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FROM THE EDITOR 

At the outset of this issue, I would like to turn attention of the reader to the 
important change in the composition of the Editorial Board of the Statistics in 
Transition new series. First, let me take this opportunity to thank those who are 
stepping down after serving on the Editorial Board for the past seven years for all 
their help, inspiration and encouragement which I personally and other members 
of the Editorial Office have been obtaining from them over that period. And to 
express my, as well as of Prof. Janusz Witkowski, the President of the Central 
Statistical Office of Poland and of Prof. Czeslaw Domanski, the President of the 
Polish Statistical Association, gratefulness for their hitherto contributions and for 
readiness to continue to collaborate with us in a slightly different function, as 
members of the Associate Editors, to: Prof. Prof. Walenty Ostasiewicz,  
Tomasz Panek, Jan Paradysz, Miroslaw Szreder, and Mr. Wladyslaw 
W. Lagodzinski.  

At the same time, I would like to welcome new members of the Board who 
were invited to serve in this function, starting with this issue. Given a vital role 
the body plays for the overall quality of the journal, and for its image and 
prestige, I would like to express - also on behalf of Prof. Janusz Witkowski and 
of Prof. Czeslaw Domanski, who are jointly co-chairing the new Board - our 
sincere appreciation for accepting this invitation to Prof. Prof.: Sir Anthony B. 
Atkinson, Graham Kalton, Malay Ghosh, Miroslaw Krzysko, and Janusz L. 
Wywial. We all look forward to keeping the journal on the ambitious track of its 
growing significance and usability for the community of statisticians, producers 
and users of statistics, worldwide.  

Another thing the importance of which I would like to stress here is the 
announced earlier intention to prepare one of the future issues of the journal - 
actually, the first issue of the next year (i.e. Winter 2015) - as a thematic 
collection of papers devoted to subjective well-being as an object of survey 
research in both national and international contexts. With the invaluable aid of 
Graham Kalton, who has kindly agreed to act as a Guest (co)Editor of the 
planned issue, and helps us with the challenging task of arranging for such a 
collection of papers, we hope to be able to complete the needed input by the end 
of this year - see the Call for Papers below.  

Along the line of our efforts to have the Statistics in Transition new series 
covered by monitoring systems of international indexation bases, we are pleased 
to inform our partners and collaborators that (in addition to the systems which are 
already monitoring our journal) currently the SiTns is under consideration for 
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being included in the system of Central and Eastern European Online Library 
(CEEOL).  

As regards the contents of this issue, there are three articles devoted to 
sampling methods and estimation, one research paper and six articles based on 
papers presented at the conference Multivariate Statistical Analysis held in Lodz  
last year 2013. They are briefly characterized below.  

Adulhakeem A. H. Eideh's paper On the Use of Sampling Weights and 
Sample Distribution When Estimating Regression Models Under Informative 
Sampling shows that the use of sampling weights when estimating regression 
models with survey data and the use of sample distribution in fitting regression 
models with survey data proposed in the literature are coincide methods, dealing 
with essentially the same statistical problem. Discussion of these two methods 
leads to conclusion that only difference between them lays in estimating the 
informativeness parameter ( 2γ ). Author hopes that his investigation will 
contribute to further theoretical and empirical research in these areas. 

Kumari Priyanka and Richa Mittal  discuss the problem of estimation of 
population median at current occasion in two-occasion successive sampling in 
Effective Rotation Patterns for Median Estimation in Successive Sampling. 
They propose best linear unbiased estimators by utilizing additional auxiliary 
information, readily available on both the occasions. Asymptotic variances of the 
proposed estimators are derived and the optimum replacement policies are 
discussed. The behaviours of the proposed estimators are analyzed on the basis of 
data from natural populations. Simulation studies have been carried out to 
measure the precision of the proposed estimators. Authors believe that the 
proposed estimators may be useful for survey practitioners. 

G. N. Singh and D. Majhi  also use the information on two-auxiliary 
variables in order to propose in the paper on Some Chain-type Exponential 
Estimators of Population Mean in Two-Phase Sampling  three different 
exponential chain-type estimators of population mean of study variable in two-
phase (double) sampling. Properties of the proposed estimators have been studied 
and their performances are examined with respect to several well known chain-
type estimators. Empirical studies are carried out to support the theoretical results. 
The proposed estimators show to be preferable over alternative estimators for the 
population which satisfies some conditions (derived in the text); therefore, they 
may be recommended for their practical applications. 

Tomasz Gorecki, Miroslaw Krzysko, Lukasz Waszak, Waldemar 
Wolynski discuss some Methods of Reducing Dimension for Functional Data. 
They start with classical data analysis with objects being characterized by many 
features observed at one point of time and typically presented graphically in order 
to see their configuration, eliminate outlying observations, observe relationships 
between them, or to classify them. Authors propose a new method of constructing 
principal components for multivariate functional data, and illustrate its application 
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for data from environmental studies. Their research has shown that the use of a 
multivariate functional principal components analysis leads to desired results, 
though the performance of the algorithm needs to be further evaluated on both 
real and artificial data sets. 

The series of articles based on aforementioned conference papers is opened by 
Lukasz Feldman's, Radoslaw Pietrzyk's and Pawel Rokita's article 
Multiobjective Optimization of Financing Household Goals with Multiple 
Investment Programs.  They propose a technique of facilitating life-long 
financial planning for a household by finding the optimal match between 
systematic investment products and multiple financial goals of different 
realization terms and magnitudes. As this is a multi-criteria optimization, they 
consider several objectives, such as (i) compliance between the expected term 
structure of cumulated net cash flow throughout the life cycle of the household 
with its life-length risk aversion and bequest motive; (ii) financial liquidity in all 
periods under expected values of all stochastic factors; (iii) minimization of net 
cash flow volatility; and (iv) minimization of costs of the investment plan 
combination. The result is a set of systematic-investment programs with 
accompanying information which programs are destined to cover particular 
financial goal. As a result, an optimization procedure is proposed based on an 
original goal function (adjusted to the proposed household financial plan model). 

Alina Jedrzejczak employs the Gini index decomposition procedures to 
analyze Income Inequality and Income Stratification in Poland. Starting with an 
overview of several methods of decomposing Gini, selected approaches to the 
analysis of income distribution were used to show the extent to which the 
inequality in different subpopulations contributes to the overall income inequality 
in Poland. And to what extent members of the subpopulation groups 
(of households) form distinct segments or strata. Particular use was made of the 
Dagum procedure of Gini decomposition since it is based on the concept of 
economic distance between distributions and relative economic affluence and 
accounts for different variances and asymmetries of income distributions in 
subpopulations, and gives an important contribution to the understanding of the 
overlapping term. Also decomposition proposed by Yitzhaki and Lerman is 
discussed as it encompasses the stratification problem due to linking social 
stratification with inequality. The households were divided by economic regions 
using the Eurostat classification units NUTS 1 as well as by family type defined 
by the number of children.  

Grazyna Trzpiot's paper Application of Coherent Distortion Risk Measures 
is devoted to solving the problem of portfolio selection. It presents an extension 
of the well-known optimization framework for Conditional Value-at-Risk 
(CVaR)-based portfolio selection problems to optimization over a more general 
class of risk measure known as the class of Coherent Distortion Risk Measure 
(CDRM). CDRM class of risk measures is the intersection of Coherent Risk 
Measure (CRM) and Distortion Risk Measure (DRM). CDRM includes many 
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well-known risk measures. In conclusion, the use of the discussed procedure  to 
the development of  a CDRM-based portfolio optimization framework is being 
offered.   

In the next paper, Selected Tests Comparing the Accuracy of Inflation Rate 
Forecasts Constructed by Different Methods by Agnieszka Przybylska-Mazur, 
the problem of forecasts of macroeconomic variables - including the forecasts of 
inflation rate - is discussed in the context of projection of future situation in the 
economy. Knowledge of effective forecasts allows making optimal business, 
financial and investment decisions. Author applies selected tests to the evaluation 
of the accuracy of inflation rate forecasts determined by different methods. 
A general conclusion after employing different procedures to the problem of 
projection states that the differences in values result from the change in the 
assumptions about the projections in the different reports. 

Malgorzata Markowska, Marek Sobolewski, Andrzej Sokolowski, 
Danuta Strahl present Tests for Connection Between Clustering of Polish 
Counties and Province Structure based on Sokolowski et. al. idea of statistical 
tests which allow to check the influence of geographical or administrative units of 
upper level onto clustering results of lower level units. They use so called “active 
border” notion  for the borders between counties and also between provinces. The 
number and length of active boarders are used in the proposed test statistics, the 
distribution of which depends on the actual geographic division of a given 
country. Table for test critical values and the approximation functions are 
provided. According to the authors, the proposed test can be useful in testing the 
relations between administrative levels in Poland with respect to economic as well 
as to public administration and quality of life phenomena. 

Bronislaw Ceranka's and Malgorzata Graczyk's  paper On Certain  
A-Optimal Biased Spring Balance Weighing Designs is focused on the 
estimation of unknown measurements of p objects in the experiment conducted in 
accordance with the model of the spring balance weighing design. The weighing 
design is called biased if the first column of the design matrix has elements equal 
to one only. The A-optimal design is a design in which the trace of the inverse of 
information matrix is minimal. The main result is the broadening of the class of 
experimental designs so that we are able to determine the regular A-optimal 
design. Authors provide the lowest bound of the covariance matrix of errors and 
they give new construction methods of the regular A-optimal spring balance 
weighing design based on the incidence matrices of the balanced incomplete 
block designs. An example illustrates the procedure at work.   

The issue is concluded with information on the conference on Coherence  
Policy and the Development of Cross-border Areas Along the European Union’s 
External Border (27-28 June 2014, Krasiczyn-Arlamow, Poland) 

Wlodzimierz Okrasa 
Editor 
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SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and the Central Statistical 
Office of Poland, on a quarterly basis (during 1993–2006 it was issued twice and 
since 2006 three times a year). Also, it has extended its scope of interest beyond 
its originally primary focus on statistical issues pertinent to transition from 
centrally planned to a market-oriented economy through embracing questions 
related to systemic transformations of and within the national statistical systems, 
world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved 
in data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy 
makers and the general public – with a platform for exchange of ideas and for 
sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 
– as either a scientific domain (new research and data analysis methods) or as a 
domain of informational infrastructure of the economy, society and the state – are 
appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 
internationally recognized experts, who are guided in their decisions about the 
publication by criteria of originality and overall quality, including its content and 
form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
sit@stat.gov.pl., followed by a hard copy addressed to 
Prof. Wlodzimierz Okrasa, 
GUS / Central Statistical Office  
Al. Niepodległości  208, R. 287, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published previously 
and that it is not under review elsewhere. It should include an abstract (of not 
more than 1600 characters, including spaces). Inquiries concerning the submitted 
manuscript, its current status etc., should be directed to the Editor by email, 
address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 
on its Web site: http://pts.stat.gov.pl/en/journals/statistics-in-transition/ 

 

mailto:@stat.gov.pl
mailto:w.okrasa@stat.gov.pl
http://pts.stat.gov.pl/czasopisma/statistics-in-transition/
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CALL FOR PAPERS: 
THE MEASUREMENT OF SUBJECTIVE WELL-BEING IN SURVEY 

RESEARCH 

Subjective well-being has been a subject of research for many years, but 
interest in the subject has grown markedly in the past decade, including among  
official statisticians. The early efforts to measure subjective well-being in surveys 
were made by behavioural (psychometrics), economic (econometrics) and social 
scientists in academic settings. The subject is now recognized as having important 
policy applications, thus leading to the demand for the measurement of subjective 
well-being in both national and international official surveys. Significant 
problems related to survey context exist in developing effective measures of 
subjective well-being, and these problems are particularly acute when the 
measures are to be used for international or cross-cultural comparisons. In 
recognition of the importance of measuring subjective well-being in surveys and 
the challenges this presents, Statistics in Transition plans to publish a collection 
of papers on statistically relevant aspects of research on subjective well-being in 
its first issue next year (Vol. 16, No. 1). The aim is to provide an insightful 
overview of the theoretical, methodological, and practical issues involved. 

Researchers are invited to submit papers on any aspect of the subject 
including, but not limited to, the following:   
1. The conceptualization of subjective well-being and its multidimensional 

nature.  
2. The operationalization and the measurement of subjective well-being, 

including the trade-offs involved (e.g., the number of items used in its 
measurement vs. the added response burden, the concern about validity and 
other methodological matters vs. a tendency to build upon existing methods 
and surveys).  

3. The data collection methods used (e.g., if and how respondents’ reports of 
their well-being are mode-dependent). 

4. The uses made of the well-being measures and the analytic framework 
employed. 

5. The interpretation of results, particularly for international comparisons.  
6. Experiences in the use of subjective well-being measures in surveys.  

In order to allow time for each submitted paper to go through a double-blind 
peer review process, papers should be submitted by December 30, 2014. For 
technicalities concerning editorial requirements and the submission procedure, 
please consult our 'Guidelines' link: 

 http://pts.stat.gov.pl/en/journals/statistics-in-transition/ 

Graham Kalton, Guest Editor 
Christopher Mackie, Guest Editor  
Wlodzimierz Okrasa, Editor   
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ON THE USE OF SAMPLING WEIGHTS AND SAMPLE 
DISTRIBUTION WHEN ESTIMATING REGRESSION 

MODELS UNDER INFORMATIVE SAMPLING 

Adulhakeem A. H. Eideh1 

ABSTRACT 

In this paper we show that the use of sampling weights when estimating 
regression models with survey data discussed by Magee, Robb and Burbidge 
(1998), and the use of sample distribution in fitting regression models with survey 
data proposed by Pfeffermann and Sverchkov (1999) are coincide methods 
dealing with the same statistical problem. 

Key words: sample likelihood, first order inclusion probability, two-step 
maximum likelihood method. 

1. Introduction 

Some recent work has considered the definition of the sample distribution 
under informative sampling. When the sample selection probabilities depend on 
the values of the model response variable, even after conditioning on a uxiliary 
variables, the sampling mechanism becomes informative and the selection effects 
need to be accounted for in the inference process. Pfeffermann, Krieger and 
Rinott (1998) propose a general method of inference on t he population 
distribution (model) under informative sampling that consists of approximating 
the parametric distribution of the sample measurements. The sample distribution 
is defined as the distribution of the sample measurements given the selected 
sample. Under informative sampling, this distribution is different from the 
corresponding population distribution, although for several examples the two 
distributions are shown to be in the same family and only differ in some or all the 
parameters. The authors discuss and illustrate a g eneral approach of 
approximating the marginal sample distribution for a given population 
distributions and first order sample selection probabilities. For more discussion on 
analysis of complex survey data, see Chambers and Skinner (2003), Skinner, 
Holt, and Smith (1989), Skinner (1994), Magee, Robb and Burbidge (1998), 
                                                           
1 Department of Mathematics, College of Science and Technology, Al-Quds University, Abu-Dies 

campus, Palestine, P.O. Box 20002, Jerusalem. E-mail: msabdul@science.alquds.edu. 
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Eideh (2003, 2007, 2008, 2009, 2010, 2011, 2012a, 2012b), Eideh and Nathan 
(2006, 2009), Pfeffermann, Krieger and Rinott (1998), Pfeffermann and 
Sverchkov (1999, 2003), and Sverchkov and Pfeffermann (2004). 

In this paper we will show that the use of sampling weights when estimating 
regression models with survey data discussed by Magee, Robb and Burbidge 
(1998), and the use of sample distribution in estimating regression models with 
survey data discussed by Pfeffermann, Krieger and Rinott (1998) and 
Pfeffermann and Sverchkov (1999) are coincide methods dealing with same 
statistical problem. 

The plan of this paper is as follows. In Section 2 we consider probability 
weighting. In Section 3 we discuss pseudo-likelihood estimation. Section 4 deals 
with the use of sampling weights when estimating regression models with survey 
data. Section 5 i ntroduces the use of sample distribution when estimating 
regression models with survey data. We conclude with a brief discussion in 
Section 6. 

2. Probability weighting 

Let { }NU ,...,1=  denote a finite population consisting of N units. Let y  be 
the target or study variable of interest and let iy  be the value of y  for the thi  

population unit. At this stage the values iy  are assumed to be fixed unknown 
quantities. Suppose that an estimate is needed for the population total of y , 

∑∈
=

Ui iyT . A probability sample s  is drawn from U  according to a specified 

sampling design. The sample size is denoted by n . The sampling design induces 
inclusion probabilities for the different units of U . Let ( )sii ∈= Prπ  be the first 
order inclusion probability of the thi  population unit. The Horvitz-Thompson 
estimator or probability-weighted (PW) estimator of the population total of y , 

∑∈
=

Ui iyT  is given by: 
 

∑∈
=

si ii ywT̂  
 
where iiw π1=  is the sampling weight of unit Ui∈ , that is we weigh each 

sample observation i  by the sampling weight, iw . This estimator is design-

unbiased, that is ( ) TywE
si iiD =∑∈

, where DE  denotes the expectation under 
repeated sampling. For more discussion on pr obability weighting, see Sarndal, 
Swensson, and Wretman (1992). 
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3. Pseudo-likelihood estimation 

We now consider the population values Nyy ,...,1  as random variables, which 
are independent realizations from a distribution with probability density function 
(pdf) ( )θ|ip yf , indexed by a vector of parameters θ . We n ow consider the 
estimation of the superpopulation parameter, θ , rather than the prediction of the 
(random variable) total T . Let 
 

( ) ( )∑
=

=
N

i
ipN yfyyl

1
1 |log,...,| θθ  

 
be the census log-likelihood. The census maximum likelihood estimator of θ  
solves the population likelihood equations: 
 

( ) ( ){ }
0

|log

1
=

∂
∂

=∑
=

N

i

ip yf
U

θ
θ

θ  

 
Following Binder (1983), the pseudo-maximum likelihood (PML) estimator is 

the solution of: ( ) 0ˆ =θU , where ( )θÛ  is a sam ple estimator of the function 
( )θU . For example, the probability-weighted estimator of ( )θU  is such an 

estimator: 
 

( ) ( ){ }
∑∈ ∂

∂
=

si
ip

iw

yf
wU

θ
θ

θ
|logˆ ,  where iiw π1= .  

 
That is, when the explicit form of the population likelihood is not available, 

we weight instead the sample likelihood and solve the weighted equations.   
 

4. On the use of sampling weights when estimating regression models 
with survey data 

Magee, Robb and Burbidge (1998), from now on ( MRB1998),  argue that 
when the population regression coefficient is of interest, the use of sampling 
weights can be desirable in regression models with complex survey data. A two-
step maximum likelihood estimator is proposed as an alternative to ordinary least 
square and weighted least squares. 

Before dealing with the problem, and defining the sample distribution 
mathematically, let us introduce the following notations: pf  and ( )⋅pE  denote the 
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pdf and the mathematical expectation of the population distribution, respectively, 
and sf  and ( )⋅sE  denote the pdf and the mathematical expectation of the sample 
distribution. 

4.1. Population model  

We now consider the population values ( )ii yx , , Ni ,,1=  as random 
variables, which are independent realizations from a distribution with probability 
density function ( )θ|, yxf p , indexed by a vector parameter θ .  

4.2. Sampling scheme 

We consider a sampling design with selection probabilities )Pr( sii ∈=π , 
and sampling weight iiw π1=  ; Ni ,...,1= . The si ,π  may depend on the 

population values ( )yx,  as well as on other factors unknown to the researches, 

call these factors z . Assume that ( )γππ ,,~ yxhi  where γ  is a p arameter 

indexing h . Thus, we now consider the population values ( )iii yx π,,  , 
Ni ,,1= , as r andom variables, which are independent realizations from 

a distribution with probability density function (pdf): 

( ) ( ) ( )γπθγθπ ppp hyxfyxf ×= ,,,,  

The researcher has a sam ple of n  observations ( )iii yx π,,  , si∈ . Each  

Ui∈  is included in s  with probability iπ . 
The parameter of interest is the regression coefficient  ( )10 ,ββ=β : 

iii uxy ++= 10 ββ  

where ( ) 0=iip xuE , Ni ,,1= . 

4.3. Two-step maximum likelihood (ML) estimators 

We consider an estimator that uses structure on t he population probability 
density function imposed by modelling the process that generates the si ,π . 
Assume that: 

( ) ( ) ( )γπθγθπ ppp hyxfyxf ×= ,,,,  

can be described as: 

uxy ++= 10 ββ                                                  (1) 
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where ( )2,0~ yp
Nu σ , and 

vxyx +++==∗
210ln γγγππ                                      (2) 

where ( )2,0~ ∗π
σNv

p
 . Also, assume that u  and v  are independent of each other 

and of x . 

4.4. Sample model 

The probability density function of y  given ix ,  in the sample is given by: 
 

( ) ( )
( ) ( )
( ) ( )∫ ∈×

∈×
=

∈=

dyyxsixyf
yxsixyf

sixyfxyf

iip

iip

ipis

,Pr
,Pr

              

,

                                         (3) 

 
Under the conditions of equation (1), we have: 
 

( ) ( )( )22
210 ,~, yyii xNsixy σσγββ ++∈                                     (4)  

 
Similarly, the probability density function of ∗π  given ( )ii yx , ,  i n the 

sample is given by: 
 

( ) ( )
( ) ( )
( ) ( )∫ ∗∗∗

∗∗

∗∗

∈×

∈×
=

∈=

πππ

ππ

ππ

dyxsiyxh

yxsiyxh

siyxhyxh

iiiip

iiiip

iipiis

,,Pr,

,,Pr,
                     

,,,

                    

(5) 

 
From equation (2), we have: 

( ) ( )∗∗ ==∈ πππ exp,,Pr ii yxsi  
 

Thus, under the conditions of equation (2), we obtain: 

( ) ( )2
210 ,~,, ∗++∈ ∗∗

π
σγγγπ iiiii yxxNsiyx                               (6) 

 
where  2

00 ∗+=∗
π

σγγ . 

The two-step maximum likelihood method can be performed as follows:  
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First step:  

Estimate of 2γ  can be obtained from ordinary least squares (OLS) estimation 
of: 

iiiii erroryxx +++= ∗∗
210 γγγπ , ni ,,1=                              (7) 

 

Second step:  

Estimation of ( )10 ,ββ=β  based on equation (4). A consistent estimator of 
( )10 ,ββ=β  can be obtained from the OLS estimation, (or ML estimation, 

because of normality), of 

iii errorxy ++= ∗
10 ββ , ni ,,1=  

 
where 2

211 ˆ yσγββ +=∗ , which are given by: 
 

xy ∗−= 10
ˆˆ ββ  

( )( )
( )∑

∑
=

=∗

−

−−
= n

i i

n

i ii

xx

yyxx

1
2

1
1β  

Thus, 
2

211 ˆˆˆˆ
yσγββ −= ∗                                                               (8) 

5. The use of sample distribution when estimating regression models 
with survey data 

In recent articles by Krieger and Pfeffermann (1997), Pfeffermann, Krieger, 
and Rinott (1998), from now on ( PKR1998) and Pfeffermann and Sverchkov 
(1999), the authors introduced an analytic likelihood-based inference from 
complex survey data under informative sampling. Their basic idea is to derive the 
distribution of the sample data by modelling the population distribution and the 
conditional expectation of the first order sample inclusion probabilities. Once this 
sample distribution is extracted, standard likelihood-based inferential methods can 
be used to obtain estimates of the parameters of the population model under 
consideration. 

