gamma test 0.071 0.080 0.090 0.109 0.128 0.157 
EACD test 0.008 0.007 0.009 0.011 0.012 0.015 

 

 
Figure 1. Simulated and theoretical pdf 
                of the Markov test statistics  
                for sample size 250 

 
Figure 2. Simulated and theoretical pdf of  
                the Haas test statistics for sample  
                size 250 

 
Figure 3. Simulated and  
        theoretical pdf of the  
        Weibull test statistics  
        for sample size 250 

 
Figure 4. Simulated and  
          theoretical pdf of the  
          gamma test statistics  
          for sample size 250 

 
Figure 5. Simulated and  
         theoretical pdf of the  
         EACD test statistics  
         for sample size 250 
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For the power comparison, we utilized the Monte Carlo simulation technique. 
The alternative model was obtained by generating return process from the 
GARCH-normal model with variance equation of the form 2

1 1t t th hω αε β− −= + +  
and computing VaR estimates from the incorrect homoscedastic model. The 
strength of the correlation in VaR failure series was assessed by the correlation 
coefficient of the squared returns ρ , whose value was set to 0.1, 0.3 and 0.5 in 
subsequent variants of the simulation experiment. The parameter values in the 
return data generating process: 0.000001ω = , 0.85β =  were chosen so as to 
stay in line with real financial process parameter estimates for daily data on stock 
markets (Małecka, 2011). The value of α  parameter ensured the required level of 
ρ  (Fiszeder, 2009). VaR forecasts were set to the level of the 0.05 quantile of the 
unconditional distribution of the return process, which guaranteed the appropriate 
overall failure rate.  

Having obtained the VaR violation series and the resulting duration series, we 
could compute the test statistics and use the Monte Carlo tests technique to 
evaluate corresponding p-values. Rejection rates under alternative hypothesis 
were calculated over 10000 Monte Carlo trials. The study was repeated for 
sample sizes 250, 500,..., 1500.  

In the simulation study, we rejected cases for which the test was not feasible, 
which constituted a nontrivial sample selection rule. This was particularly 
frequent for small samples when no VaR failures or a very small number of VaR 
failures occur. Therefore we reported effective power rates, which correspond to 
multiplying raw power by the sample selection frequency. 

Table 2. Empirical effective power of the duration-based tests compared 
               to Markov test 

Test ρ  Series length 
250 500 750 1000 1250 1500 

Markov test 
0.1 0,082 0,157 0,175 0,250 0,266 0,296 
0.3 0,199 0,423 0,579 0,683 0,749 0,824 
0.5 0,203 0,492 0,611 0,720 0,798 0,857 

Haas test 
0.1 0,353 0,490 0,622 0,717 0,750 0,843 
0.3 0,390 0,594 0,747 0,834 0,904 0,945 
0.5 0,473 0,662 0,790 0,889 0,924 0,959 

Weibull test 
0.1 0,064 0,134 0,199 0,318 0,318 0,436 
0.3 0,303 0,679 0,851 0,932 0,968 0,974 
0.5 0,381 0,731 0,878 0,938 0,971 0,985 

Gamma test 
0.1 0,026 0,051 0,079 0,136 0,144 0,197 
0.3 0,104 0,499 0,745 0,884 0,945 0,967 
0.5 0,120 0,546 0,815 0,915 0,961 0,972 

EACD test 
0.1 0,135 0,227 0,253 0,279 0,302 0,318 
0.3 0,177 0,358 0,512 0,567 0,621 0,667 
0.5 0,239 0,408 0,503 0,590 0,625 0,676 
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The comparative analysis of the empirical power (Tab. 2) indicated 
superiority of the duration-based approach to the Markov test. Finite sample 
rejection rates showed that for all sample sizes the Haas test exhibited the highest 
power. It was superior to other tests both for the shortest examined series of 250 
observations, which is the minimal series length required for the VaR backtesting 
by the banking supervision in EU countries, and for the longest series. In all 
experimental variants, the observed power of the Haas test exceeded 30%. In the 
case of longest series the empirical power was over 90%. However, in the light of 
large discrepancy between the empirical and theoretical null distribution, the Haas 
test application should be limited to the analysis carried out with the use of the 
Monte Carlo test technique, which guarantees the exact test size. 