The sample distribution refers to the superpopulation distribution of the 
sample measurements, as induced by the population model and the sample 
selection scheme with the selected sample of units held fixed. In order to describe 
the fundamental idea behind this approach, we assume full response. Let 



STATISTICS IN TRANSITION new series, Spring 2014 

 

189 

( )′= ipii xx ,...,1x , Ui∈  be the values of a vector of auxiliary variables, pxx ,...,1 , 

and { }Nzz ,...,1=z  be the values of known design variables, used for the sample 
selection process not included in the model under consideration. In what follows, 
we consider a sam pling design with selection probabilities )Pr( sii ∈=π , and 
sampling weight iiw π1=  ; Ni ,...,1= . In practice, the iπ ’s may depend on the 

population values ( )zyx ,, . We express this dependence by writing: 
  ),,|Pr( zyxsii ∈=π  for all units Ui∈ . Since Nππ ,...,1  are defined by the 

realizations ( ) Niy iii ,...,1 ,,, =zx , therefore, they are random realizations 
defined on the space of possible populations. The sample s  consists of the subset 
of U  selected at random by t he sampling scheme with inclusion probabilities

.,...,1 Nππ  Denote by ( )′= NII ,...,1I  the N  by one sample indicator (vector) 

variable, such that 1=iI  if unit Ui∈  is selected to the sample and 0=iI  if 
otherwise. The sample s  is defined accordingly as { }1,| =∈= iIUiis  and its 

complement by { }0,| =∈== iIUiisc . We assume probability sampling, so 
that 0)Pr( >∈= siiπ  for all units .Ui∈  

5.1. Population model 

We now consider the population values Nyy ,...,1  as random variables, which 
are independent realizations from a distribution with probability density function 
(pdf) ( )θ|ip yf , indexed by a vector of parameters θ . Assume that the 

population pdf depends on known values of the auxiliary variables ix , so that 
( )θ,|~ iipi yfy x . 

5.2. Sample model 

We consider a sampling design with selection probabilities  ( )sii ∈= Prπ  be 
the first order inclusion probability of the thi  population unit, and the sampling 
weights iiw π1=  is the sampling weight of unit Ui∈ . In practice, the iπ ’s 

may depend on the population values ( )zyx ,, . We express this dependence by 
writing:  

  ),,|Pr( zyxsii ∈=π  for all units Ui∈  
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According to Krieger and Pfeffermann (1997), the (marginal) sample pdf of 

iy  is defined as:           

( ) ( )
( ) ( )

( )γθπ
θγπ

γθγθ

,,|
,|,,|

                        

 s,,,|,,|

iip

iipiiip

iipiis

E
yfyE

iyfyf

x
xx

xx
×

=

∈=

                            (9) 

where θ  is the parameter indexing the population distribution,  and γ  is the 
informativeness parameter indexing: 
 

( ) ( ) ( )∫ ×= iiipiiipiip dyyfyEE θγπγθπ ,|,,|,,| xxx  
 

Note that ( ) ( )iiipiip EEE
ii

zyy yz ,|| ππ = , so that iz  is integrated out in 
equation (9). See Eideh and Nathan (2006). 

The question that arises is how we can identify and estimate ( )iiip yE x,|π  

based only on t he sample data { }siwy iii ∈  ;,, x . Pfeffermann and Sverchkov 

(1999) proved the following relationships: for vector of random variables ( )iiy x, , 
the following relationships hold: 
 

( ) ( ){ } 1,|,| −= iiipiiis xyExywE π                                 (10a) 
 

( ) ( ){ } ( )iiisiisiip ywEwEyE xxx ||| 1−=                         (10b) 
 

( ) ( ){ } 1−= ipis EwE π                                             (10) 

5.3. Estimation  

Having derived the sample distribution, (PKR1998) proved that if the 
population measurements iy  are independent, then as ∞→N ( )fixed  with  n  
the sample measurements are asymptotically independent, so we can apply 
standard inference procedures to complex survey data by using the marginal 
sample distribution for each unit.  Based on the sample data { }siwy iii ∈  ;,, x ,  
(PKR1998)  proposed a two-step estimation method. 

Step one: 

Estimate the informativeness parameters γ  using equation (10a), using 
regression analysis. Denote the resulting estimate of γ  by γ~ . 
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Step two: 

Substitute γ~  in the sample log-likelihood function, and then maximize the 
resulting sample log-likelihood function with respect to the population 
parameters, θ : 

( ) ( ) ( )

( ) ( )γθθ

γθπθγθ

~,,|log              

~,,|log ~,

1

1

iis

n

i
srs

iip

n

i
srsrs

wEl

Ell

x

x

∑

∑

=

=

+=

−=
                                  (11) 

where ( )γθ ~,rsl  is the sample log-likelihood after substituting γ~  in the sample 
log-likelihood function, and where 

( ) ( ){ }∑
=

=
n

i
iipsrs yfl

1
,|log θθ x  

is the classical log-likelihood obtained by ignoring the sample design. 

5.4. Illustration 

5.4.1. Population model 

Assume the following population model: 

iii uxy ++= 10 ββ                                              (12) 

where ( )2,0~ ypi Nu σ  and ( ) 0=iip xuE ,  s o that ( )2
10 ,~ yipi xNy σββ +  , 

Ni ,,1= . 
 

Now assume that: 

( ) ( )iiiiiip yxxyE 210exp,,| γγγγπ ++=x , Ni ,,1=                   (13) 
 

We interpret this exponential inclusion probability model approximation (13) 
in the spirit of probability proportional to size sampling scheme as follows. Let 
the size measure be: 

( )iiiiai vyxxd +++= 210exp γγγ  

where ( ) 0=ip vE  and ( ) 2
∗=

π
σip vV . 

 
Let 

d

i
i T

nd
=π , ∑=

=
N

i id dT
1
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Assume N  is large enough so that the difference between dN  and 

( ) dNdNE µ=  can be ignored, so that didii NndTnd µπ ≅= , or ii d∝π . 
Furthermore, since 
 

( )

( )iiii

iiiia
d

d

i

d

i
i

vyxx

vyxx
N

n
N
nd

T
nd

+++=

+++=

≅=

210

210

exp      

exp      

γγγ

γγγ
µ

µ
π

 

 

where 







+=

d
a N

n
µ

γγ ln00 , therefore 

iiiiii vyxx +++==∗
210ln γγγππ                  (14) 

 
where ( ) 0=ip vE  and ( ) 2

∗=
π

σip vV . 
 

Under these assumptions and using Taylor series approximation, we can show 
that: 

( ) ( )iiiiiip yxxyE 210exp,,| γγγπ ++=γx  
 
where ( )210 ,, γγγ=γ . 
 
Comment 1: See the similarity between (14) and (2). 

5.4.2. Sample model 

By substituting (12) and (13) in (9), we have: 
( )( )22

210 ,~ yyisi xNy σσγββ ++                                 (15) 

 
Comment 2: Note that (4) and (15) are similar. 

5.4.3. Two-step estimation 

First step: 

Estimate the informativeness parameter  2γ  using (13) and (10) as follows: 
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( ) ( )( )iiiiiis yxxywE 210exp,,| γγγ ++−=γx                           (16) 

Using Taylor series approximation, we have ( )YEYE lnln ≅ , so that 
( ) ( )

( )iii

iiisiiis

yxx
ywEywE

210                              
,,|ln,,|ln
γγγ ++−=

= γxγx
                        (17) 

 
Hence, 

( )iiiii yxxw 210lnln γγγπ ++−=−=  
or 

iiiii erroryxx +++= 210ln γγγπ , si∈                               (18) 
 

Therefore, estimation of  2γ , denoted by 2
~γ ,  c an be obtained from OLS 

estimation of (18), or you can use nonlinear regression model. 

Second step: 

Estimates of ( )10 ,ββ=β  can be obtained by using OLS estimation (or ML 
estimation method, because of linearity) of the following regression model: 

iii errorxy ++= ∗
10 ββ ni ,,1=                                    (19) 

where 2
211

~
yσγββ +=∗ , which are given by: 

xy ∗−= 10
ˆˆ ββ  

 
( )( )

( )∑
∑

=

=∗

−

−−
= n

i i

n

i ii

xx

yyxx

1
2

1
1β  

So that, 
2

211 ˆˆˆˆ
yσγββ −= ∗  

which are similar to (8). 

6. Conclusion 

In this paper we investigated two methods on t he use of sampling weights 
when fitting regression model to survey data under informative probability 
sampling design. We showed that the only difference between the method 
proposed by MRB1998 and the method proposed by PKR1998 is in estimating 
the informativeness parameter 2γ . In MRB1998 method the estimator of 2γ  is 
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ML estimator, while in PKR1998 method the estimator of 2γ  is only the OLS. 
The intercepts ∗

0γ   and 0γ  have the same functional form.   
The MRB1998 consider the estimator that uses more structure on the 

population density imposed by modelling the process generating the first order 
inclusion probabilities, and in their paper they consider only one model, see 
equation (2); while PKR1998 incorporate the sampling weights via the 
conditional expectation of first order inclusion probabilities given the response 
variable, and they consider only two models. Subsequently, Eideh (2003) 
proposed logit and probit models. In this paper we justified that the models that 
generate the first order inclusion probabilities are similar, see equations 7, 14 
and 18.  

Furthermore, in the last decade survey statisticians have been using the 
sample distribution  for analysis of survey data under informative probability 
sampling design in several applications, in particular: prediction of finite 
population total under single stage sampling and two-stage sampling; fitting 
multilevel modelling; fitting time series models;  s mall area estimation; 
estimating generalized linear models.  A lso, they have proposed tests of 
informativeness of sampling design and the test of ignorability of nonresponse in 
surveys, which is not the case for MRB1998. Hence, the use of sample 
distribution in analysis of survey data applies. Consequently, it is suggested to use 
the PKR1998. 

We hope that this investigation will encourage further theoretical, empirical 
and practical research in these directions. 
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EFFECTIVE ROTATION PATTERNS FOR MEDIAN 
ESTIMATION IN SUCCESSIVE SAMPLING 

Kumari Priyanka1, Richa Mittal2 

ABSTRACT 

The present work deals with the problem of estimation of population median at 
current occasion in two-occasion successive sampling. Best linear unbiased 
estimators have been proposed by utilizing additional auxiliary information, 
readily available on both the occasions. Asymptotic variances of the proposed 
estimators are derived and the optimum replacement policies are discussed. The 
behaviours of the proposed estimators are analyzed on the basis of data from 
natural populations. Simulation studies have been carried out to measure the 
precision of the proposed estimators. 

Key words: population median, successive sampling, auxiliary information, 
optimum replacement policy. 

1. Introduction 

When the value of the study character of a finite population is subject to 
change (dynamically) over time, a su rvey carried out on a s ingle occasion will 
provide information about the characteristics of the surveyed population for the 
given occasion only and will not give any information on the nature of change of 
the characteristic over different occasions and the average value of the 
characteristic over all occasions or the most recent occasion. To meet these 
requirements, sampling is done on successive occasions that provide a strong tool 
for generating the reliable estimates at different occasions. The problem of 
sampling on two successive occasions was first considered by Jessen (1942), and 
later this idea was extended by Patterson (1950), Narain (1953), Eckler (1955), 
Gordon (1983), Arnab and Okafor (1992), Feng and Zou (1997), Singh and Singh 
(2001), Singh and Priyanka (2008), Singh et al. (2012), Bandyopadhyay and 
Singh (2014), and many others. 
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All the abovestudies were concerned with the estimation of population mean 
or variance on two or more occasions.    

There are many problems of practical interest which involves variables with 
extreme values that strongly influence the value of the mean. In such situations 
the study variable is having highly skewed distributions. For example, the study 
of environmental issues, the study of social evil such as abortions, the study of 
income, expenditure, etc. In these situations, the mean may offer results which are 
not representative enough because the mean moves with the direction of the 
asymmetry. The median, on the other hand, is unaffected by extreme values. 

Most of the studies related to medians have been developed by assuming 
simple random sampling or its ramification in stratified random sampling (Gross 
(1980), Sedransk and Meyer (1978), Smith and Sedransk (1983) consider only the 
variable of interest without making explicit use of auxiliary variables. Some of the 
researchers, namely Chambers and Dunstan (1986), Kuk and Mak (1989), Rao et 
al. (1990), Rueda et al.(1998), Khoshnevisan  e t al. (2002), Singh and Solanki 
(2013) etc., make use of auxiliary variables to estimate the population median). 

It is to be mentioned that a large number of estimators for estimating the 
population mean at current occasion have been proposed by various authors, 
however only a few efforts (namely Martinez-Miranda et al. (2005), Singh et al. 
(2007), Rueda et al. (2008) and Gupta et al. (2008)) have been made to estimate 
the population median on the current occasion in two occasions successive 
sampling. It is well known that the use of auxiliary information at the estimation 
stage can typically increase the precision of estimates of a parameter. To the best 
of our knowledge, no effort has been made to use additional auxiliary information 
readily available on both the occasions to estimate population median at current 
occasion in two-occasion successive sampling. 

Motivated with the above arguments and utilizing the information on an 
additional auxiliary variable, readily available on both the occasions, the best 
linear unbiased estimators for estimating the population median on c urrent 
occasion in two-occasion successive sampling have been proposed. It has been 
assumed that the additional auxiliary variable is stable over the two-occasions. 

The paper is spread over ten sections. Sample structure and notations have 
been discussed in section 2. I n section 3 the proposed estimator has been 
formulated. Properties of proposed estimators including variances are derived 
under section 4. Minimum variance of the proposed estimator is derived in section 
5. Practicability of the proposed estimator is also discussed. In section 6 optimum 
replacement policies are discussed. Section 7 contains comparison of the 
proposed estimator with the natural sample median estimator when there is no 
matching from the previous occasion and the estimator when no a dditional 
auxiliary information has been used. Practicability of the estimator ∆  is also 
discussed. In section 8 simulation studies have been carried out to investigate the 
performance of the proposed estimators. The results obtained as a result of 
empirical and simulation studies have been elaborated in section 9. Finally, the 
conclusion of the entire work has been presented in section 10. 
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2. Sample structures and notations  

Let U = (U1, U2, - - -, UN) be the finite population of N units, which has been 
sampled over two occasions. It is assumed that the size of the population remains 
unchanged but values of the unit change over two occasions. Let the character 
under study be denoted by x (y) on the first (second) occasion respectively. It is 
further assumed that information on a n auxiliary variable z (with known 
population median) is available on both the occasions. A simple random sample 
(without replacement) of n units is taken on the first occasion. A random sub-
sample of m = n λ units is retained (matched) for use on the second occasion. 
Now, at the current occasion a simple random sample (without replacement) of 
u= (n - m) = nµ units is drawn afresh from the remaining (N - n) units of the 
population so that the sample size on t he second occasion is also n. λ and  
µ, (λ+ µ =1) are the fractions of matched and fresh samples respectively at the 
second (current) occasion. The following notations are considered for further use: 

, ,x y zM M M : Population median of x, y and z, respectively. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  ,  ,  ,  ,  ,  x n x m y m y u z n z m z uM M M M M M M : Sample median of the 

respective variables of the sample sizes shown in suffices. 
,  ,  yx xz yzρ ρ ρ : The Correlation coefficient between the variables shown in 

suffices. 

3. Formulation of estimator 

To estimate the population median yM on the current (second) occasion, the 

minimum variance linear unbiased estimator of yM  under SRSWOR sampling 
scheme have been proposed and is given as 

( ) ( ){ } ( ) ( ){ } ( ) ( ) ( ){ }1 2 3 4 5 6 7 8
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

zy u y m x m x n z u z m z nT M M M M M M M Mα α α α α α α α= + + + + + + +

 (1) 

where ( )1,  2,  ,  8i iα = − −− are constants to be determined so that  

(i) The estimator T becomes unbiased for yM  and 
(ii) The variance of T attains a minimum 

For unbiasedness, the following conditions must hold: 
( )1 2 1α α+ = , ( )3 4 0α α+ =  and ( )5 6 7 8 0α α α α+ + + = . 
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Substituting ( )1 1 3 1 8 5 6 7,  and α φ α β α α α α= = = − + + in equation (1), the 
estimator T takes the following form: 

 ( ) ( )  ( ){ }  ( )  ( ){ }  ( )( ){1 1 5    1 -     -     -  y u y m x m x n z u zT M M M M M Mφ φ β α= + + +

 ( )( ) ( )( )}6 7
ˆ ˆ -   -  Z Zz m z nM M M Mα α+ +  

( ) ( )( ){ } ( ) ( ) ( ) ( )( ){1 1 1 2
ˆ ˆ ˆ ˆ ˆ    -    1 -   -   Zy u z u y m x m x nM k M M M k M Mφ φ= + + + +

( )( ) ( )( )}3 4
ˆ ˆ-    -  Z Zz m z nk M M k M M+  

( )1 1 1 2  1-  T T Tφ φ= +          (2) 

where ( ) ( )( )1 1
ˆ ˆ Zy u z uT M k M M= + −  is based on the sample of size u drawn 

afresh at current occasion and the estimator  

     ( ) ( ) ( )( ) ( )( ) ( )( ){ }2 2 3 4
ˆ ˆ ˆ ˆ ˆ -    Z Zy m x m x n z m z nT M k M M k M M k M M= + + − + −  

is based on the sample of size m matched form previous occasion. 

5
1

1

k α
φ

= , 1
2

11-
k β

φ
= ,  6

3
11-

k α
φ

= , 7
4

11-
k α

φ
=  and 1φ are the unknown 

constants to be determined so as to minimize the variance of estimator T. 

Remark 3.1. For estimating the median on each occasion, the estimator 
1T  is suitable, which implies that more belief on 1T  could be shown by choosing 

1φ as 1 (or close to 1), while for estimating the change from one occasion to the 
next, the estimator T2 could be more useful so 1φ  be chosen as 0 (or close to 0). 
For asserting both the problems simultaneously, the suitable (optimum) choice of  

1φ is required. 

4. Properties of the estimator T 

The properties of the proposed estimator T are derived under the following 
assumptions: 

 (i) Population size is sufficiently large (i.e. N→∞), therefore finite population 
corrections are ignored. 

(ii) As N→∞, the distribution of bivariate variable (a, b) where a and b
{ },  ,  x y z∈ and a ≠ b approaches a continuous distribution with marginal 
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densities ( )af ⋅  and ( )bf ⋅  for a and b respectively, see Kuk and Mak 
(1989). 

(iii) The marginal densities ( )xf ⋅ , ( )yf ⋅  and ( )zf ⋅  are positive. 

(iv) The sample medians ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  ,  ,  ,  ,   and  x n x m y m y u z n z m z uM M M M M M M  

are consistent and asymptotically normal (see Gross (1980)). 

  (v) Following Kuk and Mak (1989), let abP be the proportion of elements in the 

population such that aa M≤ and bb M≤ where a and b { },  ,  x y z∈ and 
a ≠ b. 

 (vi) The following large sample approximations are assumed: 

( ) ( )0
ˆ 1yy uM M e= + , ( ) ( )1

ˆ 1yy mM M e= + , ( ) ( )2
ˆ 1xx mM M e= + , ( ) ( )3

ˆ 1xx nM M e= + , 

( ) ( )4
ˆ 1zz uM M e= + , ( ) ( )5

ˆ 1zz mM M e= +  and ( ) ( )6
ˆ 1zz nM M e= +  such that ie < 1

∀ i = 0, 1, 2, 3, 4, 5, 6. 

The values of various related expectations can be seen in Allen et al. (2002) 
and Singh (2003). Under the above transformations, the estimators 1 2 and T T  take 
the following forms: 

 ( )1 0 1 41  y zT M e k M e= + +         (3) 

( ) ( ) ( )2 1 2 2 3 3 5 4 61  y x zT M e k M e e M k e k e= + + − + +      (4) 

Thus we have the following theorems: 

Theorem 4.1. T is unbiased estimator of yM . 

Proof: Since 1 2 and T T are difference and difference-type estimators, 
respectively, they are unbiased for yM . The combined estimator T is a convex 

linear combination of 1 2 and T T , hence it is also an unbiased estimator of yM . 

Theorem 4.2. Ignoring the finite population corrections, the variance of T is 
         ( ) ( ) ( ) ( )22

1 1 1 2     1 -  V T V T V Tφ φ= +       (5) 

where             ( )1 1
1V T
u
ξ=           (6) 

and             ( )2 2 3 4
1 1 1 1  V T
m m n n
ξ ξ ξ = + − + 

 
      (7) 
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2
1 1 1 2 1 3  2A k A k Aξ = + + , 2

2 1 3 2 3 3  2A k A k Aξ = + + , 
2

3 2 4 2 5 2 3 6 2  2k A k A k k Aξ = + + , 2
4 4 2 4 3 3 4 2 2  2k A k A k k Aξ = + + ,

( ){ } 2

1
1
4 y yA f M

−
= , ( ){ } 2

2
1
4 z zA f M

−
= ,

( ) ( ){ } ( ){ }1 1
3 0 25yz y y z zA P f M f M

− −
= − ⋅ , ( ){ } 2

4
1
4 x xA f M

−
= , 

( ) ( ){ } ( ){ }1 1
5 0 25yx y y x xA P f M f M

− −
= − ⋅  and 

( ) ( ){ } ( ){ }1 1
6 0 25xz x x z zA P f M f M

− −
= − ⋅ . 

Proof: The variance of T is given by  

        ( ) ( )2

yV T E T M= − ( ) ( )( ) 2

1 1 1 2 -    1-  -  y yE T M T Mφ φ = +   

  ( ) ( ) ( ) ( ) ( )22
1 1 1 2 1 1 1 2   1 -    1 -   cov ,V T V T T Tφ φ φ φ= + +    (8) 

where ( ) ( )2

1 1 yV T E T M= − and ( ) ( )2

2 2 yV T E T M= − . 

As 1 2 and T T are based on two independent samples of sizes u and 
m respectively, hence ( )1 2cov  , 0T T = . 

Now, substituting the expressions of 1 2 and T T  from equations (3) and (4) in 
equation (8), taking expectations and ignoring finite population corrections, we 
have the expression for variance of T as in equation (5). 

5. Minimum variance of the estimator T  

Since the variance of the estimator T in equation (5) is the function of 
unknown constants 1 2 3 4 1,  ,  ,   and  k k k k φ , therefore it is minimized with respect 

to 1 2 3 4,  ,  ,  k k k k  1 and  φ and subsequently the optimum values of 

1 2 3 4 1,  ,  ,   and  k k k k φ  are obtained as 

3
1

2

Ak
A

∗ −
=              (9) 

( )
* 3 4 6 2 4 5
2 2

4 2 4 6

-  
-  

A A A A A Ak
A A A A

=                             (10) 

( )
3 4 5 6

3 2
2 4 6

-  A A A Ak
A A A

∗ +
=

−
                  (11) 
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( )
2

3 6 2 5 6
4 2

2 2 4 6

A A A A Ak
A A A A

∗ −
=

−
                          (12) 

( )
( ) ( )

2
1

1 2  opt

V T
V T V T

φ ⋅ = +
                 (13) 

Using the optimum values of ( )'  1,  2,  3,  4ik s i = in equation (6) and (7), 

we get the optimum variances of  1 2 and T T  as  

( )1 7
1

opt
V T A

u⋅
=                            (14) 

                 ( )2 8 9 10.

1 1 1 1    -    
opt

V T A A A
m m n n

 = + + 
 

   (15) 

where            
2

7 1 1 2 1 3  2A A k A k A∗ ∗= + + , 
2

8 1 3 2 3 3   2A A k A k A∗ ∗= + +  

 
2

9 2 4 2 5 2 3 6  2   2A k A k A k k A∗ ∗ ∗ ∗= + +    and      
2

10 4 2 4 3 3 4 2  2   2A k A k A k k A∗ ∗ ∗ ∗= + + . 

Further, substituting the values of  ( )1 opt
V T

⋅
 and ( )2 opt

V T
⋅
from equations 

(14) and (15) in equation (13), we get the optimum values of  1optφ ⋅  with respect to 

( )'  1,  2,  3,  4ik s i∗ =  as 

( )
( ) ( )

2
1

1 2  
opt

opt
opt opt

V T

V T V T
φ ⋅∗

⋅

⋅ ⋅

=
+

             (16) 

Again substituting the value of  1optφ∗
⋅  from equation (16) in equation (5), we 

get the optimum variance of T as 

 ( )
( ) ( )
( ) ( )

1 2opt opt
opt

1 2opt opt

V T V T
V T

V T +  V T
⋅ ⋅

⋅
⋅ ⋅

=                           (17) 

Further, substituting the value from (14) and (15) in equation (16) and (17), 
we get the simplified values of 1optφ∗

⋅  and   ( )opt
V T

⋅
 as 

 
( )11 12

1 2 2
12 13 7

 
  opt

A A
A A A
µ µ

φ
µ µ

∗
⋅

+
=

+ +
                 (18) 

 ( ) ( )
( )

7 11 12
2

12 13 7

 1
  opt

A A A
V T

n A A A
µ

µ µ⋅

+
=

+ +
                          (19) 

where 11 8 10 A A A= + , 12 9 10-  A A A= , 13 11 7-   and A A A µ=  is the fraction of 
fresh sample at current occasion for the estimator T. 
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5.1. Estimator T in practice 

The main difficulty in using the proposed estimator T defined in equation (2) 
is the availability of 'ik s  ( )i 1, 2, 3, 4=  as the optimum values of 'ik s   

( )i 1, 2, 3, 4=  depend on the population parameters ( ) ( ),  ,  ,  ,  yx yz xz y y x xP P P f M f M  
and ( )z zf M . If these parameters are known, the proposed estimator can be easily 
implemented. Otherwise, which is the most often situation in practice, the 
unknown population parameters are replaced by their respective sample estimates. 
The population proportions ,   and  yx yz xzP P P  are replaced by the sample 
estimates ˆ ˆ ˆ,   and  yx yz xzP P P  respectively, and the marginal densities ( ) ( ),  y y x xf M f M

( ) and  z zf M  can be substituted by their kernel estimator or nearest neighbour 
density estimator or generalized nearest neighbour density estimator related to the 
kernel estimator (Silverman (1986)). Here, the marginal densities 

( ) ( ),   y y x xf M f M  ( )and  z zf M  are replaced by 
( )( ) ( )( ) ( )( )ˆ ˆ ˆˆ ˆ ˆ,    and  y x zy m x n z nf M f M f M  

respectively, which are obtained by the method of generalized nearest neighbour 
density estimation related to the kernel estimator. 

Remark 5.1.1. To estimate ( )x xf M  by the generalized nearest neighbour density 
estimator related to the kernel estimator, the following procedure has been 
adopted: 

Choose an integer 
1

2h n≈ and define the distance ( )1 2,  d x x  between two 

points on the line to be 1 2x x− . 

For ( )
ˆ

x nM  define ( )( ) ( )( ) ( )( )1 2
ˆ ˆ ˆ

nx n x n x nd M d M d M≤ ≤ − − − ≤  to be the 

distances, arranged in ascending order, from ( )
ˆ

x nM to the points of the sample. 
The generalized nearest neighbour density estimate is defined by 

 ( )( )
( )( )

( )

( )( )1

ˆ1ˆ ˆ
ˆ ˆ

n
ix n

x n
ih hx n x n

M x
f M K

nd M d M=

 − =
 
 

∑                (20) 

where the kernel function K, satisfies the condition ( )  1K x dx
∞

−∞

=∫ . 

Here, the kernel function is chosen as Gaussian Kernel given by 

( )
21

21
2

x
K x e

π

 − 
 = . 

Similarly, the estimate of ( ) ( ) and y y z zf M f M can be obtained. 
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Remark 5.1.2. For estimating ( ) ,   and y y yz yxf M P P  we have two independent 
samples of sizes u and m respectively at current occasion. So, either of the two 
can be used, but in general for good sampling design in successive sampling
u m≤ . So, in the present work ( ) ,   and y y yz yxf M P P are estimated from the 
sample of size m, matched from the first occasion. 

Therefore, under the above substitutions of the unknown population 
parameters by their respective sample estimates, the estimator T takes the 
following form: 

                ( )1 1 1 2   1 -   T T Tψ ψ∗ ∗ ∗= +                  (21) 

where                       ( ) ( )( )* **
1 1

ˆ ˆ  -  Zy u z uT M k M M= +                  (22) 

 and 

( ) ( ) ( )( ) ( )( ) ( )( ){ }* ** ** **
2 2 3 4

ˆ ˆ ˆ ˆ ˆ -   -   -  Z Zy m x m x n z m z nT M k M M k M M k M M= + + +     
(23) 

( )
* * * * * *

** 3 4 6 2 4 5
2 2* * * *

4 2 4 6

 -  ,
 -  

A A A A A Ak
A A A A

=
( )

* * * *
** 3 4 5 6
3 2* * *

2 4 6

-   ,
 -  

A A A Ak
A A A

+
=  

( )
2* * * * *

** 3 6 2 5 6
4 2* * * *

2 2 4 6

-  ,
 -  

A A A A Ak
A A A A

= ( )( ){ } 2

1
1 ˆ ˆ 
4 y y mA f M

−
∗ = ,        ( )( ){ } 2

2
1 ˆ ˆ 
4 z z nA f M

−
∗ = ,

( ) ( )( ){ } ( )( ){ }1 1

3
ˆ ˆˆ ˆ ˆ 0 25   yz y zy m z nA P f M f M

− −
∗ = − ⋅ ,          ( )( ){ } 2

4
1 ˆ ˆ 
4 x x nA f M

−
∗ = ,

( ) ( )( ){ } ( )( ){ }1 1

5
ˆ ˆˆ ˆ ˆ 0 25   yx y xy m x nA P f M f M

− −
∗ = − ⋅ and 

( ) ( )( ){ } ( )( ){ }1 1

6
ˆ ˆˆ ˆ ˆ 0 25   xz x zx n z nA P f M f M

− −
∗ = − ⋅ . 

1ψ is an unknown constant  to be determined so as to minimize the mean square 
error of the estimator T ∗ ⋅  

Remark 5.1.3. The proposed estimator T is a difference-type estimator therefore 
after replacing the unknown population parameters by their respective sample 
estimates it becomes a regression-type estimator. Hence, up to the first order of 
approximations the estimatorT ∗ will be equally precise to that of the estimator T 
(see Singh and Priyanka (2008)). Therefore, similar conclusions are applicable for 

*T as that of T. 

3
1

2

,Ak
A

∗
∗∗

∗

−
=
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6. Optimum replacement policy     

To determine the optimum value of µ (fraction of a sample to be taken afresh 
at second occasion) so that yM  may be estimated with maximum precision, we 

minimize ( )opt
V T

⋅ .in equation (19) with respect to µ and hence we get the 

optimum value of µ as  

 *

2
2 2 1 3

0.
1

-    -  
opt

S S S S
S

µ µ
±

= =
 
(say)               (24) 

where 2
1 12S A= , 2 11 12S A A=  and 3 11 13 7 12 -  S A A A A= . 

From equation (24) it is obvious that the real value of optµ ⋅  exists if 
2
2 1 3 0S S S− ≥ . For certain situation, there might be two values of optµ ⋅  satisfying 

the above condition, hence to choose a value of optµ ⋅ , it should be remembered 

that 0 1optµ ⋅≤ ≤ . All other values of optµ ⋅  are inadmissible. In case both the 

values of optµ ⋅  are admissible, we choose the minimum of these two as 0µ . 

Substituting the value of optµ ⋅  from equation (24) in (19) we have 

 ( ) ( )
( )

7 11 0 12
2
0 12 0 13 7

 1
  opt

A A A
V T

n A A A
µ

µ µ
∗⋅

+
=

+ +
                         (25) 

where ( )opt
V T ∗⋅

 is the optimum value of T with respect μ. 

7. Efficiency comparison 

To study the performance of the estimator T, the percent relative efficiencies 
of T with respect to (i) ( )

ˆ
y nM , the natural estimator of yM , when there is no 

matching, and (ii) the estimator Δ, when no additional auxiliary information is 
used at any occasion,  have been computed for two natural population data. The 
estimator Δ is defined under the same circumstances as the estimator T, but in the 
absence of information on additional auxiliary variable z on both the occasions is 
proposed as 

 ( ) ( ){ } ( ) ( ){ }1 2 3 4
ˆ ˆ ˆ ˆΔ       y u y m x m x nM M M Mδ δ δ δ= + + +     (26) 

where ( )1,  2,  3,  4i iδ = are constants to be determined so that  

(i) The estimator Δ becomes unbiased for yM  and 
(ii) The variance of Δ attains the minimum. 
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For unbiasedness, the following conditions must hold: 
( )1 2 1δ δ+ =  and ( )3 4 0δ δ+ = . 

Substituting 1 2 3 2 and  δ φ δ β= = in equation (26), the estimator Δ takes the 
following form: 
     ( ) ( ) ( ){ } ( ) ( )( )2 2 2

ˆ ˆ ˆ ˆ  1 -     -  y u y m x m x nM M M Mφ φ β∆ = + +  

    ( ) ( ) ( ) ( ) ( )( ){ }2 2 5
ˆ ˆ ˆ ˆ  1 -    -  y u y m x m x nM M k M Mφ φ= + +  

( )2 1 2 2  1 -  φ φ∆ = ∆ + ∆                      (27) 

where the estimator ( )1
ˆ

y uM∆ = is based on the fresh sample of size u and the 

estimator  ( ) ( ) ( )( ){ }2 5
ˆ ˆ ˆΔ y m x m x nM k M M= + −  is based on the matched sample of 

size m, 
( )

2
5

21
k β

φ
=

−
 and 2φ are the unknown constants to be determined so as to 

minimize the variance of estimator Δ. Following the methods discussed in 
Sections 4, 5 and 6, the optimum value of 5k , 1optµ ⋅ (optimum value of fraction of 

the fresh sample for the estimator Δ), variance of  ( )
ˆ

y nM and optimum variance 
of Δ ignoring the finite population corrections are given by 

 5
5

4

Ak
A

∗ −
=                    (28)   

 ( ) ( )*
1 1 1 14 *

1 .
14

-    
 

opt

A A A A
say

A
µ µ

± +
= =                          (29)   

 ( )( ) 1
1ˆ

y nV M A
n

=                             (30)   

 ( ) ( )
( )
1 1 14

2
14 1

  1

  
opt

A A A
V

n A A

µ

µ
∗

∗

⋅ ∗

+
∆ =

+
                          (31)   

where 
2
5

14
4

AA
A
−

= . 

The optimum values of  µ , 1µ and percent relative efficiencies 1 2 and E E  of 

the estimator T with respect to the estimator ( )
ˆ

y nM and Δ are computed for two 
natural populations and results are  shown in Tabe-2, where 

( )( )
( )1

ˆ
100y n

opt

V M
E

V T ∗ ⋅

= ×
 
and ( )

( )2 100opt

opt

V
E

V T
∗

∗

⋅

⋅

∆
= ×  
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7.1. Estimator Δ in practice  

The main difficulty in using the proposed estimator Δ defined in equation (27) 

is the availability of 5k , as the optimum values of 5k  depends on the population  

parameters  ( ) ( ),   and  yx y y x xP f M f M
. If these parameters are known, the 

estimator Δ can easily be implemented, otherwise the unknown population 
parameters are replaced by their respective sample estimates as discussed in 
subsection 5.1. Hence, in this scenario the estimator Δ takes the following form: 

( )2 1 2 2 1 -  ψ ψ∗ ∗∆ = ∆ + ∆                            (32)   

where ( ) ( ) ( )( ){ }2 5
ˆ ˆ ˆ y m x m x nM k M M∗ ∗∗∆ = + − , 

5
5

4

Ak
A

∗
∗∗

∗

−
= and 2ψ is the unknown 

constants to be determined so as to minimize the mean square error of the 
estimator ∗Δ . 

Remark 7.1.1. Since ∗Δ  is a regression-type estimator corresponding to the 
difference-type estimator Δ, hence up to the first order of approximations similar 
conclusions are applicable to *Δ as that of Δ (See Singh and Priyanka (2008)). 

Remark 7.1.2. For simulation study the proposed estimators *T  and *Δ  are 
considered instead of the proposed estimators T and Δ, respectively. 

8. Monte Carlo Simulation  

Empirical validation can be carried out by Monte Carlo Simulation. Real life 
situations of completely known two finite populations have been considered.  

Population Source: [Free access to data by Statistical Abstracts of the United 
States] 

The first population comprise N = 51 states of the United States. Let iy
represent the number of abortions during 2007 in the thi  state of the US, ix be the 

number of abortions during 2005 i n the thi  state of the U,S and iz denote the 

number of abortions during 2004 in the thi state of  the US. The data are presented 
in Figure 1. 
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Figure 1. Number of abortions during 2004, 20 05 and 2007 versus different  
                states of the US 

Similarly, the second population consists of  N=41 corn producing states of 
the United States. We assume iy  the production of corn (in million bushels) 

during 2009 i n the thi state of the US, ix be the production of corn (in million 

bushels) during 2008 in the thi  state of the US and iz denote the production of 

corn (in million bushels) during 2007 in the thi state of the US. The data are 
represented by means of graph in Figure 2. 

2007

2008

2009

-5E5

0

5E5

1E6

1.5E6

2E6

2.5E6

3E6

 
Figure 2. Production of corn during 2007, 2008 and 2009 versus different states 
                of the US  
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The graphs in Figure1 and Figure 2 show that the number of abortions and the 
production of corn in different states are skewed towards right. One reason of 
skewness for the population-I may be the distribution of population in different 
states, that is the states having larger population are expected to have larger 
number of abortion cases. Similarly, for population-II the states having larger area 
for farming are expected to have larger production of corn.  Thus, skewness of 
data indicates that the use of median may be a better measure of central location 
than mean in these situations. 

For performing the Monte Carlo Simulation in the considered population-I, 
5000 samples of n=20 states were selected using simple random sampling without 
replacement in the year 2005. The sample medians ( )

ˆ
x n kM and ( )

ˆ
z n kM ,  

k =1, 2,---,5000 were computed and the parameters ( )x xf M , ( )z zf M and xzP
were estimated by the method given in Remark 5.1.1. F rom each one of the 
selected samples, m=17 states were retained and new u=3 states were selected out 
of  N – n =51 – 20 = 31 states using simple random sampling without 
replacement in the year 2007. F rom the m units retained in the sample at the 
current occasion, the sample medians ( )

ˆ
x m kM , ( )

ˆ
y m kM

 
and ( )

ˆ
z m kM , 

 k  = 1, 2,- - -,5000 were computed and the parameters ( )y yf M , yzP  and xzP
were estimated. From the new unmatched units selected on the current occasion 

the sample medians ( )
ˆ

y u kM
 
and  ( )

ˆ
z u kM , k  = 1, 2,- - -,5000 were computed. The 

parameters 1 2 and ψ ψ are selected between 0.1 and 0.9 with a step of 0.1. 
The percent relative efficiencies of the proposed estimator *T  with respect to 

 ( )y nM  and *∆ are respectively given by: 
 

( )

5000 50002 2

1 1
1 25000 50002 2

1 1

ˆ
100   and   100

y k yy n k
k k

sim sim

k y k y
k k

M M M
E E

T M T M

∗

= =

∗ ∗

= =

   − ∆ −  
= × = ×

   − −   

∑ ∑

∑ ∑  

 
For better analysis, this simulation experiments were repeated for different 

choices of μ.  
 
Similar steps are also followed for Population-II. The simulation results in 

Table 3, Table 4 and Table 5 show the comparison of the proposed estimator *T
with respect to the estimators ( )

ˆ
y nM  and ∗Δ , respectively. For convenience the 
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different choices of μ are considered as different sets for the considered 
Population-I and Population-II, which are shown below: 
 

Sets Population-I Population-II 

I n =20; μ = 0.15 (m =17, u =3) n=15; μ = 0.13 (m =13, u =2) 

II n =20; μ = 0.25 (m = 15, u =5) n=15; μ = 0.20  (m =12, u =3) 

III n =20; μ = 0.35 (m = 13, u =7) n=15; μ = 0.30 (m = 10, u =5) 

IV n =20; μ = 0.50 (m = 10, u =10) n=15; μ = 0.40 (m = 9, u =6) 

 
Table 1. Descriptive statistics for Population-I and Population-II 
 Population-I Population-II 

Abortions 
2004 
(z) 

Abortions 
2005 
(x) 

Abortions 
2007 
(y) 

Production 
of Corn in 

2007 
(z) 

Production 
of Corn in 

2008 
(x) 

Production  
of Corn in 

2009 
(y) 

Mean 
Median 

Standard 
Deviation 
Kurtosis 

Skewness 
Minimum 
Maximum 

Count 

23963.14 
11010.00 

 
38894.81 
12.02669 
3.275197 

80 
208180 

51 

23651.76 
10410.00 

 
38487.71 
12.39229 
3.310767 

70 
208430 

51 

23697.65 
9600.00 

 
39354.65 
14.42803 
3.527683 

90 
223180 

51 

317997 
83740 

 
565641.6 
6.838888 
2.638611 

2997 
2376900 

41 

294918.2 
66650 

 
530483.7 
6.492807 
2.595704 

2475 
2188800 

41 

319313.7 
79730 

 
563103.3 
6.036604 
2.499771 

2635 
2420600 

41 
 
Table 2. Comparison of the proposed estimator T (at optimal conditions) with 
respect to the estimators ( )

ˆ
y nM and Δ (at optimal conditions) 

 
 
 
 
 
 
 
 

 Population - I Population-II 

0µ  0.5411 0.6669 

µ∗  0.6800 0.7642 

1E  1407.5 1401.3 

2E  1034.9 916.80 
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Table 3. Monte Carlo Simulation results when the proposed estimator *T  
               is compared to ( )

ˆ
y nM  for Population-I and Population-II 
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Figure 3. PRE of the estimator T ∗ with respect to ( )
ˆ

y nM
 
 for Population-I 

 

 Population-I Population-II 
Set I II III IV I II III IV 

1ψ ↓  1simE  1simE  1simE  1simE  1simE  1simE  1simE  1simE  

0.1 338.42 285.75 294.74 191.46 762.21 747.03 127.19 321.48 

0.2 330.71 291.82 320.22 238.4 860.29 644.25 140.93 364.51 

0.3 315.85 288.81 333.44 254.30 971.34 536.15 154.84 397.27 

0.4 282.71 288.70 326.08 276.75 1097.6 427.33 166.51 420.99 

0.5 248.64 268.90 322.70 295.47 1219.7 340.46 172.53 413.40 

0.6 210.41 249.90 299.55 301.46 1377.0 262.76 175.98 413.49 

0.7 178.81 220.94 269.87 304.12 1529.3 206.40 172.93 398.24 

0.8 152.05 194.11 245.61 297.46 1707.7 166.72 166.51 369.96 

0.9 127.19 168.82 216.58 289.94 1855.9 136.86 161.50 336.32 
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Table 4. Monte Carlo Simulation results for Population-I when the proposed  
               estimator *T  is compared to *Δ  

1ψ ↓  2ψ →  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 2simE  

I 
II 
III 
IV 

329.1 
269.4 
285.6 
205.2 

470.4 
272.6 
233.2 
188.5 

707.2 
291.4 
273.0 
168.7 

1017.2 
424.8 
320.1 
168.4 

1590.3 
681.0 
430.9 
198.1 

2211.0 
752.7 
624.4 
230.3 

2869.2 
1023.3 
770.1 
318.0 

4255.0 
1511.8 
1126.7 
419.5 

5490.3 
1790.9 
1353.6 
559.2 

0.2 2simE  

I 
II 
III 
IV 

340.3 
285.8 
295.9 
242.3 

456.3 
282.7 
251.1 
199.2 

714.2 
312.6 
279.7 
177.2 

1078.2 
461.3 
344.3 
182.9 

1685.3 
678.1 
457.5 
222.9 

2268.1 
824.9 
636.8 
269.7 

3064.6 
1150.8 
831.4 
351.5 

4227.3 
1600.8 
1126.8 
483.4 

5437.1 
2034.9 
1428.8 
631.6 

0.3 2simE  

I 
II 
III 
IV 

325.9 
288.6 
298.7 
261.4 

440.9 
285.4 
264.8 
216.4 

688.6 
336.3 
287.5 
192.2 

1071.6 
475.3 
358.9 
198.1 

1547.1 
677.2 
456.2 
247.3 

2158.4 
839.5 
642.1 
294.9 

2979.3 
1187.6 
852.9 
391.5 

4060.1 
1643.4 
1159.3 
529.6 

5145.1 
1983.4 
1466.2 
681.6 

0.4 2simE  

I 
II 
III 
IV 

298.2 
284.9 
289.6 
279.6 

411.3 
282.3 
265.6 
231.6 

624.7 
329.8 
284.4 
204.9 

967.3 
454.1 
341.2 
212.9 

1430.2 
659.4 
460.3 
263.5 

1975.9 
842.4 
635.6 
314.2 

2648.7 
1152.1 
857.8 
419.5 

3594.8 
1600.3 
1142.6 
559.7 

4721.6 
1946.5 
1440.9 
739.3 

0.5 2simE  

I 
II 
III 
IV 

262.6 
266.7 
274.8 
296.9 

358.2 
263.7 
251.4 
246.8 

548.2 
312.7 
270.1 
219.2 

883.8 
430.3 
327.9 
222.8 

1247.1 
620.7 
442.0 
273.9 

1709.9 
789.8 
616.1 
331.8 

2238.4 
1072.8 
820.8 
440.8 

3128.2 
1468.6 
1111.1 
586.7 

4213.1 
1775.0 
1404.6 
765.7 

0.6 2simE  

I 
II 
III 
IV 

230.1 
248.8 
249.3 
303.9 

310.8 
244.8 
238.5 
256.0 

463.6 
283.3 
253.4 
226.1 

754.2 
403.9 
314.6 
231.7 

1078.0 
565.8 
412.2 
283.7 

1509.3 
730.9 
574.3 
343.1 

2016.2 
1004.8 
775.3 
456.8 

2669.3 
1336.5 
1016.9 
600.3 

3583.8 
1673.8 
1336.2 
783.1 

0.7 2simE  

I 
II 
III 
IV 

194.5 
226.0 
226.1 
305.8 

257.1 
216.7 
214.6 
258.3 

396.7 
252.9 
226.1 
227.1 

625.2 
352.7 
285.9 
235.5 

920.4 
512.4 
382.3 
284.2 

1275.6 
656.3 
532.1 
346.9 

1753.0 
907.6 
706.8 
459.8 

2249.7 
1182.0 
898.9 
599.8 

2955.3 
1473.9 
1208.2 
788.4 

0.8 2simE  

I 
II 
III 
IV 

159.8 
193.4 
201.6 
299.9 

221.7 
190.9 
194.7 
256.9 

341.1 
228.7 
205.2 
223.5 

523.4 
320.2 
265.1 
233.7 

757.4 
438.1 
347.7 
283.7 

1095.9 
580.6 
481.8 
341.6 

1515.0 
825.6 
628.9 
453.7 

1960.0 
1037.5 
800.2 
589.5 

2478.9 
1328.2 
1082.0 
772.5 

0.9 2simE  

I 
II 
III 
IV 

136.5 
172.9 
182.2 
293.8 

186.4 
165.9 
167.1 
245.8 

289.7 
202.6 
185.0 
216.8 

440.6 
288.7 
234.8 
225.3 

635.9 
373.1 
309.8 
272.8 

939.3 
514.3 
418.6 
329.7 

1269.8 
709.8 
552.9 
438.3 

1663.2 
894.3 
722.3 
574.2 

2125.0 
1160.4 
930.8 
742.7 

 