Comparison of the two procedures based on testing the memory-free property 
against the Weibull or gamma alternative showed that for small sample sizes the 
Weibull test outperformed the gamma test. Apart from Haas test, the Weibull 
approach was another procedure superior to the Markov test. For smallest 
examined sample size, the observed power of this test was over 30% in two out of 
three experiment variants. For the largest samples the power estimates reached the 
levels of over 90%.  

From all the considered procedures, including Markov test, the EACD test 
exhibited the lowest empirical power. This test was also outperformed by all other 
tests in terms of the test size. 

4. Summary and conclusions  

The paper explored the family of tests based on durations between subsequent 
VaR failures and provided insight into statistical properties of duration-based tests 
in comparison to commonly used Christoffersen’s Markov test of 1998. Within 
the duration-based framework we presented the 1995 Kupiec concept of the time-
until-first-failure test and its generalization by Haas – the time-between-failures 
test of 2001, which are based on the Bernoulli process assumption. Further line of 
enquiry was the regression-based approach by Engle and Russel of 1998, which 
utilized the concept of testing the properties of the exponential distribution. 
Finally we investigated procedures, proposed by Christoffersen and Pelletier in 
2004, based on the assumption of the memory-free exponential distribution tested 
against the alternative involving a wider class of probability distributions. 
Statistical properties of all tests were evaluated with the use of the Monte Carlo 
tests technique, which allowed us to obtain the null distribution of tests statistics 
in finite sample setting. Power properties of the tests were assessed in the 
simulation study based on the GARCH-normal assumption. 

The comparative analysis indicated superiority of the duration-based approach 
to the Markov test. Finite sample rejection rates were the highest for the Haas test. 
On the other hand, the Haas test statistic exhibited the largest discrepancy in the 
shape of the empirical and theoretical probability density function, which 
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indicated that asymptotic critical values for small samples can be misleading. 
Rejection rates for Weibull tests were higher than for the gamma procedure, also 
based on checking the memory-free property, and this test was the second 
duration-based procedure superior to the Markov test. The EACD test was 
outperformed by all other procedures in terms of both test size and power. 
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REPORT 

The XXXIII International Conference on Multivariate 
 Statistical Analysis, 

17–19 November 2014, Łódź, Poland 

  

The 33rd edition of the International Conference on Multivariate Statistical 
Analysis was held in Lodz, Poland, on November 17−19, 2014. The MSA 2014 
conference was organized by the Department of Statistical Methods of the 
University of Lodz, the Institute of Statistics and Demography of the University 
of Lodz, the Polish Statistical Association and the Committee on Statistics and 
Econometrics of Polish Academy of Sciences. The Organizing Committee 
included: Professor Czesław Domański (Chairman) and Marta Małecka and 
Elżbieta Zalewska, (scientific secretaries) from the Department of Statistical 
Methods of the University of Lodz. 

The Mayor of the City of Lodz, Hanna Zdanowska took the honorary 
patronage of the Multivariate Statistical Analysis MSA 2014 conference. Its 
organization was financially supported by the National Bank of Poland, the Polish 
Academy of Sciences, the Lodz City Council and StatSoft Polska Sp. z o.o.  

The 2014 edition, as all previous Multivariate Statistical Analysis 
conferences, aimed at creating the opportunity for scientists and practitioners of 
statistics to present and discuss the latest theoretical achievements in the field of 
the multivariate statistical analysis, its practical aspects and applications. 
A number of presented and discussed statistical issues were based on questions 
identified during previous MSA conferences. The scientific programme covered 
various statistical problems, including multivariate estimation methods, statistical 
tests, non-parametric inference, discrimination analysis, Monte Carlo analysis, 
Bayesian inference, application of statistical methods in finance and economy, 
especially methods used in capital market and risk management. The topic range 
also included design of experiments and survey sampling methodology, mainly 
for the social science purposes. The conference was attended by 87 participants 
from the main academic centres in Poland (Bialystok, Katowice, Krakow, 
Olsztyn, Opole, Poznan, Rzeszow, Szczecin, Torun, Warszawa, Wroclaw) and 
from abroad (Finland, Ukraine, Lithuania). The list of participants included 
scientists, academic tutors as well as representatives of the National Bank of 
Poland, local statistical offices and business. In 17 sessions 67 papers were 
presented, including 3 invited lectures. 
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The conference was opened by Professor Czesław Domański. The subsequent 
speakers on the conference opening were Professor Antoni Różalski, 
a representative of the Rector of the University of Lodz, Professor Włodzimierz 
Nykiel and Professor Paweł Starosta, the Dean of the Faculty of Economics and 
Sociology of the University of Lodz. 