214                                                                   K. Priyanka, R. Mittal: Effective rotation … 

 

 

Table 5. Monte Carlo Simulation results for Population-II when the proposed  
               estimator *T is compared to *Δ  

 

1ψ ↓  2ψ →  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 2simE  

I 
II 
III 
IV 

1126.40 
961.19 
274.83 
448.87 

2860.5 
1757.9 
264.72 
445.82 

5849.0 
3077.6 
298.76 
537.81 

9978.9 
5323.8 
362.76 
641.19 

14402.0 
7930.8 
515.77 
1000.5 

22607.0 
11637.0 

742.68 
1320.8 

30230.0 
14805.0 

1006.7 
1757.2 

40853.0 
20847.0 

1174.6 
2256.2 

46469.0 
26905.0 

1320.8 
3038.8 

0.2 2simE  

I 
II 
III 
IV 

873.59 
831.99 
302.79 
495.59 

2198.3 
1472.2 
284.98 
481.24 

4489.6 
2545.2 
314.11 
567.79 

7729.9 
4305.6 
406.01 
708.65 

11800.0 
6678.7 
562.11 
1010.5 

17466.0 
9960.1 
821.52 
1426.0 

22954.0 
13156.0 

995.42 
1852.1 

31590.0 
17250.0 

1259.0 
2354.0 

3644.3 
23024.0 

1522.1 
3098.0 

0.3 2simE  

I 
II 
III 
IV 

621.89 
682.77 
328.74 
528.81 

1594.20 
1169.0 
312.90 
521.64 

3184.1 
2044.1 
338.97 
667.01 

5627.4 
3405.3 
448.28 
761.28 

8573.0 
5386.4 
617.43 
1069.9 

12582.0 
7770.3 
89.51 

1502.1 

16513.0 
10373.0 

1079.6 
1953.7 

22385.0 
13378.0 

1333.3 
2645.4 

27277.0 
17978.0 

1719.8 
3251.4 

0.4 2simE  

I 
II 
III 
IV 

441.33 
540.36 
349.27 
557.80 

1136.90 
905.32 
334.32 
535.90 

2342.9 
1585.1 
366.96 
625.09 

4039.8 
2637.0 
469.80 
792.63 

6230.6 
4066.8 
658.16 
1111.7 

8970.8 
5938.0 
909.27 
1534.2 

11971.0 
8098.8 
1131.5 
2022.3 

16010.0 
10354.0 

1455.1 
2703.7 

20221.0 
13708.0 

1817.1 
3360.2 

0.5 2simE  

I 
II 
III 
IV 

325.32 
423.09 
358.42 
552.30 

829.35 
685.55 
347.77 
537.56 

1693.8 
1205.1 
382.11 
627.89 

2954.8 
2062.0 
498.04 
796.60 

4550.0 
3128.3 
683.40 
1104.7 

6503.2 
4491.7 
938.99 
1536.0 

8647.7 
6008.1 
1172.6 

2036.20 

11725.0 
7843.8 
1524.7 
2690.1 

14875.0 
10477.0 

1908.0 
3371.6 

0.6 2simE  

I 
II 
III 
IV 

247.94 
326.45 
369.80 
545.08 

628.85 
531.46 
356.29 
519.34 

1282.4 
954.37 
390.36 
607.57 

2233.8 
1614.8 
507.65 
778.51 

3406.2 
2416.2 
697.08 
1081.1 

4921.7 
3449.1 
953.09 
1486.7 

6612.4 
4720.8 
1193.9 
1976.3 

8869.5 
6152.4 
1553.5 
2607.6 

11284.0 
8021.9 
1966.7 
3256.7 

0.7 2simE  

I 
II 
III 
IV 

191.82 
256.24 
368.09 
523.74 

481.70 
421.16 
357.34 
448.94 

989.78 
747.44 
391.04 
569.41 

1738.2 
1246.6 
507.07 
738.38 

2659.8 
1864.4 
692.18 
1020.9 

3832.4 
2796.1 
943.99 
1405.1 

5161.5 
3789.1 
1198.0 
1886.9 

6844.7 
4836.2 
1548.7 
2452.8 

8705.7 
6404.1 
1972.1 
3067.3 

0.8 2simE  

I 
II 
III 
IV 

154.29 
206.36 
361.45 
488.89 

383.89 
335.56 
347.49 
463.14 

790.48 
604.62 
391.04 
526.20 

1385.5 
1004.1 
490.64 
689.27 

2112.4 
1507.5 
667.61 
941.81 

3041.20 
2283.7 
915.93 
1304.0 

4114.9 
3062.3 
1161.0 
1735.1 

5376.9 
3868.2 
1510.2 
2254.4 

6949.5 
5119.9 
1915.8 
2837.2 

0.9 2simE  

I 
II 
III 
IV 

124.89 
169.07 
346.69 
445.87 

310.43 
271.88 
330.68 
413.45 

635.21 
498.12 
379.63 
477.73 

1100.2 
826.69 
469.72 
615.16 

1714.1 
1245.4 
629.28 
848.82 

2458.4 
1855.6 
869.77 
1179.9 

3302.5 
2493.5 
1114.2 
1569.1 

4362.3 
3169.4 
1438.0 
2032.7 

5601.2 
4211.6 
1843.1 
2622.9 
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Figure 4. PRE of estimator *T with respect to *Δ  for set-I  for Population-I 
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 Figure 5. PRE of estimator *T with respect to 1ψ  for set-II  for Population-I 
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Figure 6. PRE of estimator *T with respect to 1ψ  for set-III  for Population-I 
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Figure 7. PRE of estimator *T with respect to 1ψ  for set-IV  for Population-I 
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9. Analysis of empirical and simulation results  

1. From table 2 it is visible that the optimum values of μ (fraction of a fresh 
sample to be drawn at current occasion) exist and this value for the estimator T is 
less than that of the estimator Δ for both the considered populations. This 
indicates that the use of additional auxiliary information at both the occasion 
reduces the cost of the survey. 

2. Appreciable gain is observed in terms of precision indicating the proposed 
estimator T (at optimal condition) preferable over the estimators ( )

ˆ
y nM and Δ (at 

optimal condition). This result justifies the use of additional auxiliary information 
at both the occasions in two-occasion successive sampling. 

3. The following conclusion may be observed from Table 3 and Figure 3: 
  (i) For Set-I of Population-I, the value of 1simE decreases as the value of 1ψ  

increases. This result is expected as for Set-I the value of μ is very low, 
however for Set-I of Population-II 1simE  increases with the increasing 
value of 1ψ . 

 (ii) For Set-II, III and IV of the Population-I, the value of 1simE first increases 
and then starts decreasing with the increasing value of 1ψ , however no 
specific pattern is observed for set II, III and IV of Population-II.  

(iii) For all the considered combinations appreciable gain in precision is 
observed when the proposed estimator is compared with the sample 
median estimator. Hence, the use of additional auxiliary information at 
both the occasions is highly justified. 

4. The following points may be noted from Table 4, Table 5 and Figures 4, 5, 6 
and 7: 

  (i) For fixed value of 1 2 and ,ψ ψ the value of 2simE decreases with the 
increasing value of μ, except for few combinations of 1 2 and ψ ψ  for 
Population-I, however no specific pattern is observed for Population-II.    

 (ii) For fixed value of 1  and  ψ µ and increasing value of 2 ,ψ the value of 

2simE  also increases, except for few combinations. 

(iii)  For fixed value of 2 ,ψ  and lower value of μ, the value of 2simE decreases 
with increasing value of 1ψ , however for higher value of μ, the value of 

2simE increases with the increasing value of , except for few 
combinations. 

(iv) Tremendous gain in precision is obtained for all the considered cases. 

1ψ
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10. Conclusion 

From the analysis of empirical and simulation results it can be concluded 
that the proposed estimator T compares favourably in terms of efficiency with the 
standard sample median estimator, where there is no matching from previous 
occasion. The estimator T also proves to be much better than the estimator Δ, 
when no additional auxiliary information is used at any occasion. Therefore, the 
use of additional auxiliary information at both the occasions in two occasion 
successive sampling for estimating population median at current occasion is 
highly rewarding in terms of precision and reducing the total cost of survey. 
Hence, the proposed estimators may be recommended for further use by survey 
practitioners. 
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SOME CHAIN-TYPE EXPONENTIAL ESTIMATORS OF 
POPULATION MEAN IN TWO-PHASE SAMPLING  

G. N. Singh1, D. Majhi2  

ABSTRACT 

Using the information on two-auxiliary variables, three different exponential 
chain-type estimators of population mean of study variable have been proposed in 
two-phase (double) sampling. Properties of the proposed estimators have been 
studied and their performances are examined with respect to several well known 
chain-type estimators. Empirical studies are carried out to support the theoretical 
results. 

Key words: two-phase, auxiliary information, bias, mean square error. 
Mathematics subject classification: 62D05 

1. Introduction 

Ratio, product and regression methods of estimation require the knowledge of 
population mean of the auxiliary variable. If population mean of the auxiliary 
variable is not known, it is customary to move towards two-phase sampling 
scheme, which provides a cost effective estimate of the unknown population mean 
of auxiliary variable in first-phase sample. Utilizing the information on known 
population mean of another auxiliary variable in first-phase sample, Chand (1975) 
introduced chain-type ratio estimator of population mean of study variable. His 
work was further extended by Kiregyera (1980, 1984), Mukherjee et al. (1987), 
Srivastava et al. (1989), Upadhyaya et al. (1990), Singh and Singh (1991), Singh 
et al. (1994), Singh and Upadhyaya (1995), Upadhyaya and Singh (2001), Singh 
(2001), Pradhan (2005), Gupta and Shabbir (2008) and Singh et al. (2011) among 
others. Motivated with the above works, the aim of the present research is to 
propose some different structures of chain-type estimators in two-phase sampling 
which may estimate the population mean in a more precise way in comparison 
with the contemporary estimators of similar kind. 

                                                        
1 Department of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India.  

E-mail: gnsingh_ism@yahoo.com. 
2 Department of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India. 
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2. Two-phase sampling set-up 

Consider a finite population U of size N indexed by triplet characters (y, x, z). 
We wish to estimate the population mean Y  of study variable y in the presence of 
two auxiliary variables x and z. Let x and z be called first and second auxiliary 
variables respectively such that y is highly correlated with x while in comparison 

with x it is remotely correlated with z  yx yzi.e. ρ > ρ .When the population mean 

X  of x is unknown but information on z is available on all the units of the 
population, we use the following two-phase sampling scheme. 

Let us now consider a two-phase sampling where in the first phase a large 

(preliminary) sample  ' 's s U of fixed size 'n  is drawn following SRSWOR to 

observe two auxiliary variables x and z to estimate X , while in the second phase 

a sub-sample 's s  of fixed size n is drawn by SRSWOR to observe the 
characteristic y under study. 

3. Estimators based on one auxiliary variable 

Ratio and regression estimators in two-phase sampling are the traditional 
estimators utilizing the information on one auxiliary variable and are reproduced 

below along with their respective mean square errors up to  -1o n . 

'
rd

y
y = x

x
                                                        (1) 

   2 2 2
rd 1 y 3 x yx y xM y =Y f C +f C - 2ρ C C                            (2) 

  '
lrd yxy = y + b n x - x                                       (3) 

   2 2 2
lrd y 1 yx 2 yxM y =S f 1-ρ + f ρ                                     (4) 

where  yxb n is the sample regression coefficient of  y on x calculated from the 

data based on s and

 
'

'
i i i 1 2 3 1 2' ' '

i s i s i s

1 1 1 1 1 1 1 1 1
y = y , = and = , f = - , f = - , f = f - f = -

n n n n N n N n n
x x x x

  

     
     
     

  

  
2N

2
x i

i =1

1
S = -X ,

N-1
x  

2N
2
y i

i =1

1
S = y -Y

N-1
, yx

x y

SS
C = ,C =

X Y
, and yxρ be the correlation 

coefficient between the variables y and x. X and Y are the population means of 
the variables x and y,  respectively. 
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4. Estimators based on two auxiliary variables 

 Chand (1975) introduced a chain-type ratio estimator under two-phase 
sampling using two auxiliary variables x and z when the population mean X  of x 
is unknown but information on z is available on all the units of the population, 
which is given as 

'

rc '

y x
y = Z

x z
                                                   (5) 

The mean square error of the estimator rcy  up to  -1o n  is derived as  

     2 2 2 2
rc 1 y 3 x yx y x 2 z yz y zM y =Y f C + f C - 2ρ C C +f C - 2ρ C C                (6) 

where Z  is the population mean of the variable z, 
'

'
i'

i s

1
z  = z

n 
 , z

z

S
C =

Z
, 

 
2N

2
z i

i =1

1
S = - Z

N-1
z  and yzρ  be correlation coefficient between variables y and z. 

Kiregyera (1980, 1984) extended the work of Chand (1975) and suggested 
chain-type ratio to regression, regression to ratio and regression to regression 
estimators of population mean of study variable y in two-phase sampling which 
utilized the information on two auxiliary variables. The suggested estimators are 

given below along with their respective mean square errors up to  -1o n . 

  ' ' '
k1 xz

y
y = x + b n Z- z

x
                                                      (7) 

     2 2 2 2
k1 3 x y yx y x 2 y 2 xz x xz x yz yM y = =Y f C + C - 2ρ C C + f C + f ρ C ρ C - 2ρ C     

(8) 

 
'

' '
k2 yx rd rd '

x
y = y + b (n) x - x ; x = Z

z
                                            (9) 

   
2

2 2 2 2 2 z z
k2 y 1 yx 2 yx yx yx yz2

x x

C C
M y =Y C f 1- ρ +f ρ + ρ  - 2ρ ρ

C C

  
  

  
              (10) 

    ' ' ' ' '
k3 yx ld ld xzy = y + b (n) x - x ;x = x + b n Z - z                     (11) 

     2 2 2 2 2
k3 y 3 yx 2 xz yx yx yz xzM y =Y C f 1- ρ + f 1+ ρ ρ - 2ρ ρ ρ                            (12) 
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where  'xzb n is the sample regression coefficient of the variable x on z 

calculated from the data based on 's  and xzρ  be correlation coefficient between 

variables x and z. 

5. Proposed estimators 

The intelligible use of auxiliary information at estimation stage is a 
fascinating act in sample surveys. In presence of auxiliary information Bahl and 
Tuteja (1991) suggested an exponential structure to estimate the population mean 
of study variable and their work was extended by Singh and Vishwakarma (2007) 
in two-phase sampling scheme.  Motivated with the work related to the 
proposition of chain-type estimators in two-phase sampling set-up, and looking on 
the nice behaviours of the exponential type estimators, we suggest below three 

different chain-types exponential estimators of population mean Y  of the study 
variable y. The suggested estimators are given as  

'
'

1 '

y Z - z
T = x exp

x Z + z

 
 
 

         (13) 

 
'

'
2 yx '

Z - z
T = y + b n x exp -x

Z + z

   
  
   

                            (14) 

and 

'

3 ' '

x - x Z
T = y exp

x + x z

   
   

  
                                     (15) 

6. Properties of the estimators  iT i=1,2,3  

Theorem 6.1. Biases of the estimators  iT i =1, 2,3  defined in equations (13), 

(14) and (15) up to  -1o n  are obtained as 

   2 22
1 3 x yx y x z yz y z

f 3
B T = Y f C - ρ C C + C - ρ C C

2 4

  
    

                       (16) 

  300 210 2012 111
2 yx 3 002 1012

200 110 200 110

μ μ μf μ3 X 1 X X
B T =β f - + μ - μ + -

μ μ 2 4 Z Z Z μ Z μ
    
    

    
          (17) 
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and 

   2 23
3 x yx y x 2 z yz y z

f 3
B T = Y C - ρ C C +f C - ρ C C

2 4

  
    

                            (18) 

where        r s t

rst i i iμ = E x -X y -Y z -Z ; r,s, t 0 are integers.  
 

 

Theorem 6.2. Mean square errors of the estimators  iT i =1, 2,3 defined in 

equations (13), (14) and (15) up to  -1o n  are derived as    

     2 2 2 22
1 1 y 3 x yx y x z yz y z

f
M T =Y f C +f C -2ρ C C + C - 4ρ C C

4
 
  

             (19) 

   
2 2
yx2 2 2 z z

2 y 3 yx 2 yx yz2
x x

ρ C C
M T =Y C f 1-ρ +f 1+ - ρ ρ

4 C C

  
      

               (20) 

and  

     2 2 2 23
3 1 y x yx y x 2 z yz y z

f
M T =Y f C + C - 4ρ C C +f C - 2ρ C C

4
 
  

          (21) 

7. Comparison of the estimators 

In this section we compare the proposed estimators  iT i =1, 2,3  with to 

respect to the estimators rd lrd rc k1 k2 k3y , y , y , y , y  and y .  Preference zones of the 

estimators iT are explored and shown below:  

(i)  iT i =1, 2,3  are better than rdy  if    i rdM T M y , which gives 

                                     y
yz

z

C 1ρ for i =1
C 4

                                        (22) 

                                       
2

x yx y 2
2

2 2 3z z
y yx yx yz2

x x

4 C - ρ C f
for i = 2

fC C
C ρ - 4ρ ρ

C C


 
 
 

                    (23) 

                                    
 
   

2
x yx y x 2
2

3z yz y z

3C - 4ρ C C f
for i = 3

f4 C - 2ρ C C
                              (24) 
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(ii)  iT i =1, 2,3 are preferable over  lrdy  if    i lrdM T M y , which gives 

                                         
 

   
2

x yx y 2
2

3yz y z z

4 C -ρ C f
for i = 1

f4ρ C C - C
                           (25) 

                                            yz x

yx z

ρ C 1
for i = 2

ρ C 4

 
  

 
                               (26) 

                                       
 
   

2

x yx y 2
2

3yz y z z

C - 2ρ C f
for i = 3

f4 2ρ C C - C
                        (27) 

 (iii)  iT i =1, 2,3  will dominate rcy  if    i rcM T M y  and subsequently we 

get the conditions 

                                    y
yz

z

C 3ρ for i = 1
C 4

                                       (28) 

                    
 

 
 

2

x yx y 2
22

2 3y yx z
yz z yz y

x

C - ρ C f
for i = 2

fC ρ C
- 2ρ - C - ρ C

4 C


   
  

   

           (29) 

                                    y
yx

x

C 3ρ for i = 3
C 4

                                             (30) 

(iv)  iT i =1, 2,3 are more efficient than k1y  if    i k1M T M y , which gives 

                                 
 
   yz y xz x

z yz y

ρ C - ρ C 1
 for i =1

2C - 2ρ C
                                     (31) 

 

 
 

2

x yx y 2
22 2

32yx z2 2 2z
y yx yz xz x xz yz y x2

x x

C - ρ C f
for i = 2

fρ C C
C -ρ ρ - ρ C - 2ρ ρ C C

4C C


   

   
    

 

     (32) 

      
 

      
2

yx y x x 2
2 2

3
xz x yz y z yz y

4ρ C C - 3C f
for i =3

f4 ρ C - ρ C - C - ρ C
                      (33) 
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(v)  iT i =1, 2,3 are preferable over k2y  if    i k2M T M y , which gives 

                
2

x yx y 2
2 2

3
z z

y yx yz yz y
x

C - ρ C f
for i =1

fC C
C ρ - ρ - - ρ C

C 2


           
       

               (34) 

                                       yz x

yx z

ρ C 3
for i = 2

ρ C 4
                                                  (35) 

         

 
 

2

x yx y 2

32z z
yx yx yz yz y z z

x x

C - 2ρ C f
for i = 3

fC C
4 ρ ρ - 2ρ + 2ρ C C - C

C C


    
   
    

       (36) 

(vi)  iT i =1, 2,3  will dominate  k3y   if    i k3M T M y  and subsequently we 

get the conditions 

                       

    
 

2

x yx y 2
2

2 3

y yx xz yz z yz y

C - ρ C f
for i =1

f1
C ρ ρ - ρ - C - ρ C

2


  
  

   

                 (37) 

                        2 z
yx xz yz xz yx yz

x

C1ρ ρ -ρ ρ ρ -4ρ for i = 2
4 C

  
      

  
                  (38) 

            
 

       
2

x yx y 2

2
3yx xz yx xz yz yz y z z

C - 2ρ C f
for i =3

f4 ρ ρ ρ ρ - 2ρ + 2ρ C C - C
            (39) 

8. Empirical studies  

To examine the performance of the proposed estimators  iT i =1, 2,3 , we 

have computed the percent relative efficiencies of iT  with respect to 

rd lrd rc k1y , y , y , y based on two natural populations which almost satisfy the 

conditions shown in equations (22)-(33) and presented in Table 1. The percent 
relative efficiencies of the estimators iT  with respect to an estimator δ  are 

defined as PRE =  
 i

MSE δ
X100

MSE T

 
 
 

 ;  i=1, 2,3 . 
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Population Source-I: Cochran (1977) 

y: Number of ‘placebo’ children. 

x: Number of paralytic polio cases in the placebo group. 

z: Number of paralytic polio cases in the ‘not inoculated’ group  

N = 34, n = 10, 'n = 15, Y = 4.92, X = 2.59, Z = 2.91, 2
yC = 1.0248,  

2
xC = 1.5175, 2

zC = 1.1492, yxρ = 0.7326, yzρ = 0.6430 and xzρ = 0.6837.  

Population Source-II: Fisher (1936) 

Consisting of measurements on three variables, namely sepal width (y), sepal 

length (x) and petal length (z) for 50 Iris flowers (versicolor) such that: 

N = 50, n = 10, 'n = 20, Y = 2.770, 2
yC = 0.012566, 2

xC = 0.007343,  
2
zC = 0.011924, yxρ = 0.5605, yzρ = 0.5259 and xzρ = 0.7540.  

 
Table 1. The percent relative efficiencies (PRE) based on population I and  

               population II of the proposed estimators  iT i =1, 2,3  with respect to  

               the estimators rd lrd rc k1y , y , y , y .
 

Estimators 
PRE FOR POPULATION I 

rdy  lrdy  rcy  k1y  

1T  132.7310 115.5850 113.0849 101.8650 

2T  146.8405 127.8718 125.1060 112.6934 

3T  136.7430 119.0787 116.5031 104.9441 

 PRE FOR POPULATION II 

1T  114.1981 110.6203 110.2922 100.0537 

2T  116.7494 113.0917 112.7563 102.2890 

3T  104.3392 101.0703 100.7705 91.4159 

9. Conclusions 

It is visible in Table 1 that the proposed estimators  iT i =1, 2,3 are 

preferable over the estimators rd lrd rc k1y , y , y and y  except the estimator T3 which 

is being dominated by the estimator k1y in population II. The proposed estimators 
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will also be preferable over the estimators k2 k3y  and y for the population which 

satisfies the conditions derived in equations (34)-(39). Hence, looking on the 
dominance nature of the proposed estimators, they may be recommended for their 
practical applications. 
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METHODS  OF  REDUCING  DIMENSION 
 FOR  FUNCTIONAL  DATA 

Tomasz Górecki1, Mirosław Krzyśko2, Łukasz Waszak3,  
Waldemar Wołyński4 

ABSTRACT 

In classical data analysis, objects are characterized by many features observed at 
one point of time. We would like to present them graphically, to see their 
configuration, eliminate outlying observations, observe relationships between 
them or to classify them. In recent years methods for representing data by 
functions have received much attention. In this paper we discuss a new method of 
constructing principal components for multivariate functional data. We illustrate 
our method with data from environmental studies. 

Key words: multivariate functional data, functional data analysis, principal 
component analysis, multivariate principal component analysis. 

1. Introduction 

The idea of principal component analysis (PCA) is to reduce the 
dimensionality of a data set consisting of a large number of correlated variables, 
while retaining as much as possible of the variation present in the data set. This is 
achieved by transforming them to a new set of variables, the principal 
components, which are uncorrelated, and which are ordered so that the first few 
retain most of the variation present in all of the original variables. 

In recent years methods for representing data by functions or curves have 
received much attention. Such data are known in the literature as functional data 
(Ramsay and Silverman, 2005). Examples of functional data can be found in 
various application domains, such as medicine, economics, meteorology and 
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many others. In previous papers on functional data analysis, objects are 
characterized by only one feature observed at many time points (see Ramsay and 
Silverman (2005)). In many applications there is a need to use statistical methods 
for objects characterized by many features observed at many time points (double 
multivariate data). In this case, such data are called multivariate functional data. A 
pioneering theoretical work was that of Besse (1979), where random variables 
take values in a general Hilbert space. Saporta (1981) presents an analysis of 
multivariate functional data from the point of view of factorial methods (principal 
components and canonical analysis). Finally, Jacques and Preda (2014) proposed 
principal component analysis for multivariate functional data (MFPCA) applied to 
the methods of cluster analysis. In this paper we propose another method of 
construction of principal components for multivariate functional data, along with 
an in-depth interpretation of these variables. 

2. Classical principal component analysis (PCA) 

Suppose we observe a -dimensional random vector 
. We further assume that  and . 

In the first step we seek a variable  in the form  

 

having maximum variance for all  such that . 

Let 

  
where . 

The random variable  will be called the first principal component, and the 
vector  will be called the vector of weights of the first principal component. 

In the next step we seek a v ariable  which is not 
correlated with the first principal component  and which has maximum 
variance. We continue this process until we obtain  new variables  
(principal components). 

In general, the th principal component  satisfies the 
conditions:  

  

  
The expression  will be called the th principal system of the variable 

 (Jolliffe (2002)). 
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It can be shown that  and  are the 
eigenvalues and corresponding eigenvectors of the covariance matrix . 

In practice this matrix is unknown, and must be estimated from the sample. 
Let  be realizations of the vector . 

Then 

 

Moreover, let  and  be eigenvalues and 
corresponding eigenvectors of the matrix . 

Then  is called the th principal system of the sample of the vector . 
The coordinates of the projection of the th realization  of the vector  on 

the th principal component are equal to:  

 
for . Finally, the coordinates of the projection of the 
th realization  of the vector  on the plane of the first two principal 
components from the sample are equal to  

3. Multivariate functional principal component analysis (MFPCA) 

The functional case of PCA (FPCA) is a more informative way of looking at 
the variability structure in the variance-covariance function for one-dimensional 
functional data (Górecki and Krzyśko (2012)). In this section we present PCA for 
multivariate functional data (MFPCA) (Jacques and Preda (2014)). 

Suppose that we are observing a -dimensional stochastic process 
, with continuous parameter . We will 

further assume that  and , where  is a Hilbert 
space of square integrable functions on the interval  equipped with the following 
inner product:  

 
Moreover, assume that the th component of the process  can be 

represented by a finite number of orthonormal basis functions   

 
where  are random variables such that , , 

.  
Let  
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(1) 

 
where , . 

Then, the process  can be represented as  

  
We are interested to find the inner product  

  
having maximal variance for all  such that . It may 
be assumed that the vector weight function  and the process  are in the 
same space, i.e. the function  can be written in the form:  

  
where , . Then  

  
and  

  

  
Let  

 
where .  
The inner product  will be called the first principal 
component, and the vector function  will be called the first vector weight 
function. Subsequently we look for the second principal component 

, maximizing , such 
that , and not correlated with the first functional 
principal component ,i.e. subject to the restriction . 

In general, the th functional principal component 
 satisfies the conditions:  
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The expression  will be called the th principal system of the 
process . 

Now, let us consider the principal components of the random vector . The 
th principal component  of this vector satisfies the conditions:  

 

  
where , . The expression  will be called 
the th principal system of the vector . 

Determining the th principal system of the vector  is equivalent to solving 
for the eigenvalue and corresponding eigenvectors of the covariance matrix  of 
that vector, standardized so that  

From the above considerations, we have the following theorem:  
Theorem. The th principal system  of the stochastic process  is 
related to the th principal system  of the random vector  by the 
equations:  

 
where , .  

Principal component analysis for random vectors  is based on the matrix . 
In practice this matrix is unknown. We estimate it on the basis of  independent 
realizations  of the random process . 

Typically data are recorded at discrete moments in time. The process of 
transformation of discrete data to functional data is performed for each variable 

 separately. 
Let  denote an observed value of feature ,  at the th time 

point , where . Then our data consist of  pairs of . This 
discrete data can be smoothed by continuous functions , where  
(Ramsay and Silverman (2005)). Let  be a co mpact set such that , for 

. Let us assume that the function  has the following representation  

 
(2) 

where  are orthonormal basis functions, and  are the 
coefficients. 

Let ,  and  be a 
matrix of dimension  containing the values , , 

, . The coefficient  in (2) is estimated by the least 
squares method, that is, so as to minimize the function:  
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Differentiating  with respect to the vector , we obtain the least squares 
method estimator  

  
The degree of smoothness of the function  depends on the value  

(a small value of  causes more smoothing of the curves). The optimum value 
for  may be selected using the Bayesian information criterion BIC (see Shmueli 
(2010)). 

Let us assume that there are  independent pairs of values , 
, , . These discrete data are smoothed to 

continuous functions in the following form:  

 
Among all the  one common value of  is chosen, as the 

modal value of the numbers , and we assume that each function 
 has the form  

 
The data  are called functional data (see Ramsay and 

Silverman (2005)). 
Finally, each of  independent realizations  has the form 

 where  is given by (1) and the vectors 
 are centred, . 

Let  Then  

 
Let  be non-zero eigenvalues of the matrix , and 

 the corresponding eigenvectors, where rank . 
Moreover, the th principal system of the random process  determined 

from the sample has the following form:  

 
The coordinates of the projection of the th realization  of the process 
 on the th functional principal component are equal to:  

 
for . Finally, the coordinates of the projection of the 
th realization  of the process  on the plane of the first two functional 
principal components from the sample are equal to  
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4. Example 

Data relating to environmental protection were obtained from Professor W. 
Ratajczak of the Spatial Econometry Group at the Geographical and Geological 
Sciences Faculty of Adam Mickiewicz University, Poznań. The analysis relates to 
the 16 P olish provinces ( ). On the graphs, the provinces are denoted by 
numbers as given in Table 1. 

Table 1. Designations of provinces 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The analyzed data cover a period of 10 years, from 2002 to 2011 ( ). 
Each province was characterized by a group of 6 features ( ):  
1. Gaseous pollutant emissions [t/km2] 

2. Dust pollutant emissions [kg/km2] 

3. Solid waste produced [t/km2] 

4. Total liquid waste [dam3/1000 residents]  

5. Industrial liquid waste [dam3/1000 residents]  

6. Household and industrial water consumption [dam3/1000 residents]  

The classical method of principal component analysis (PCA) permits only 
separate analysis for each year of observation. Tables 2–5 contain the weights and 
the percentage contributions for the first and second principal component. 

1  ŁÓDZKIE 

2  MAZOWIECKIE 

3  MAŁOPOLSKIE 

4  ŚLĄSKIE 

5  LUBELSKIE 

6  PODKARPACKIE 

7  PODLASKIE 

8  ŚWIĘTOKRZYSKIE 

9  LUBUSKIE 

10  WIELKOPOLSKIE 

11  ZACHODNIOPOMORSKIE 

12  DOLNOŚLĄSKIE 

13  OPOLSKIE 

14  KUJAWSKO-POMORSKIE 

15  POMORSKIE 

16  WARMIŃSKO-MAZURSKIE 
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Table 2. Weights (eigenvectors) of the first principal component  
               (analysis for a fixed time) 

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 0.6181 0.6480 0.6404 0.6535 0.6985 0.7076 0.7564 0.7514 0.7591 0.7748 

2 0.4230 0.3964 0.3612 0.3140 0.2773 0.3042 0.2200 0.1962 0.2017 0.1884 

3 0.6609 0.6486 0.6762 0.6869 0.6579 0.6363 0.6144 0.6283 0.6180 0.6022 

4 0.0013 0.0010 0.0007 0.0008 0.0008 0.0006 0.0008 0.0009 0.0006 0.0005 

5 -0.0333 -0.0326 -0.0316 -0.0331 -0.0320 -0.0289 -0.0297 -0.0303 -0.0215 -0.0257 

6 -0.0347 -0.0338 -0.0344 -0.0370 -0.0372 -0.0327 -0.0339 -0.0358 -0.0274 -0.0300 
 
Table 3. Percentage contribution of the original variables in the structure  
              of the first principal component (analysis for a fixed time) 

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 38.2048 41.9904 41.0112 42.7062 48.7902 50.0698 57.2141 56.4602 57.6233 60.0315 

2 17.8929 15.7133 13.0465 9.8596 7.6895 9.2538 4.8400 3.8494 4.0683 3.5495 

3 43.6789 42.0682 45.7246 47.1832 43.2832 40.4878 37.7487 39.4761 38.1924 36.2645 

4 0.0002 0.0001 0.0000 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 

5 0.1109 0.1063 0.0999 0.1096 0.1024 0.0835 0.0882 0.0918 0.0462 0.0660 

6 0.1204 0.1142 0.1183 0.1369 0.1384 0.1069 0.1149 0.1282 0.0751 0.0900 
 
Table 4. Weights (eigenvectors) of the second principal component  
               (analysis for a fixed time) 

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 0.7697 0.7405 0.6493 0.7145 0.3636 0.4864 0.4985 0.4124 0.3529 0.3770 

2 -0.2033 -0.1625 0.0214 0.0060 0.0548 0.0398 0.0368 0.0161 -0.0100 -0.0103 

3 -0.5764 -0.6277 -0.5937 -0.6673 -0.3448 -0.5116 -0.5798 -0.4388 -0.3824 -0.4280 

4 0.0013 0.0022 0.0024 0.0023 0.0018 0.0008 0.0010 0.0005 0.0022 0.0018 

5 0.1235 0.1194 0.3322 0.1459 0.5975 0.4978 0.4560 0.5652 0.6065 0.5830 

6 0.1368 0.1304 0.3393 0.1511 0.6237 0.5022 0.4539 0.5636 0.6010 0.5785 
 
Table 5. Percentage contribution of the original variables in the structure  
               of the second principal component (analysis for a fixed time) 

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 59.2438 54.8340 42.1590 51.0510 13.2205 23.6585 24.8502 17.0074 12.4538 14.2129 

2 4.1331 2.6406 0.0458 0.0036 0.3003 0.1584 0.1354 0.0259 0.0100 0.0106 

3 33.2237 39.4007 35.2480 44.5289 11.8887 26.1735 33.6168 19.2545 14.6230 18.3184 

4 0.0002 0.0005 0.0006 0.0005 0.0003 0.0001 0.0001 0.0000 0.0005 0.0003 

5 1.5252 1.4256 11.0357 2.1287 35.7006 24.7805 20.7936 31.9451 36.7842 33.9889 

6 1.8714 1.7004 11.5124 2.2831 38.9002 25.2205 20.6025 31.7645 36.1201 33.4662 
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The relative position of the 16 provinces (in 2002 and 2011) in the system of 
the first two principal components is shown in Figure 1. 

Figure 1. Projection of the six-dimensional vectors representing the 16 provinces 
on the plane of the first two principal components, (a) year 2002, (b) year 2011 

 
The functional principal components method enables combined analysis of the 

data for the whole of the studied period of time. The data were transformed to 
functional data by the method described in Section 3. The calculations were 
performed using the Fourier basis. The time interval [0,T]=[0,10] was divided into 
moments of time in the following way: t1=0.5(2002), t2=1.5(2003),…, 
t10=9.5(2011). Moreover, in view of the small number of time periods (J=10), for 
each variable the maximum number of basis components was taken, equal to

.9101 === BB   
Tables 6–7 show the coefficients of the weight functions for the first and 

second functional principal components. 
 

Table 6. Coefficients of weight functions for the first functional principal  
               component 

  0û  1û  2û  3û  4û  5û  6û  7û  8û  Area 

1 0.6947 -0.0007 -0.0179 -0.0056 0.0189 -0.0220 -0.0104 -0.0064 -0.0046 2.1968 

2 0.2927 0.0794 0.0094 0.0401 0.0138 0.0114 -0.0101 0.0299 0.0011 0.9256 

3 0.6443 0.0551 -0.0088 0.0086 0.0129 -0.0010 -0.0074 0.0147 -0.0002 2.0375 

4 0.0008 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0025 

5 -0.0317 0.0001 0.0009 -0.0005 -0.0009 0.0003 0.0003 0.0009 -0.0004 0.1002 

6 -0.0355 0.0013 0.0011 0.0006 -0.0008 0.0003 0.0004 0.0013 -0.0004 0.1123 
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Table 7. Coefficients of weight functions for the second functional principal  
               component 

  0û  1û  2û  3û  
4û  5û  6û  7û  

8û  Area 

1 0.5771 -0.0005 0.0680 0.0392 0.0193 0.0165 -0.0105 -0.0091 -0.0114 1.8250 

2 -0.0122 -0.0227 -0.0289 -0.0087 -0.0092 -0.0140 0.0010 -0.0157 0.0005 0.1021 

3 -0.5636 -0.0314 0.0210 -0.0042 -0.0070 0.0018 0.0017 -0.0078 0.0034 1.7823 

4 0.0017 0.0004 0.0003 -0.0001 -0.0002 -0.0002 -0.0003 -0.0001 -0.0002 0.0054 

5 0.4080 -0.0210 0.0120 -0.0081 0.0096 -0.0065 -0.0155 -0.0117 0.0055 1.2902 

6 0.4120 -0.0164 0.0081 -0.0069 0.0122 -0.0041 -0.0163 -0.0115 0.0072 1.3029 

 
At a given time point t, the greater is the absolute value of a component of the 

vector weight, the greater is the contribution in the structure of the given 
functional principal component, from the process  corresponding to that 
component. The total contribution of a particular primary process  in the 
structure of a particular functional principal component is equal to the area under 
the module weighting function corresponding to this process. These contributions 
for the six components of the vector process , and the first and second 
functional principal components are given in Tables 6–7. 

Figure 2 s hows the six weight functions for the first and second functional 
principal components. 

Figure 2. Weight functions for the first (a) and second (b) functional principal  
                component (MFPCA) 

 
The relative positions of the 16 p rovinces in the system of the first two 

functional principal components are shown in Figure 3. T he system of the first 
two functional principal components retains 90.33% of the total variation. 
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Figure 3. Projection of multidimensional functional data representing the 16 
                  provinces on the plane of the first two functional principal components 

5. Conclusions 

This paper introduces and analyzes a new method of constructing principal 
components for multivariate functional data. This method was applied to 
environmental multivariate time series concerning the Polish provinces. Our 
research has shown, on this example, that the use of a m ultivariate functional 
principal components analysis gives good results. Of course, the performance of 
the algorithm needs to be further evaluated on additional real and artificial data 
sets. In a similar way, we can extend similar methods like functional discriminant 
coordinates (Górecki et al. (2014)) and canonical correlation analysis (Krzyśko, 
Waszak (2013)) to multivariate case. This is the direction of our future research. 
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MULTIOBJECTIVE OPTIMIZATION OF FINANCING 
HOUSEHOLD GOALS WITH MULTIPLE  

INVESTMENT PROGRAMS 

Łukasz Feldman1, Radosław Pietrzyk2, Paweł Rokita3  

ABSTRACT 

This article proposes a technique of facilitating life-long financial planning for a 
household by finding the optimal match between systematic investment products 
and multiple financial goals of different realization terms and magnitudes. This is 
a multi-criteria optimization. One of the objectives is compliance between the 
expected term structure of cumulated net cash flow throughout the life cycle of 
the household with its life-length risk aversion and bequest motive. The second is 
financial liquidity in all periods under expected values of all stochastic factors. 
The third is minimization of net cash flow volatility. The fourth is minimization 
of costs of the investment plan combination. The result is a set of systematic-
investment programs with accompanying information which programs are 
destined to cover which financial goal. Payoffs of one program may be used to 
cover more than one goal and the order may be other than sequential. An original 
goal function, constructed to suit conditions and assumptions of the proposed 
household financial plan model, is presented as an optimization procedure. 

Key words: multiobjective optimization, personal finance, asset selection, 
intertemporal choice. 

1. Introduction 

Based on Modigliani and Brumberg (1954), Ando and Modigliani (1957) and 
Yaari (1965) life-cycle consumption, as well as on the dynamic asset allocation 
models by Merton (1969, 1971) and Richard (1975), a vast literature on lifetime 
financial planning for individuals has been developed so far. A common concept 
that underlies modern personal finance models is expressing intertemporal choice 
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situation in terms of expected discounted utility. Following Yaari (1965), the goal 
function to be maximized was expected discounted utility of consumption, where 
consumption was expressed as a consumption rate; utilities were weighted with 
conditional probability of survival of an individual, preferences did not change 
over time and were independent from period to period (time separable 
preferences). There was one argument of the utility function (consumption) and 
one utility function. This model was then developed and augmented in many 
directions. Bodie, Merton and Samuelson (1992) presented a model providing 
optimization of both consumption and investment decisions. Amongst other 
findings, they proposed to use consumption of leisure time (or, put it differently – 
the amount of work per unit of time) as an additional decision variable. They also 
showed the importance of human capital and its risk in consumption and 
investment decisions by individuals. On this ground a significant branch of 
personal finance models originated. Other assumptions of the original Yaari 
(1965) and Merton (1969, 1971) constructs were relaxed. The models allowed for 
habit formation (relaxing the assumption that preferences are independent in 
time), multiple risky assets (Bodie, at al., 2004), or optimization of retirement 
time (Sundaresan and Zapatero, 1997). Bodie (2007) presented a brief outline of 
the basic analytical framework including the most significant recent findings. 
Other propositions of further development include: using stochastic force of 
mortality in survival process (Huang, Milevsky, Salisbury, 2012), taking into 
account maximum psychological planning horizon (Carbone, Infante 2012) or 
behavioural biases – the concept of using hyperbolic discounting is included here 
(Ainslie, 1975, 1991; Kirby and Herrnstein, 1995). Geyer, Hanke and 
Weissensteiner (2009) presented a model allowing for stochastic labour income 
and investment opportunities. Scholz and Seshadri (2012) proposed to treat health 
as a type of asset and “production of health” as a particular form of investment. A 
lot of work has been also done in the area of retirement capital deployment in the 
retirement phase of the life cycle (Huang and Milevsky 2011; Milevsky and 
Huang, 2011; Gong and Webb, 2008; Dus, Maurer and Mitchell, 2004). 

Despite many-sided and rapid development of the discipline, there are some 
important practical aspects of lifetime financial planning that have not been 
elaborated well yet. The aforementioned models concentrate on decisions made 
by individuals, whereas in personal finance a typical decision making entity is the 
household.  

In this article a model of two-person household is used. A single decision 
maker is treated just as a special case. 

The analysis of household consumption cannot neglect interconnections 
between persons. Even under the assumption that individual survival processes 
are independent, neither cash flows nor assets and liabilities assigned to 
household members are independent. For instance, cumulated investment in 
pension-plan products may be inherited by one spouse if that other dies before her 
(his) retirement age. The model assumes that after retirement date life annuity is 
bought, which, in turn, cannot be inherited. Thus, cumulated investment of one 
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person depends on whether that other is alive, and if not – on time of death (in 
relation to retirement age). There are more such interdependences between 
financial categories building up consumption of the household. Moreover, some 
of the quantities are of cumulative nature. Also, the main household financial 
situation indicator used here, namely – the cumulated net cash flow (cumulated 
surplus), is a process of this kind. This makes conditional probabilities of being 
alive far insufficient for calculation of expected discounted utility. The whole 
history of the process needs to be taken into consideration instead. However, 
because the number of two-person survival process trajectories grows fast with 
the number of future periods spanned by the plan, some simplifications are 
needed. This is what was not necessary in the models discussed before. 
A proposal of simplification, which, moreover, has a very natural and practical 
interpretation, is presented here as one of the inputs. 

Another specificity of the household, as opposed to single person, lies in the 
nature of risk connected with lifetime uncertainty. For a single person, only 
unexpected longevity might have adverse financial consequences. Thus, lifetime 
risk was regarded identical with longevity risk. For the household, also early 
death of one member (particularly the one who earns more) may threat financial 
liquidity. 

One more difference is in retirement planning. It is not necessary (though 
most secure) that retirement income of each household member covers to the full 
extent fixed costs of the household and the part of variable costs that may be 
assigned to this person – 2 x full retirement as defined by Feldman, Pietrzyk and 
Rokita (2014b). The possibility of other retirement schemes (full-partial or even 
2 x partial) gives a bigger range of feasible combinations of (1) the proportion of 
means allotted for consumption and investments, and (2) proportion of common 
investment assigned to particular persons. 