After the opening ceremony all participants had the opportunity to attend the 
invited lecture by Professor Józef Pociecha, Professor Barbara Pawełek, Mateusz 
Baryła and Sabina Augustyn (Cracow University of Economics) Crucial 
Problems Of Corporate Bankruptcy Modelling And Prediction. The second 
invited lecture was presented by Professor Tadeusz Trzaskalik (University of 
Economics in Katowice) at the opening of the second day of the conference and 
was dedicated to Modelling And Synthesis Of Preferences In Discrete 
Multicriteria Decision Problems. At the conference closing the participants 
attended the invited lecture by Tomasz Górecki, Professor Mirosław Krzyśko and 
Waldemar Wołyński (Adam Mickiewicz University) entitled Multivariate 
Functional Regression Analysis With Application To Classification Problems. 

Among regular conference sessions, the historical plenary session was held, 
chaired by Professor Mirosław Krzyśko, and dedicated to eminent Polish 
scientists. Professor Czesław Domański (University of Lodz) recalled the work 
and profile of outstanding Polish statisticians: Władysław Grabski and Oskar 
Lange. Professors Tadeusz Bednarski (University of Wroclaw), Józef Dziechciarz 
(Wroclaw University of Economics) and Paweł Starosta (University of Lodz) 
shared their memories of Jerzy Spława-Neyman, Zdzisław Hellwig and 
Władysław Welfe, respectively. Professor Iwona Markowicz (Szczecin 
University) dedicated her presentation to Mirosława Gazińska. Grzegorz Wyłupek 
(University of Wroclaw) outlined the life and scientific achievements of  Józef 
Łukaszewicz and Piotr Nowak (University of Wroclaw) presented the profile of 
and Jarosław Bartoszewicz. 

Other sessions were chaired respectively by: 
SESSION II   Professor Tadeusz Bednarski (University of Wroclaw) 
SESSION III   A Professor Grażyna Trzpiot (University of Economics   
      in Katowice) 
SESSION III   B Professor Andrzej Dudek (Wroclaw University    
       of Economics) 
SESSION IV A  Professor Daniel Kosiorowski (Cracow University     
      of Economics) 
SESSION IV B  Professor Józef Pociecha (Cracow University of Economics)  
SESSION V A  Professor Janusz Wywiał (University of Economics    
      in Katowice) 
SESSION VI   A Professor Jerzy Korzeniewski (University of Lodz) 
SESSION VI   B Professor Tadeusz Trzaskalik (University of Economics  
      in Katowice) 
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SESSION VII A  Professor Andrzej Sokołowski (Cracow University     
      of Economics) 
SESSION VII B  Professor Marek Walesiak (Wroclaw University     
      of Economics) 
SESSION VIII A Professor Grzegorz Kończak (University of Economics   
      in Katowice) 
SESSION VIII B  Professor Józef Dziechciarz (Wroclaw University     
      of Economics) 
SESSION IX A  Professor Grażyna Dehnel (Poznan University of Economics) 
SESSION IX B  Professor Małgorzata Markowska (Wroclaw University   
      of Economics) 
SESSION X   Professor Bronisław Ceranka (Poznan University of Life   
      Sciences) 
 

The MSA 2014 conference was closed by the Chairman of the Organizing 
Committee, Professor Czesław Domański, who summarized the Conference as 
very effective and added that all discussions and doubts should become 
inspirations and strong motivations to further work for both scientists and 
practitioners. Finally, he thanked all the guests, conference partners and sponsors. 

The next edition of Multivariate Statistical Analysis Conference MSA 2015 is 
planned on November 16th − 18th, 2015, and will be held in Lodz, Poland. The 
Chairman of the Organizing Committee, Professor Czesław Domański informed 
all that this will be the 34th edition of the conference and kindly invited all 
interested scientists, researchers and students to take part in it.   
  
Prepared by: 
Marta Małecka 
Department of Statistical Methods, University of Lodz 
Elżbieta Zalewska 
Department of Statistical Methods, University of Lodz 
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