Like in vast part of the literature, it is assumed here that financial goals set by 
the household are not subject to automated optimization. A satisfactory offset 
between the most desired and feasible bundle of goals (taking into account time 
structure of goals and their size) is approached recursively by means of external 
adjustments – if previous version of goal settings turns out to be unattainable 
given other constraints. The decision which goals should be rescheduled, reduced 
in size or abandoned is always made by household members. This approach is 
adopted because it would be a very hard task to define hierarchy of more than two 
goals, preferences of which may be not separable, nor transitive.  

As far as the intended result of optimization is concerned, there is a difference 
between the majority of models discussed in the literature and the proposition 
presented here. The typical approach is focused on smoothing consumption, 
whereas in this research the aim is to obtain such term structure of cumulated 
surplus which best suits lifetime risk aversion and bequest motive of the 
household. Dependent on risk aversion level, financial plans differ just in shapes 
of expected cumulated surplus trajectory. The shape indicates which retirement 
profile will be realized (i.e., whether it will be 2 x full,  full-partial or 2 x partial 
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retirement). Concentrating on the shape of the cumulated net cash flow trajectory 
instead of consumption is a consequence of the way the household financial 
situation is modelled. The expected trajectory of the cumulated net cash flow is a 
fingerprint of each particular financial plan. 

In addition to the aforementioned two-person household approach, intuitive 
and easily applicable definition of risk aversion measures and simplification of 
the optimization problem by limiting the number of survival scenarios, also the 
value function construction and its application may be ranked amongst original 
inputs of this research. The value function evaluates utility of the term structure of 
cumulated surplus, taking also into account consumption. It may be used as a goal 
function of the optimization procedure, but also – as it is discussed in more details 
in Section 4 – facilitates comparison of otherwise hardly comparable investment 
products. This property makes it a useful tool of finding a match between multiple 
investment products and household goals. 

The paper is organized as follows. In Section 1 assumptions and basic 
components of the model are described. Household goals are discussed in 
Section 2. Construction of value function (being also a goal function for the 
optimization procedure) is presented in Section 3. I t is a function of utilities 
calculated for consumption and bequest. What is also proposed is a simplification 
that allows avoiding taking all possible trajectories of bivariate survival process 
into account when searching for the maximum expected discounted utility. This 
simplification implies, at the same time, a straightforward definition of risk 
aversion measure (in respect of length-of-life related risk). Section 4 contains a 
step-by-step description of the procedure of matching multiple systematic-
investment programs with a number of financial goals. Section 5 presents a 
numerical example. These are the results of the procedure described in Section 4 
applied for a demonstration-case household. The last section concludes. 

2. Basic concepts 

When constructing a financial plan with a number of goals and multiple 
investment products available, two tasks are to be discussed. The first is selecting 
a combination from amongst available systematic-investment programs. The 
second is optimization of the term structure of household cash flows. While the 
question in the first task is which goals should be financed with which programs 
(assuming that one program may be used for financing more than one goal), in the 
second task the issue concerns the level of consumption, investments, as well as 
proportions in which household members participate in joint investments of the 
household, given all constraints, amongst which budget constraint is the most 
typical example. The procedure of carrying out the first task is described in 
Section 4. In the second task the goal function described in Section 3 is 
maximized. Both tasks are, of course, strictly connected. Combinations of 
investment programs chosen in preliminary selection as p art of task 1 are 
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evaluated by putting them into the model of household cash flows used in task 
1 and calculating goal function value for each of them. The household cash flow 
model, together with the corresponding value function – being also the goal 
function of the optimization procedure in task 2 – is the basic construct to be 
discussed here. It is also the tool supporting financial plan construction (and, thus, 
among others, also carrying out task 1). In this section assumptions of the 
household cash flow model are provided and some basic notions shading light on 
how the model is constructed are discussed. 

2.1. Assumptions 

The model is based on a set of assumptions. They refer to the household itself, 
its incomes and expenses, construction of household goal function, and also to 
some elements of economic environment. They are as follows: 
• Two-person household – if there are any persons other than the two main 

household members, they are represented in the model as elements of financial 
situation of the main two; a single person is treated just as a special case of a 
(reduced) pair. 

• Both main members intend to remain in the household until their death. 
• Goal function of the household is composed of two elements: 

− utility of consumption, 
− utility of bequest. 

• Goal function s constructed using the concept of expected discounted utility. 
• Survival processes of two main household members are independent. 
• Joint utility function of the whole household is considered. 
• Analytical form of utility function is the same for consumption and bequest. 
• Household income in pre-retirement period is constant in real terms (inflation 

indexed). 
• Fixed real rate of return on private pension plan. 
• Pension income constant in real terms (inflation indexed). 
• Fixed replacement rate (but may be different for women and men). 
• Household members buy life annuity. 
• Household consumption is fixed at the planned level unless running out of 

cumulated surplus (loosing liquidity). 
• Optimization scope (not to be confused with domain of decision variables) is 

limited to the area determined by risk aversion of household members – range 
of concern. 

• Risk aversion is limited to the length of life of household members; no other 
types of risk are considered. 

• The surplus over consumption just cumulates – it is not invested, neither is it 
squandered. 

• No will to work after retirement is taken into account. Thus, human capital in 
retirement is zero and the whole capital of the household that may be then 



248                             Ł. Feldman, R. Pietrzyk, P. Rokita: Multiobjective optimization of… 

 

 

considered is reflected, on the asset side, just in form of cumulated 
investments into private pension plans and cumulated financial surplus. 

• Bequest is not counted among financial goals of the household (but, if there is 
nonzero bequest motive, bequest-leaving potential is positively valued by the 
goal function). 

• There is a constraint that all financial goals, together with retirement (that is, 
the main goal), must be realized – under expected values of death time no 
unutilized cumulated investment is left. 

• Conditional survival probabilities used in discounted expected utility 
calculation may be obtained from any survival model, like Gompertz-
Makeham (Gompertz 1825, Makeham 1860). This is, however, a seco ndary 
issue at this stage of research since the choice of mortality model does not 
influence in any way the very concept of the financial plan optimization 
procedure that is proposed here. It may, certainly, have impact on t he final 
results of the optimization, which may require some detailed investigation at 
the later stage of the research (namely, when stability of the proposed model is 
be tested). 

2.2. General characteristics of household cash flow model and   
  consumption-bequest optimization 
The largest and no doubt the most complicated building block of the whole 

financial plan optimization model is the model of household cash flows, also 
referred to as household consumption model. Its integral part is a value function 
reflecting preferences of the household. It is used as a goal function in household 
cash flow optimization. The value function is described in more details in 
Section 3, whereas main characteristics of the model are presented below and in 
Subsection 1.3.  

• Decision variables 
Decision variables with respect to which plan is optimized are: (a) proportion 

between consumption and investments and (b) division of total investments of the 
household between the two main household members. Proportions of the two 
persons in total investments are important. This is, among others, because life 
annuity of one person vanishes with death of this person and cannot be inherited. 
If the person who had bought higher life annuity died first, it would have much 
more severe consequences for the household finance than if it was the person who 
had bought lower annuity. 

• Incomes, consumption, investments 
The model is based on c onsumption utility, but the main diagnostics of 

financial situation throughout the whole life cycle of the household is the 
cumulated net cash flow (cumulated surplus). This is because the financial plan 
assumes preservation of some predefined standards of living. This means constant 
consumption in real terms (or constant growth of consumption in real terms). 
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Thus, consumption is not necessarily the whole difference between incomes and 
investments. The main types of cash flows in the model are: (a) basic incomes 
(without investment liquidation, etc.), (b) costs (basic consumption), then – 
dependent on g oals to be financed – also (c) cash flows resulting from pre-
financing and post-financing of goals (investments, credit repayments, etc.). The 
difference between incomes and the sum of consumption and investments (and 
instalments) gives (d) the net cash flow. It cumulates over time. One of 
constraints imposed on financial plan is to secure household liquidity, thus not to 
let the cumulated net cash flow to fall below zero (the net cash flow of a given 
period may occasionally be negative if there is a potential to cover the shortfall in 
the future). Liquidation of investments, as well as transfer of credit capital to the 
household are additional incomes. Expenditures on realization of goals are 
additional elements of consumption, but they are treated separately from basic 
consumption. The separate treatment consists in calculating utility only of basic 
consumption. With a bequest motive, also the potential to leave bequest is taken 
into account in utility calculation. 

• Consumption-investment trade-off and risk aversion 
The decision about consumption determines the standard of live. The higher 

standard of life, other things unchanged, the lower value of the capital left 
unutilized. A need arises to find a trade-off between consumption in pre-
retirement period and safety of consumption in retirement period. It is assumed 
that the sum of cumulated investments and cumulated net cash flow available 
after retirement must be sufficient to generate pay-offs that fill retirement gap. 
Retirement gap is understood as the difference between the last job income and 
retirement from compulsory public pension system. But the question for how long 
it should be sufficient is open to the decision of the household members. It 
depends on risk aversion of the household. A simple way of grasping the notion 
of longevity risk aversion is asking these persons how many years after the 
expected time of death of the one who is expected to live longer a potential threat 
of permanent financial shortfall seems too abstract to be a cause for concern. 

• Role of bequest motive 
The higher cumulated surplus the better protection against longevity (and also 

premature death) risk. On the other hand, leaving any surplus or unutilized 
investment after the last household member dies may make sense only if the 
household wants to leave a l egacy to someone. Otherwise, it would be a 
suboptimal solution. The task of finding a trade-off between safety and economic 
efficiency of capital utilization will be different for the case with and without 
bequest motive. This difference would be particularly clear if the household 
showed no risk aversion at all. Then, for the case without the bequest motive the 
optimal plan would be such that its expected trajectory of cumulated surplus 
shrinks to zero at the date of the expected death of the last household member. 
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The household with no risk aversion, yet intending to leave some bequest, might, 
in turn, accept some unutilized capital at the end of their lifetime. 

• Changing parameters and constraints 
There are some quantities whose values may be changed in plan revision 

mode, which are not, however, decision variables. These are parameters and 
constraints that are subject to verification and adjustments by decision of the 
household. Main constraints that are adjusted in this way include financial goals. 
On the one hand goals must be met fully and on time. On the other hand, if this 
condition comes out to be infeasible (negative values in any point of the expected 
cumulated surplus trajectory), then goals are revised. 

2.3. Input and output 
Listed below are input and output arguments of the household consumption 

model. An important part of the model is the cash flow optimization procedure 
based on g oal function described in Section 3. For cash flow optimization, the 
starting values of decision variables are the main input. The output comprises: the 
optimum values of decision variables, the maximum of the goal function obtained 
as a result, and the expected trajectory of cumulated net cash flow for the optimal 
solution. The decision variables are: assumed consumption at the moment 𝑡0 (𝐶𝑎0) 
and proportion of investments in private pension plans by Person 1 and Person 2 
(𝜐1, 𝜐2 = 1 − 𝜐1). Apart from decision variables all initial values of variables and 
all parameters of the household cash flow model are certainly also the input of the 
optimization procedure. 

• Input: 

− Age at 𝑡0:  𝑥0
(1), 𝑥0

(2), 
− Retirement age:  𝑧𝑅1 = 𝑧(𝑅1; 𝑥0

(1)), 𝑧𝑅2 = 𝑧(𝑅2; 𝑥0
(2),  

     where 𝑅1 and 𝑅2 are retirement dates, 𝑧(𝑡, 𝑥) is age at the moment 𝑡 of a 
person who was 𝑥 years old at 𝑡0, 

− Expected length of life at 𝑡0:  𝐸 �𝐷�𝑧 �𝑡0;  𝑥0
(1)��, 𝐸 �𝐷�𝑧 �𝑡0;  𝑥0

(2)��, 

− Income at 𝑡0:  𝐼𝑐0
(1), 𝐼𝑐0

(2),𝐼𝑐0
(𝑐), 

− Income growth rate:  𝑔1, 𝑔2, 𝑔𝑐, 
− Replacement rate:  𝜒, 
− Constant common consumption at 𝑡0:  𝐹𝐶, 
− Individual consumption at 𝑡0:  𝑉𝐶0

(1), 𝑉𝐶0
(2), 

− Minimum acceptable consumption in any period:  𝐶𝑚𝑖𝑛, 
− Consumption growth rate:  ℎ𝐹𝐶, ℎ1 , ℎ2), 
− Proportion of investments in private pension plans by Person 1 and 

Person 2:  𝜐1, 𝜐2 = 1 − 𝜐1, 
− Return on investment:  𝑟𝐼𝑣, 
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− Return on “uninvested” surplus:  𝑟𝑆𝑝𝑙, 
− If with other goals (other than retirement): 

• Other goals (𝑮), 

where: 

𝑮 = [𝐺1, … ,𝐺𝑛] = � 𝑇1 … 𝑇𝑛
𝑀1 … 𝑀𝑛

�, 

𝐺𝑗 = �
𝑇𝑗
𝑀𝑗
� – 𝑗-th goal (denoted also as: 𝐺𝑗 = (𝑇𝑗,𝑀𝑗)), 

𝑇𝑗, 𝑀𝑗 - planned time and magnitude of goal 𝑗, 
 

• Available investment programs for financing other goals than retirement 
(𝐿 = [𝐿1 … 𝐿𝑚]). 

• Information about assignment of goals to financial programs (for 
explanation why it is input and not the output of the cash flow 
optimization task, refer to Section 4); 

• Output: 
1) Direct: 
− Trajectories of consumption process, 
− Trajectories of surplus process, 
2) Indirect: 
− Income process, 
− Consumption process, 
− Cumulated investment process; 

• Relationships between some chosen input positions and basic household  
     cash flows: 

Consumption may be divided into three components: 
− Common consumption (fixed and not attributed to any particular person), 
− Consumption of Person 1, 
− Consumption of Person 2. 
Division of consumption between household members is vital for determining 
their contributions to private pension investment programs. The programs are 
separated and they do not  depend on e ach other, however, if a person dies 
before retirement age, the amassed capital is transferred to the other one. 
Total consumption and savings of the household are given as (eq. 1, 2): 
 Assumed consumption: 

𝐶𝑎𝑡 ≡ 𝑉𝐶𝑡
(1) + 𝑉𝐶𝑡

(2) + 𝐹𝐶  (1) 

where: 𝐶𝑎𝑡 – assumed consumption, 𝑉𝐶𝑡
(𝑖) – variable costs assigned to 𝑖-th 

person, 𝐹𝐶 – fixed costs of the household. 
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 Savings (difference between incomes and consumption): 

𝑆𝑡 = 𝐼𝑐𝑡 − 𝐶𝑎𝑡 = 𝐼𝑐𝑡
(1) + 𝐼𝑐𝑡

(2) + 𝐼𝑐𝑡
(𝑐) − 𝑉𝐶𝑡

(1) − 𝑉𝐶𝑡
(2) − 𝐹𝐶  (2) 

where: 𝐼𝑐𝑡 – joint income at the moment 𝑡,  𝐼𝑐𝑡
(1) – income of the first 

person, 𝐼𝑐𝑡
(2) – income of the second person, 𝐼𝑐𝑡

(𝑐) – income of the 
household that is not assigned to any person (e.g.: an income from renting 
out a real estate being a part of conjugal community). 
Under the assumptions of the model, consumption needs are fixed or 
deterministically dependent on the life-cycle phase. Income, whether from 
labour or retirement, is either consumed or, in part that exceeds 
consumption needs, constitutes unconsumed and uninvested surplus. It is 
certainly also possible that the income of a given period does not cover 
consumption needs.  
 Surplus – uninvested part of savings of a given period (eq. 3): 

𝑁𝐶𝐹𝑡 = 𝑆𝑡 − 𝐼𝑣𝑡 = 𝐼𝑐𝑡 − 𝐶𝑎𝑡 − 𝐼𝑣𝑡 = 
= 𝐼𝑐𝑡

(1) + 𝐼𝑐𝑡
(2) + 𝐼𝑐𝑡

(𝑐) − 𝑉𝐶𝑡
(1) − 𝑉𝐶𝑡

(2) − 𝐹𝐶 − 𝐼𝑣𝑡
(1) − 𝐼𝑣𝑡

(2)

− 𝐼𝑣𝑡
(𝑐) 

  (3) 
(𝐼𝑐𝑡 = 𝐼𝑐𝑡

(1) + 𝐼𝑐𝑡
(2) + 𝐼𝑐𝑡

( 𝑐 ); 
𝐼𝑣𝑡 = 𝐼𝑣𝑡

(1) + 𝐼𝑣𝑡
(2) + 𝐼𝑣𝑡

( 𝑐 ); 
if 𝑡 > 𝑅𝑖, then 𝐼𝑐𝑡

(𝑖) = 𝐼𝑐𝑏𝑡
(𝑖) + 𝐼𝑐𝑐𝑡

(𝑖)) 

where: 𝐼𝑣𝑡 – investments of the household in period 𝑡, 𝐼𝑣𝑡
(1) –  investments 

of the first person in period 𝑡, 𝐼𝑣𝑡
(2) – investments of the second person in 

period 𝑡, 𝐼𝑣𝑡
(𝑐) –  investments of the household that are not assigned to any 

person in period 𝑡; moreover: 𝐼𝑐𝑏𝑡
(𝑖) – 𝑖-th person retirement income from a 

public pension system (all pillars included), 𝐼𝑐𝑐𝑡
(𝑖) – 𝑖-th person retirement 

income from private pension plan(s), 𝑅𝑖 – retirement date of person 𝑖. 
 Cumulated surplus – cumulated net cash flow (eq. 4): 

𝐶𝑁𝐶𝐹𝑡 = �𝑁𝐶𝐹𝜏

𝑡−1

𝜏=0

  (4) 

 Maximum feasible consumption (eq. 5): 

𝐶𝑓𝑡
∗ = 𝐼𝑐𝑡 − 𝐼𝑣𝑡  (5) 

(no cumulated surplus would be generated then because surplus of a given 
period would be consumed). 
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 Consumption that can be actually realized at a given moment 𝑡, assuming 
that until the moment only the assumed consumption was realized (eq. 6): 

𝐶𝑓𝑡
∗ = 𝐼𝑐𝑡 + 𝐶𝑁𝐶𝐹𝑡 − 𝐼𝑣𝑡  (6) 

 Consumption as understood in this model (i.e. assumed consumption, but 
up to the level that may be actually realized (eq. 7): 

𝐶𝑡 = min�𝐶𝑎𝑡 , 𝐼𝑐𝑡 + 𝐶𝑁𝐶𝐹𝑡 − 𝐼𝑣𝑡� = min {𝐶𝑎𝑡 ,𝐶𝑓𝑡
∗ }  (7) 

or equivalently (eq. 8): 
 

𝐶𝑡 = 𝐶𝑎𝑡 + min {0,𝐶𝑁𝐶𝐹𝑡}  (8) 
In the formulas 6 and 7 there are no direct references to any further detailed 
decomposition of costs, incomes and investments. But it is important, after 
all, to be able to recognize individual contribution of each person to the 
total net cash flow of the household. This allows modelling the impact of 
stochastic elements of the model (namely, of the dates of person 1 or 2 
deaths – 𝐷1 and 𝐷2). 

3. Financial goals 

Besides consumption sustaining, ensuring realization of the goals is the reason 
for which the financial plan is constructed. The goals differ in size, timing and 
other characteristic. In this section retirement-type goals and other goals are 
discussed. 

3.1. Main financial goals of the household 

The basic version of the model assumes only two main financial goals: 
retirement and bequest. These two goals have their unique feature – they cannot 
be post-financed. Therefore, the only way to realize them is to build up sufficient 
capital over the years. Retirement capital, as well as bequest capital, are usually 
very high in comparison to monthly income of the household. Thus, the earlier 
saving and investing are started the better.  

The classical approach to consumption optimization assumes that: a) 
retirement income of the household should be at least as high as total 
consumption of the household, and b) individual retirement income of the 
household member should not be lower than his or her individual financial needs 
in retirement. This approach would be safe indeed, but rather inefficient due to 
overlapping coverage of household fixed costs, resulting in a considerable 
unutilized surplus. Neglecting this surplus would, in turn, lead to overestimating 
retirement capital needs and, consistently, paying unnecessarily high 
contributions to private pension plans in pre-retirement period. It is possible to 
propose such investment mix that would be less expensive than traditional 
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approach, but would result in more risky retirement income. After all, it should be 
chosen so that it is suited to preference structure of household members. 
Generally speaking, the solutions differ in how much of household fixed and 
variable costs is covered by retirement income and in what proportions household 
members participate in them (comp. Feldman, Pietrzyk, Rokita, 2014a). 

Emphasis should be also put on building the capital for bequest. It is modelled 
here as cumulated surplus (comp. eq. 4) that remains at the time of death of the 
last household member.  

Taking bequest motive into consideration is necessary in this approach since 
the consumption may be the same in plans that differ much in respect of the term 
structure of cumulated surplus, and thus – financial situations of the household. 
Only shortfalls in cumulated surplus, driving consumption below its assumed 
value, would be visible for the utility of consumption. If, however, the last living 
household member dies, the uninvested and unconsumed surplus becomes visible 
in the form of bequest. Because this may happen with some probability at any 
moment, the value function takes account of cumulated surplus along the whole 
planning period. 

These two above-mentioned financial goals are put in the centre of the model 
not only for their magnitude, but also because they usually are the last and often 
underestimated financial goals of the household. It is also obvious that the ability 
of achieving these goals depends significantly on household ability to save 
money. In most cases households spend their savings on some durable goods or 
other unplanned expenses, exchanging long term utility of sustaining high 
consumption level for short term utility of unplanned additional consumption 
(including realization of additional goals). However, households do not make a 
fully conscious choice in this respect. First of all, the decision makers often lack 
skills to estimate their retirement capital needs. Secondly, they often neglect the 
bequest motive and treat bequest as their estate. Thirdly, they are unaware of how 
the additional (unnecessary) expenditures affect their future financial situation.  

3.2. Subordinate financial goals 
There are two most commonly used approaches to determining financial 

goals: age based and life-event based (Nissenbaum, Raasch and Ratner, 2004). 
The first approach assumes financial goals are strictly dependent on the age of a 
decision maker. For instance, a 25-year old single male has different needs in 
terms of retirement planning than 40-year old male. The second approach focuses 
rather on the needs arising from particular events, determining some important 
elements of a decision maker's life situation. A single person usually has no 
bequest motive, while parents of two teenage children have a vital need to leave 
some legacy. Both approaches are justified to some extent and, in fact, result in 
similar outcome.  

Apart from retirement and bequest, households have a wide variety of other 
financial goals. The most common include: 

− Getting married, 
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− Buying a house, 
− Raising a family, 
− Funding education for children, 
− Purchasing durable goods of high value. 

Unlike retirement or bequest, all these financial goals may be post-financed. 
For the purposes of personal financial planning each financial goal has to be 
described by at least two characteristics: time of occurrence and value (assuming 
that goals are deterministic themselves). However, most decision makers do not 
have sufficient knowledge to determine these parameters. Firstly, due to lack of 
long-term planning (majority of individuals just do not plan). Secondly, because 
of insufficient information. Moreover, some of the parameters that need to be 
taken into consideration change in longer run. And they are in fact stochastic. For 
example, the question may arise of how real estate prices will change in the next 5 
years. 

It is important to point out a very significant difference between expenditures 
on the goal “child” (or “children”) and funding education for children, on the one 
side, and realization of other financial goals, on the other. In most cases 
realization of a financial goal is an event occurring at particular point in time 
(e.g., purchase of a house, car, etc.). When it comes to raising children, the 
“realization” of that financial goal lasts in time. Therefore, it is assumed here that 
expenditures associated with children are treated as an increase in consumption. 
In order to stay in conformity with equation 8, these expenses increase the basic 
consumption by particular percentage (given as a model parameter) as long as the 
child remains in the household.   

4. Goal function of the household 

The goal function (value function) is intended to take into account both utility 
of consumption and utility of bequest (unconsumed and uninvested cumulated 
financial surplus). Utility function used for consumption and bequest is identical; 
just different arguments are put in. Apart from probabilities and discounting 
factors, these component utilities are multiplied by factors depending, among 
others, on attitude towards risk and bequest motive. The key concept of the goal 
function definition lies in these multipliers. One period value function is the 
weighted sum of component utilities. The goal function for the planning period 
has a form of expected discounted utility. 

4.1. Utility 

Household utility is split between the utility of consumption 𝑈(𝐶) and utility 
of bequest 𝑈(𝐵).  

Moreover, utility of consumption is divided in two parts, with respect to time: 
the period before and after the expected death (see point 3.2). 
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Since the surplus, by definition, is what has not been consumed, it is not taken 
into account by utility of consumption. The surplus cumulated in previous periods 
may be partially consumed if current incomes are not sufficient to cover current 
expenses, but the utility of consumption does not recognize the sources from 
which the consumption is financed. This is why utility of consumption alone 
would be insufficient in this model.  

Given other conditions and constraints (like financial goals and their 
financing) unchanged, the higher consumption the lower surplus left to build up 
the cumulated net cash flow. Since these two aspects of the financial plan are 
strictly contradictive, there has to be some trade-off between them. The trade-off 
is expressed with the following weights (eq. 9): 

𝛼 = 1 − 𝛽  (9) 
where: 

𝛼 – consumption preference parameter, 𝛽 – bequest preference parameter. 
Furthermore, the intertemporal consumption choice demands to discount the 

utility at some rate 𝑟𝐶. It is obvious that the utility of bequest should be also 
discounted, but at some other rate 𝑟𝐵. The relation between these rates should be 
(eq. 10): 

𝑟𝐵 < 𝑟𝐶   (10) 

The discount rate for the bequest has to be smaller because the household can 
postpone the realization of the bequest motive or even give it up, w hile the 
consumption at minimal level has to be achieved.  

4.2. Risk aversion and optimization area 

As it has been mentioned in the introduction, not all scenarios of the survival 
process are taken into account. The modification of the way the survival of two 
persons is worked into the model is twofold. The main concept of the 
simplification consists in considering only some periods before and after the 
expected time of death. This delineates a r ange in which premature death or 
unexpected longevity is recognized to be a concern for the household members. 
The range of concern defined in this way will be set in accordance to life-length 
risk aversion. In this approach optimization for a single person would be 
performed for the values of potential death time from within the interval of 
(eq. 11): 

𝐷𝑖∗ ∈ [𝐸(𝐷𝑖) − 𝛾∗;𝐸(𝐷𝑖) + 𝛿∗]  (11) 

It is worth emphasizing that the range of concern should not be confused with 
domain of optimization, because it is not a set of decision variable values. 

The second simplification is in probabilities used. Survival probabilities are 
not conditional probabilities for a given day but unconditional probabilities 
(conditional under the condition of surviving until the moment 𝑡0). The second 
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simplification is – from the point of view of the main idea – just a side issue, and 
may be refrained from in further stages of the research. One just needs to 
remember that when attempting to make the model more dynamic the whole 
history of the survival process would need to be considered for each scenario and 
each period (not just the state of the household in the preceding period). This is 
due to complicated interdependences between quantities used for cash flow 
calculation and cumulative nature of the net cash flow process. 

For the household, the range of concern is a rectangle of (eq. 12): 

𝑅𝑎𝑛𝑔𝑒𝐻ℎ = [𝐸(𝐷1) − 𝛾∗;𝐸(𝐷1) + 𝛿∗] × [𝐸(𝐷2)− 𝛾∗;𝐸(𝐷2) + 𝛿∗]  (12) 

where: 
𝛾∗ – premature death risk aversion parameter (number of years that the 

household takes into consideration), 
𝛿∗ – longevity risk aversion parameter (also interpreted as the number of 

years), 
There is one parameter 𝛾∗ and one 𝛿∗, characteristic of the household, not 

individual person. 
On the basis of risk aversion parameters (𝛾∗ and 𝛿∗), risk aversions measures, 

𝛿(𝑡) and 𝛾(𝑡), are constructed. These are then used as multipliers by which utility 
of consumption for periods before and after the expected time of the end of the 
household is multiplied. They are defined so that the premature-death risk 
aversion multiplier is the higher the earlier moment before the expected time of 
the end of the household decreases to 1 at the expected time of the end of the 
household, to decay afterwards, whereas the longevity risk multiplier reaches 
unity at the expected time of death and then increases with time. A proposed 
formal definition that holds these properties is given by eq. 13 and 14: 

𝛾(𝑡) = ��
1

1 + 𝛾∗
�
�𝑡−𝐸(𝐷)
𝐸(𝐷) �

𝑡 ≤ 𝐸(𝐷)

0 𝑡 > 𝐸(𝐷)
  (13) 

 

𝛿(𝑡) = �(1 + 𝛿∗)�
𝑡−𝐸(𝐷)
𝛿∗ � 𝑡 > 𝐸(𝐷)

0 𝑡 ≤ 𝐸(𝐷)
  (14) 

where: 
𝐸(𝐷) is unconditional expected time of the end of the household, defined by 
eq. 15:  

𝐸(𝐷)  =  𝑚𝑎𝑥(𝐸(𝐷1),𝐸(𝐷2))  (15) 

and 𝐸(𝐷𝑖) = 𝐸(𝐷𝑖|𝐷𝑖 > 𝑡0) is unconditional expected time of death of Person 𝑖. 
One of the merits of defining lifetime risk aversion in the form of 𝛾∗ and 𝛿∗ is 

that these parameters do not require estimation nor detailed inquiry. Their 
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interpretation seems to be sufficiently intuitive for household members just to 
declare their values. 

The optimization procedure differs significantly from the most commonly 
used ones. In classical approaches consumption is optimized across the whole life 
cycle of a decision maker. But that might result in excess saving and amassing too 
much retirement capital. The household would have to decrease its consumption 
in early years in order to fulfil optimization constraints at every point in time and 
for each combination of individual survival scenarios, even for those very 
unlikely (e.g., a man dies at the age of 25 and his wife lives up to 95 – possible, 
but it would be very likely that the young widow would find another lifetime 
partner and raise a new household for which the old financial plan would be 
utterly irrelevant). The model presented here focuses on the range of concern that 
corresponds to probabilities recognized arbitrarily by both decision makers as 
significant. Secondly, optimization over the range of all possible combination of 
dates when household members may die is very computationally-intensive. The 
number of possibilities increases proportionally to the square of the number of 
years taken into account. 

4.3. Goal function  

The goal function used here is based on the concept of expected discounted 
utility of consumption. It differs, however, from the one used in classical life 
cycle models, like that of Yaari (1965). It has two components: the first one is 
responsible for utility of consumption and the other reflects utility of unconsumed 
surplus (bequest). Both are joint utilities of the whole household. This is a 
necessary condition if one common life-long financial plan is to be constructed. 

The goal function presented in eq. 16 is an expansion of that proposed by 
Feldman, Pietrzyk and Rokita (2014a). It is suited to the model of two-person 
household with rectangular range of concern. 

 

𝑉 = � � 𝑝

⎣
⎢
⎢
⎢
⎢
⎡
𝛼 � �

1
(1 + 𝑟𝑐)𝑡 𝑢�𝐶(𝑡;𝐷1∗,𝐷2∗)��𝛾(𝑡) + 𝛿(𝑡)�

𝑚𝑎𝑥{𝐷1∗,𝐷2∗}

𝑡=0

� +

𝛽
1

(1 + 𝑟𝐵)𝑚𝑎𝑥{𝐷1∗;𝐷1∗} 𝑢�𝐵(𝑚𝑎𝑥{𝐷1∗,𝐷2∗};𝐷1∗,𝐷2∗)�
⎦
⎥
⎥
⎥
⎥
⎤𝐸(𝐷1)+𝛿∗

𝐷1∗=𝐸(𝐷1)−𝛾∗

𝐸(𝐷2)+𝛿∗

𝐷2∗=𝐸(𝐷2)−𝛾∗
⟶ 𝑚𝑎𝑥 

  (16) 
where: 

𝑢(. ) – utility function (the same in all segments of the formula), 
𝐶(𝑡;𝐷1∗,𝐷2∗) – consumption at the moment t,  
𝐵(𝑡;𝐷1∗,𝐷2∗) – bequest (cumulated investments and surplus of both household  

                            members at the moment t, 
𝛾(𝑡) – premature death risk aversion measure (depends on 𝛾∗), 
𝛿(𝑡) – longevity risk aversion measure (depends on 𝛿∗), 
𝑝 – probability that at least one person is alive, 
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𝑟𝐶 – discount rate of consumption, 
𝑟𝐵 – discount rate of bequest.  

5. Technique of financing household’s goals 

The main purpose for which households prepare their financial plans is to 
achieve all their financial goals. Due to a wide variety of ways in which the goals 
may be financed and the fact that their examination and comparison is a complex 
task, households prefer ready-made investment products. One of the most 
common forms is systematic investment plans offered by mutual funds. 

This solution is noticeably elastic and may be used for financing every 
financial goal. Although systematic investments require some discipline and may 
seem psychologically hard, they have many advantages over post-financing. Only 
part of the financial goals may be financed by debt (housing, cars, etc.). 
Moreover, taking loans is often more expensive (though easier in many respects). 
Households also may face limitations according to their credit standing.  

The assumption that all goals must be realized is still sustained. Households 
usually take into consideration only the goals that are planned for the near future. 
Such goals as retirement or bequest are neglected (more or less on purpose). Such 
attitude affects significantly household’s ability to realize all its financial goals. It 
may even make some of them unattainable. It is recommended that household 
members work all important goals they have into their financial plan. 

That being so, the household faces the problem of how to finance n different 
goals when m possible investment programs are available. The problem is 
multidimensional not only because of the number of financial goals, but also for 
wide variety of parameters to be taken into consideration (i.e., rates of return, 
indexation, fees and charges, allocation rate, etc.). 

It is proposed here to facilitate this process with an algorithm that seems to be 
indeed easy to understand and use. Such technique (algorithm) has to give a result 
that fulfils the following criteria: 
• Expected term structure of cumulated net cash flow (obtained after application 

of the financing strategy selected by the algorithm) should be in compliance 
with life-length risk aversion and bequest motive. 

• Financial liquidity of the household must be sustained.  
• Net cash flow volatility is minimized. 
• Costs of the investment plan combination are minimized. 

We also assume that one program may be used to provide cash to cover more 
than one goal and the order may be other than sequential. 

For illustrative reasons, let us assume that the household has three financial 
goals and there are three different investment programs available on the market. 
Each of the programs reflects the same level of risk. The household wants to find 
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an optimal set of investment programs along with information which program is 
destined to cover which financial goal. 

The investment mix selection is a multi-step process, whose three main steps 
are: 

1) Minimization of contribution to investment programs. 
2) Selection of effective investment mix. 
3) Cash flow term structure fitting. 
Before an analysis of concrete systematic-investment products is started, 

general schemes of financing are identified. A general scheme may be defined as 
a (2 × 𝑛) matrix 𝑺, in the first row which includes indices denoting goals, 
whereas the second row is constructed using the following algorithm: 

a) put any symbol, say “A”, in the first field of the second row of matrix 𝑺: 
𝑆2,1 = 𝐴, 

a general way of financing goal 1 is then: 𝑆:,1 = �1𝐴�; 
b) for 𝑗: = 2 𝑡𝑜 𝑛 repeat the following: 

c.1) if goal 𝑗 is to be financed with the same program as some of the goals 
considered so far (i.e. goals: [1, … , 𝑗 − 1]), let it be a goal 𝜐, 
(1 ≤ 𝜐 ≤ 𝑗 − 1), whose general way of financing is: 𝑆𝜐 = �𝜐Υ�, 
then substitute 
𝑆2,𝑗 = Υ, 

a general way of financing goals [1, … , 𝑗] is then: 𝑆:,[1:𝑗] =

�1𝐴
…
…
𝜐
Υ

…
…
𝑗
Υ�. 

c.2) otherwise (goal 𝑗 is intended to be financed with another program), 
assign a symbol that has not been used yet, say Ξ;, to goal 𝑗; thus, 
substitute: 
𝑆2,𝑗 = Ξ, 

a general way of financing goals [1, … , 𝑗], is then: 𝑆:,[1:𝑗] =

�1𝐴
…
…
𝜐
Υ

…
…
𝑗
Ξ�; 

For 3 goals and 3 programs 4 general schemes of financing are possible: 

𝑺𝟏 = �1𝐴
2
𝐴

3
𝐴�,  𝑺𝟐 = �1𝐴

2
𝐴

3
𝐵�,  𝑺𝟑 = �1𝐴

2
𝐵

3
𝐵�,  𝑺𝟒 = �1𝐴

2
𝐵

3
𝐶�. 

It should be stressed that sequences 𝐴𝐵𝐵 and 𝐴𝐶𝐶 are identical. The same 
refers, for example, to sequences 𝐴𝐴𝐵 and 𝐴𝐴𝐶. General schemes inform whether 
goals are to be financed by the same or different programs, not determining, yet, 
which concrete programs might there be. 

Then, the investment mix selection algorithm is executed. 
In the first step (Minimization of contribution) we find the minimum 

contribution for each possible combination of goals and available investment 
programs. Due to incomparability of cash flow term structures of different 
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investment programs, contribution is minimized for each possible general 
program scheme separately. Investment mix for a given general scheme that 
minimizes contribution is further on referred to as efficient investment mix.  

Table 1. Types of investment schemes. Scheme depends on the number of 
different investment programs used to finance goals and the structure of 
which program is used to finance which goal  

INVESTMENT 
MIX GOAL 1 GOAL 2 GOAL 3 SCHEME 

Investment mix 1 Program 1 Program 1 Program 1 
AAA Investment mix 2 Program 2 Program 2 Program 2 

Investment mix 3 Program 3 Program 3 Program 3       

Investment mix 4 Program 1 Program 1 Program 2 
AAB Investment mix 5 Program 1 Program 1 Program 3 

Investment mix 6 Program 2 Program 2 Program 1      

Investment mix 7 Program 1 Program 2 Program 2 
ABB Investment mix 8 Program 1 Program 3 Program 3 

Investment mix 9 Program 2 Program 1 Program 1      

Investment mix 10 Program 1 Program 2 Program 3 
ABC Investment mix 11 Program 2 Program 3 Program 1 

Investment mix 12 Program 3 Program 1 Program 2 

In the second step (Selection of efficient investment mix) efficient solutions 
are picked. A solution is said to be efficient if it requires the minimum 
contribution to finance household goals from amongst investment program 
combinations belonging to the same general scheme (compare Table 1). 

In the third step (Cash flow term structure fitting ) efficient solutions 
selected at the second stage are put into to the model of household cash flow. The 
optimal solution is such that the corresponding term structure of the cumulated 
net cash flow of the household best fits the preferred one. Two alternative 
approaches to evaluate the fit are proposed: 

A. least squares method, 
B. maximization of goal function by putting each of the efficient investment 

mixes into the model of household cash flow discussed in Sections 1-3, 
finding the value of the goal function (compare Section 3) for each of 
them, and picking up the one that maximizes the goal function maximum. 

The optimal solution has to meet the following conditions: (1) consumption 
has to be higher than the minimum (set by the household), (2) at any point in time 
there has to be some nonnegative cumulated surplus, (3) goal function is to be 
maximized. 
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6. Numerical example 

The following example shows in work the results of the algorithm described 
above. Let us assume that the future cumulated surplus term structure of the 
household (for the next 30 years) is given as below (Figure 1 a): 

 
Cumulated surplus term structure 

before the financial goals 
Cash flow term structure of 

financial goals 

Cumulated surplus term  
structure after 

realization of financial goals 

   
Figure 1. a) Figure 1. b) Figure 1. c) 

Figure 1. Cumulated surplus term structure of the household before and after  
                realization of financial goals 

The household has two financial goals that are planned to be achieved in year 
9 and 18. The size of these goals is known (or can be easily estimated) (compare 
Figure 1 b).  

If the household decides to realize its financial goals from cumulated surplus, 
then the final term structure of cash flow will look like in the Figure 1 c. 

The household may, however, invest some part of its surplus into an 
investment program. Let us assume that there are two programs available on the 
market. That gives two possible schemes to be analyzed (Figure 2 a, Figure 2 b). 
The first (scheme AB) uses two programs separately to finance two goals, and the 
second (scheme AA) uses one program to finance both goals. Negative cash flows 
in Figure 2 a and Figure 2 b are contributions to investment programs. Positive 
ones are pay-offs from the programs. 

 
Realization of two financial goals with two 
different investment programs (scheme AB) 

Realization of two financial goals with one 
investment programs (scheme AA)  

  
Figure 2. a) Figure 2. b) 

Program 1 

Program 2 Program 1 
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Cumulated surplus term structure comparison 

  
                   Figure 2. c) 

Figure 2. Impact of different investment schemes on cumulated surplus term  
                structure  

 
Dependent on the scheme one uses, different cash flow term structures are 

obtained. The comparison of these structures is presented in Figure 2 c) 
Then, both structures are compared with the optimal trajectory and the final 

result is given. 
The optimal trajectory might be estimated for strategic asset allocation that 

reflects the risk level of investment programs, but not concrete programs 
themselves. Then the term structure of cash flow is calculated and compared to 
the cash flow term structure resulting from investment in particular efficient 
investment plan. 

 

 

Figure 3. Cumulated surplus comparison with optimal trajectory 

Another approach would be just calculating the value of household goal 
function for both program mixes and selecting the one with higher value. All 
conditions have been listed at the end of Section 4. 
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7. Technical issues 

The formula of goal function (eq. 16) presented in section 3 does not specify 
in details the analytical form of the utility function. In the numerical example 
discussed in this article a sq uare root utility was used. This was, however, 
modified in such a way that it took on v alue zero for scenarios in which 
cumulated surplus fell below zero at any point in time. This, certainly, does not 
need to drive the goal function to zero because the goal is a sum of probability-
weighted discounted expected values of utility for all scenarios within the range 
of concern. The argument for such solution is that a scenario cannot be “partially” 
satisfactory if it guarantees high level of consumption in some period and then 
leads to permanent shortfall (i.e. practical bankruptcy of the household). Within 
the bunch of scenarios there may by one or more such zero-utility scenarios. Their 
influence on the goal function depends on their probabilities.  

Such construction of the goal function causes some technical inconvenience. 
The goal function becomes indifferentiable on vast parts of its domain. Moreover, 
there are not only unsmooth jumps in its value, but also local extremes. There is, 
however, a simple way to overcome this problem without reaching for very 
advanced optimization techniques. The goal function shows problematic 
properties mostly along one dimension, namely – the decision variable describing 
division of total investment between household members. Along the second one, 
that is consumption-investment proportion, it behaves in a much more 
conventional way. It is continuous, differentiable and unimodal up to the 
maximum, though indiferrentiable and showing local extremes after reaching the 
global maximum.  

Along the first dimension (division of investment contributions) the function 
is sliced into a finite number of cross-sections. The range between 100% and 0% 
of the total household investment allocated to Person 1 may be divided into any 
number of scenarios. Then, for each of the slices a maximum along the second 
dimension is searched for.  

It may be observed that the cross-section of the goal function along the second 
dimension (consumption-investment) always shows the following property: it is 
differentiable and increasing until it reaches global maximum for the given slice, 
then a downwards jump is encountered and then there may be a local maximum 
(always lower than the first maximum - walking from the left - for this particular 
slice), followed with a rapid drop. At this stage of analysis, continuous 
optimization may be used under the condition that the optimization algorithm 
starts from the lowest values of consumption and searches for the maximum of 
the goal in the direction of growing consumption.  

Then, the maximum of maxima for each slice is taken as the global maximum 
for the whole goal function. 
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8. Summary 

The model presented here involves some original approaches and solutions, 
and sheds some new light on household consumption optimization. It focuses on 
the household, not on a single decision maker only. The optimization area is 
strictly dependent on the risk aversion of household members and is narrowed to 
the most probable scenarios. This results in higher optimal consumption for the 
household than it would be derived from models taking the whole lifespan of 
decision makers into account. The risk aversion measures are very intuitive and 
their interpretation, calibration and use by decision makers is straightforward. 
Different discounting rates for utility are used. The same goal function as used in 
optimization model allows comparing different cash flow term structures. Thus, it 
may be used to facilitate choosing from amongst incomparable investment 
products.  

Further research will focus on expanding its application to stochastic 
behaviour of financial goals. In particular, such goals as children should be treated 
in this way because of stochastic nature of a child's birth (conditional on planned 
time). 

Furthermore, other types of risk than just risk related to length of life will be 
analyzed. In particular, risk connected with investments, mainly market risk (e.g.: 
interest rate risk, stock price risk, etc.) will be taken into consideration. 

Together with taking account of investment risk, also risk of human capital 
will be a natural object of investigation. Adopting the approach by Bodie, Merton 
and Samuelson (1992), in which risk of human capital, increasing with age, is 
offset by decreasing riskiness of investments, may be useful in the next stages of 
research. 

Also stability of the model will be analyzed. This is not only sensitivity of 
optimization results to changes of parameters that needs to be analyzed. What is 
also worth investigating is how the choice of the underlying survival process 
model will influence the final results.  

Another area of research may be examining structure of hierarchy of financial 
goals and suggesting optimization procedures. 

Acknowledgements 

The research project was financed by The National Science Centre (NCN) 
grant, on the basis of the decision no. DEC-2012/05/B/HS4/04081. 

 



266                             Ł. Feldman, R. Pietrzyk, P. Rokita: Multiobjective optimization of… 

 

 

REFERENCES 

AINSLIE, G., (1991). Derivation of „Rational” Economic Behavior from 
Hyperbolic Discount Curves. The American Economic Review, 81(2), 
pp. 334–340. 

AINSLIE, G., (1975). Specious reward: A behavioral theory of impulsiveness and 
impulse control. Psychological Bulletin 82(4), pp. 463–496. 

ANDO, A., MODIGLIANI, F., (1957). Tests of the Life Cycle Hypothesis of 
Saving: Comments and Suggestions. Oxford Institute of Statistics Bulletin, 
Vol. XIX (May), pp. 99–124. 

BODIE, Z., DETEMPLE, J., OTRUBA, S., WALTER, S., (2004). Optimal 
Consumption-Portfolio Choices and Retirement Planning. Journal of 
Economic Dynamics and Control, 28, pp. 1115–1148. 

BODIE, Z., MERTON, R. C., SAMUELSON, W. F., (1992). Labor Supply 
Flexibility and Portfolio Choice in a Life Cycle Model. Journal of Economic 
Dynamics and Control, 16(3-4), pp. 427–249. 

BODIE, Z., TREUSSARD, J., WILLEN, P., (2007). The Theory of Life-Cycle 
Saving and Investing. [online] Federal Reserve Bank of Boston: Research 
Paper, no. 07-3. Available at: <http://ssrn.com/abstract=1002388> or 
<http://dx.doi.org/10.2139/ssrn.1002388> [Accessed 20 March 2013]. 

CARBONE, E., INFANTE, G., (2012). The Effect of a Short Planning Horizon 
on Intertemporal Consumption Choices. [online] LABSI: Research Paper. 
Available at: <http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2187911> 
[Accessed: 28 March 2013]. 

DUS, I., MAURER, R., MITCHELL, O. S., (2004). Betting on Death and Capital 
Markets in Retirement: A Shortfall Risk Analysis of Life Annuities versus 
Phased Withdrawal Plans. [online] Goethe-Universität, Frankfurt am Main 
and The Wharton School, University of Pennsylvania: Working Paper.  

      Available at: 
<http://www.actuaries.org/AFIR/Colloquia/Boston/Dus_Maurer_Mitchell.pdf
> [Accessed: 27 March 2013]. 

FELDMAN, L., PIETRZYK, R., ROKITA, P., (2014a). A practical method of 
determining longevity and premature-death risk aversion in households and 
some proposals of its application, in: Spiliopoulou, M., Schmidt-Thieme, L., 
Janning, R. (Eds.), Data Analysis, Machine Learning and Knowledge 
Discovery, Studies in Classification, Data Analysis, and Knowledge 
Organization. Springer International Publishing, pp. 255–264. 



STATISTICS IN TRANSITION new series, Spring 2014 

 

267 

FELDMAN, L., PIETRZYK, R., ROKITA, P., (2014b). General strategies to 
meet household pension goal versus longevity risk, in: Lisowski J., Łyskawa 
K. (Eds.), Insurance in view of longevity/old age risk. Poznań University of 
Economics Publishing House, pp. 37–49. 

GEYER, A., HANKE, M., WEISSENSTEINER, A., (2009). Life-cycle asset 
allocation and consumption using stochastic linear programming. The Journal 
of Computational Finance, 12(4), pp. 29–50. 

GOMPERTZ, B., (1825). On the Nature of the Function Expressive of the Law of 
Human Mortality, and on a New Mode of Determining the Value of Life 
Contingencies. Philosophical Transactions of the Royal Society of London, 
115, 513–585. 

GONG, G., WEBB, A., (2008). Mortality Heterogeneity and the Distributional 
Consequences of Mandatory Annuitization. The Journal of Risk and 
Insurance, 75(4), pp. 1055–1079. 

HUANG, H., MILEVSKY, M. A., (2011). Longevity Risk Aversion and Tax-
Efficient Withdrawals. [online] SSRN. Available at:  

     <http://ssrn.com/abstract=1961698> [Accessed: 22 March 2012]. 

HUANG, H., MILEVSKY, M. A., SALISBURY, T. S., (2012). Optimal 
Retirement Consumption with a Stochastic Force of Mortality. Insurance: 
Mathematics and Economics, 51(2), pp. 282–291. 

KIRBY, K. N., HERRNSTEIN, R. J., (1995). Preference reversals due to myopic 
discounting of delayed reward. Psychological Science, 6(2), pp.83–89. 

MAKEHAM, W. M., (1860). On the Law of Mortality and the Construction of 
Annuity Tables. Journal of the Institute of Actuaries and Assurance Magazine, 
8, pp. 301–310. 

MERTON, R. C., (1969). Lifetime portfolio selection under uncertainty: The 
continuous time case. The Review of Economics and Statistics, 51(3), 
pp. 247–257. 

MERTON, R. C., (1971). Optimum consumption and portfolio rules in 
a continuous-time model. Journal of Economic Theory, 3(4), pp. 373–413. 

MILEVSKY, M. A., HUANG, H., (2011). Spending Retirement on P lanet 
Vulcan: The Impact of Longevity Risk Aversion on Optimal Withdrawal 
Rates. Financial Analysts Journal, 67(2), pp. 45–58. 

MODIGLIANI, F., BRUMBERG, R. H., (1954). Utility analysis and the 
consumption function: an interpretation of cross-section data. In: Kenneth K. 
Kurihara, ed. 1954. Post-Keynesian Economics. New Brunswick, NJ: Rutgers 
University Press. pp. 388–436. 



268                             Ł. Feldman, R. Pietrzyk, P. Rokita: Multiobjective optimization of… 

 

 

NISSENBAUM, M., RAASCH, B. J., RATNER, C., (2004). Ernst & Young’s 
Personal Financial Planning Guide. John Wiley & Sons, Inc. 237–522. 

RICHARD, S. F., (1975). Optimal consumption, portfolio and life insurance rules 
for an uncertain lived individual in a continuous time model. Journal of 
Financial Economics, 2, pp. 187–203. 

SCHOLZ, K., SESHADRI, A., (2012). Health and Wealth In a Lifecycle Model. 
[online] University of Wisconsin-Madison and NBER and University of 
Wisconsin-Madison: Working Paper. Available at  

      http://www.ssc.wisc.edu/~scholz/Research/Health_and_Wealth_v16.pdf 
[Accessed: 23 Nov. 2013]. 

SUNDARESAN, S., ZAPATERO, F., (1997). Valuation, optimal asset allocation 
and retirement incentives of pension plans. Review of Financial Studies, 10, 
pp. 631–660. 

YAARI, M. E., (1965). Uncertain Lifetime, Life Insurance and Theory of the 
Consumer. The Review of Economic Studies, 32(2), pp.137–150. 

 

 

 

 

 



STATISTICS IN TRANSITION new series, Spring 2014 

 

269 

STATISTICS IN TRANSITION new series, Spring 2014 
Vol. 15, No. 2, pp. 269–282 

INCOME INEQUALITY AND INCOME 
STRATIFICATION IN POLAND 

Alina Jędrzejczak1 

ABSTRACT 

Income inequality refers to the degree of income differences among various 
individuals or segments of a population. When the population has been 
partitioned into subgroups, according to some criterion, one common application 
of inequality measures is evaluation of the relationship between inequality in the 
whole population and inequality in its constituent subgroups in order to work out 
the within and the between subgroups contributions to the overall inequality. In 
the paper selected decomposition methods of the well-known Gini concentration 
ratio were discussed and applied to the analysis of income distribution in Poland. 
The aim of the analysis was to verify to what extent the inequality in different 
subpopulations contributes to the overall income inequality in Poland and to what 
extent their members form distinct segments or strata. To provide the 
decomposition of the Gini index the population of households was partitioned 
into several socio-economic groups on the basis of the exclusive or primary 
source of maintenance. Moreover, the households were divided by economic 
regions using the Eurostat classification units NUTS 1 as well as by family type 
defined by the number of children.  

Key words: income distribution, income inequality. 

1. Introduction 

In the analysis of income inequality it may be relevant to assign inequality 
contributions to various income components (such as labor income or property 
income) or to various population subgroups associated with socio-economic 
characteristics of individuals (age, sex, occupation, composition of their 
household, ethnic groups, etc.). Such an approach can be useful for social policy 
makers to better understand the influence of various socio-economic determinants 
on income levels and income inequality. In order to separate the within-groups 
inequality from the between-groups inequality a decomposable inequality 
measure has to be used. If the adopted inequality measure is additively 
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decomposable, the overall inequality is equal to the sum of the within and 
between-groups inequality.  

The Gini index is a well known and widely used synthetic inequality measure 
usually expressed in terms of the area under the Lorenz curve. In numerous works 
on income distribution it is considered the best single measure of income 
inequality (see e.g.: Morgan, 1962; Gastwirth, 1970), what is mainly due to its 
statistical properties. In contrast to many other inequality coefficients, measuring 
only the deviations from the mean and thus interlinking the concept of location 
with the concept of variability, the Gini index takes into account the income 
differences between each and every pair of individuals. It has also a clear 
economic interpretation and thus has been applied in various empirical studies 
and policy research. On the other hand, being sensitive to both the distribution of 
income and the distribution of ranks, the Gini index cannot be easily decomposed 
into two: between-groups and within-groups components. This property can be 
found a disadvantage of this index which was even claimed decomposable only 
when the subpopulations do not overlap (see: Shorrocks, 1984). Regardless of 
these difficulties, for the last 50 years a great effort has been made to specify the 
conditions under which the decomposition of the Gini coefficient is feasible and 
many interesting decompositions have been derived. Some of them provide us 
with the more complex but at the same time more informative tools for income 
inequality analysis than do many straightforward decompositions of additively 
decomposable inequality measures.  

The first attempts to decompose the Gini index followed the classical Theil’s 
approach and considered only two terms: the within-groups component and the 
between-groups component, the latter being generally based on the assumption 
that each individual receives the mean income of his own group. The pioneer Gini 
index decomposition by subgroups is due to Soltow (1960) who analyzed the 
effects of changes in education, age and occupation on income distribution. The 
first Gini index decomposition encompassing comparisons between pairs of 
subgroups is due to Bhattacharya and Mahalanobis (1967); actually the 
decomposition proposed by the authors refers first to the Gini mean difference Δ. 
The decomposition is based on a priori definition of the between-groups 
component, being the Gini mean difference evaluated among the subgroup means, 
and leaves the within term to be obtained as a residual.  

Both the decompositions mentioned above were rather inadequate as they 
ignored  the existence of overlapping as well as different variances and 
asymmetries of income distributions in subpopulations. In fact, when the groups 
ranges overlap the third component called “crossover term” or “interaction” 
arises, being rather difficult to interpret. The interaction term can be viewed as a 
measure of income stratification or the degree to which the incomes of different 
social groups cluster. 

An interesting three-term decomposition and interpretation of the Gini 
coefficient was proposed by Pyatt (1976) in a game theory framework. Following 
the Pyatt idea, the Gini index can be perceived as an average gain to be expected 
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if an individual had a choice between his own income or any other income 
selected at random from the population of income receivers. Pyatt split the Gini 
index into the sum of three non-negative terms: the first depends on the 
differences in mean incomes between subgroups and remains the only positive 
term in the special case when there is no variation within subgroups, the other two 
terms both depend on variation within subgroups. In particular, the second one 
depends on the Gini indices evaluated within each subgroup and the third term 
vanishes in the case when subgroups income ranges do not overlap, otherwise it is 
positive and measures the degree of overlapping. An analogous approach, based 
on matrix algebra, can be found in Silber (1989); the author decomposes the Gini 
index into the sum of the within, between and interaction terms giving a clear and 
intuitive interpretation to the latter in terms of individuals ranking. That “third 
component” was also discussed by Mehran (1975), Mookherjee and Shorrocks 
(1982), Yitzhaki and Lerman (1991), Deutsch and Silber (1999), to name only a 
few, what resulted in numerous interesting decomposition formulas. Some of 
them are computationally cumbersome and it is not always clear what meaningful 
interpretation each of the components has. Mehran defined “the third term” as 
interaction “interpreted as a measure of income domination of one subgroup over 
the other apart from the differences between their mean incomes”. Yitzhaki and 
Lerman (1991), intended from a sociological point of view, proposed a 
decomposition of the Gini index into the sum of a within term, a between term, 
and a third term that accounts for subgroups stratification understood as “a 
group’s isolation from members of other groups”. The within- and between-group 
terms considered by the authors were based on the covariance formula so they are 
differently defined with respect to the ones considered above.     

The most widespread approach to the decomposition of the Gini index that 
gives an important contribution to the understanding of the overlapping term was 
proposed by Dagum (1997). It introduces the concept of economic distance 
between distributions and relative economic affluence (REA) as an important 
element in the Gini index decomposition by subpopulation groups.  

The objective of the paper is to discuss the most interesting decomposition 
procedures  proposed by Dagum (1997) and Yitzhaki and Lerman (1991) and then 
apply them to the analysis of income inequality in Poland. The aim of the analysis 
was to verify to what extent the inequality in different subpopulations contributes 
to the overall income inequality in Poland and whether their members form 
distinct segments or strata. 

2. The Gini index decomposition by subpopulations 

The Gini index of inequality is usually defined by means of a geometric 
formula since it can be expressed as twice the area between the Lorenz curve and 
the straight line called the line of equal shares. The Gini index can also be seen as 
a relative dispersion measure when expressed by means of the mean difference 
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Δ - a dispersion measure which is defined as the average absolute difference 
between all possible pairs of observations. This concept can be called a statistical 
approach and was introduced by Gini (1912). It was subsequently used by many 
authors to derive various Gini index decompositions but the most widespread 
decomposition by subpopulations was undoubtedly proposed by Dagum (1997).  

The starting point for this decomposition was the Gini index formula based on 
the Gini mean difference extended to the case of a population divided into k 
subpopulations (groups):  

ynyyYnYY
Y

G
k

j

k

h

n

i

n

r
rhji

n

r

n

i
ri

j h
2

1 1 1 1

2

1 1
2||2||

2 ∑∑∑∑∑∑
= = = == =

−=−=
∆

=  

  (1) 

The Gini index expressed in terms of the Gini mean difference can also be 
generalized for a two-populations case, measuring the between-populations (or 
intra-groups ) inequality. Thus, the extended Gini index between groups j and h 
can be written as follows:  
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where: jh∆  - mean difference modified for two income distributions.  
Dagum (1997) proved that the Gini ratio G for a population of economic units 

partitioned into k subpopulations nj (j = 1,…, k) can be expressed as the weighted 
sum of the extended Gini ratios weighted by the products of the j-th group 
population share pj and the h-th group income share sh:  
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Using the symmetry properties of Gjh and jh∆  and the equation (3), the Gini 
index can be decomposed into two elements: the within Gw and gross-between Ggb 
inequality (Dagum, 1997):  
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 is the Gini index for the 

subpopulation j jy - mean income in group j, nj - frequency in group j.  
As it can be easily noticed the Gini index provides an unusual “between-

group” component. It measures the income inequality between each and every 
pair of subpopulations, whereas entropy and most of between-groups inequality 
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measures yield only the income inequalities between the subpopulation means. 
The first component of the decomposition given by the formula (4) (Gw) describes 
the contribution of the Gini inequality within subpopulations to the total 
inequality of a population described by the Gini ratio G. The second component 
(Ggb) measures the gross contribution of the extended Gini inequality between 
subpopulations to the total Gini G. This component depends on the differences 
between subpopulations coming from both: differences in mean income levels and 
differences in shape (the populations differ in variance and asymmetry which 
implies that they have different inequality measures).  

The income differences between the elements coming from various subgroups 
can be of the same or of opposite sign as the deviation in their corresponding 
means.  

The interpretation of Ggb given above suggests the further decomposition of 
the Gini index by subgroups. The contribution of gross between-group inequality 
can be divided into two separate parts: the first one consistent with the differences 
between the means and the remaining part called transvariation: 
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   Gb – the contribution of net between-groups inequality to the Gini index,  
   Gt – the contribution of ”transvariation”,  
   Djh – “economic distance” ratio (Dagum, 1980). 

 The concept of transvariation (transvariazione) was originally introduced by 
Gini (1916) and it plays a crucial role in the Gini index decomposition by 
population subgroups. Transvariation between two populations exists when at 
least one income difference between individuals belonging to different groups has 
the sign opposite to the sign of the difference between their means. Obviously, the 
idea of transvariation is similar to the concept of distribution overlapping. The 
probability of transvariation can be simply defined (Gini, 1916) as the ratio of the 
actual number of transvarying pairs to its maximum. It takes values in the interval 
[0,1] and the more the two groups overlap the greater value it takes. Intensity of 
transvariation accounts not only for the frequency but also for the amount of 
income differences. The term Djh (eq. 5) called economic distance ratio or REA 
(relative economic affluence) is related to the normalized intensity of 
transvariation which is simply 1-Djh , and can be regarded as the measure of 
relative economic affluence of the j-th subpopulation with respect to the h-th 
subpopulation. It can be defined as the weighted sum of the income differences yji 
–yhr  for all the members belonging to the population j-th with incomes greater 
than the income of all the members belonging to the population h-th, given that 

hj YY >  (for details see: Dagum, 1980). 
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As pointed out in Monti (2007), it is easy to verify that Gw, Gb and Gt of the 
Dagum decomposition (eq. 4 and eq. 5) equal, respectively, the within, the 
between and the interaction term of Mookherjee and Shorrocks decomposition 
and are also equivalent to Mehran’s decomposition. It can be noted that the 
Dagum between-groups inequality (4) can be obtained without the rigorous 
assumption about equally distributed income groups. Moreover, it is worth 
mentioning that only the Dagum decomposition shows clearly how the 
overlapping term is connected both with between-groups and within-group 
inequality. 

The inequality decomposition proposed by Yitzhaki and Lerman (1991) is 
based on the covariance formula, presented by the same authors (Lerman, 
Yitzhaki, 1985), where the Gini index is expressed in terms of twice the 
covariance between income and its rank divided by the overall mean income. 
Their decomposition encompasses an index of stratification that highlights the 
distinction between social stratification and inequality. It captures the extent to 
which population subgroups occupy distinct strata within an overall distribution. 
For the i-th subpopulation the index of stratification has the following form:  

 Qi = 
]),([cov

]),()([cov
yyF

yyFyF

ii

inii −−
                                         (6) 

where: covi[Fi(y) – Fn-i(y), y] – covariance over group i between y and the 
difference between the ranking of a member of group i in his own group and the 
re-ranking he would have in the rest of the population, 
            covi[Fi(y), y] - covariance over group i  between y and its own ranking in 
group i.  

The index of stratification given by (6) measures how members of a group 
differ from members of other groups. In this context stratification can be 
understood as “a group’s isolation from members of other groups” (Yitzhaki, 
Lerman 1991). The index (6) has the following properties, making it sensitive to 
stratification of particular groups over an overall population:  
− it measures the level of stratification for each group separately, taking into 

consideration the relation of its ranking in comparison with the rest of the 
population; 

− Qi declines when the number of the members of other groups being in the 
range of i increases; 

− Qi takes values from the interval <–1,1>. If Qi = 1, a group i forms a perfect 
stratum - no members of other groups fall within its range of income. If Qi = 
0, a group i does not form a stratum at all - the ranking of all individuals 
within this group is identical to their ranking within the overall population 
(the groups completely overlap). Q = –1 in an extreme case when a group i is 
not well defined as being composed of two perfect strata placed at the tails of 
the distribution;  
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− given a number of  the members of other groups who fall in the range of a 
group i, Qi will be lower the closer the members of these groups are to the 
mean of  i.  
 Income stratification is highly related to income inequality and can be a 

starting point to inequality decomposition by subpopulation groups. In general, 
high within-group inequality is likely to reduce a group stratification because it 
often increases overlapping of a group with other groups. On the other hand, high 
between-group inequality is likely to increase stratification by making the 
subpopulations more isolated from each other. Complicated connections between 
within-group inequality, between-group inequality and stratification can be 
revealed in detail by an unified framework given by a decomposition formula of 
Lerman and Yitzhaki (1991):  

  G = ∑
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                 (7)  

where: )(yFi  – group i’s average rank.  
The first component represents within-group inequality, the second 

component reflects the impact of stratification, described as intra-group inequality 
in overall ranks, while the third component accounts for the between-group 
inequality. Changes in income distribution may affect only one component of (7) 
or may have influence on all of them. High stratification implies low variability of 
ranks so the increases in group stratification exert negative impact on inequality. 
The between-group inequality is expressed as the between-group Gini index 
calculated on the basis of covariance between each mean income of a group and 
the average rank. As the authors point out, it is similar, but not identical to the 
between-group terms presented in Pyatt (1976), Mookherjee and Shorrocks 
(1982) and Silber (1989). The substantial difference is in the way the group ranks 
are established: in Lerman and Yitzhaki (1991) the ranking is obtained by 
averaging each ranking of observation within each subpopulation, while for the 
remaining authors it is simply the ranking of mean incomes. It is worth 
mentioning that when there is no overlapping between groups, all the methods 
yield the same results.  

3. Application 

The methods discussed above were applied to the analysis of  income 
inequality in Poland by socio-economic groups, regions and family types. The 
basis for the calculations was micro data coming from the Household Budget 
Survey (HBS) conducted by Central Statistical Office in 2009. The data obtained 
from the HBS allow for the detailed analysis of the living conditions in Poland, 
being the basic source of information on the revenues and expenditure of the 
population. In 2009 the randomly selected sample covered 37,302 households, i.e. 
approximately 0.3% of the total number of households. The adopted sampling 
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scheme was geographically stratified and two-stage one with different selection 
probability at the first stage. In the estimation of inequality measures and their 
decomposition the survey weights based on inverse inclusion probabilities were 
taken into consideration. In order to maintain the relation between the structure of 
the surveyed population and the socio-demographic structure of the total 
population, the data obtained from the HBS were weighted with the structure of 
households by the number of persons and class of locality coming from 
Population and Housing Census 2002.  

The inequality analysis was conducted after separately dividing the overall 
sample: by region NUTS 1 constructed according to the Eurostat classification, by 
family type classified according to the number of children, and by socio-economic 
group established on the basis of the exclusive or primary source of maintenance. 
The variable of interest was household available income that can be considered 
the basic characteristic of its economic condition. It is defined as a sum of 
households’ current incomes from various sources reduced by prepayments on 
personal income tax made on behalf of a tax payer by tax-remitter (this is the case 
of income derived from hired work and social security benefits and other social 
benefits); by tax on income from property; taxes paid by self-employed persons 
(including professionals and individual farmers), and by social security and health 
insurance premiums. To avoid interpretation problems, rare negative incomes 
were removed from the original sample.  

Table 1 describes in detail the results of income inequality decomposition by 
socio- economic groups while tables 2 and 3 present the corresponding 
calculations outcome for the population divided by region and  family type, 
respectively. To allow comparing the conditions of households of different sizes 
and different demographic structures, the square root scale, popular in recent 
OECD publications, was applied in the paper (table 3a). All the tables present 
statistical characteristics of household available income by population groups as 
well as the final results of inequality decomposition with respect to these groups. 
In particular, the within-groups, between-groups and “overlapping” components 
are reported for both Dagum (D) and Yitzhaki-Lerman (Y-L) approach (eq. (4), 
(5) ,(7)). As it has been mentioned above, these decompositions represent 
completely different concepts and thus provide us with inequality contributions 
that can be the basis of income inequality analysis from different perspectives.  
However, the main interest of this paper is groups overlapping and stratification. 
The overlapping component in the Dagum decomposition (called transvariation) 
is based on the relative economic affluence of one subpopulation with respect to 
another while the “third term” of Y-L method is based on ranking rather than 
income differences, and can only be regarded as a measure of groups separation. 
Similarly,  the between-group component of the Dagum approach is based on 
income differences for each and every pair of households in contrast to the Y-L 
approach  where only group means are considered. It results in higher sensitivity 
of the Dagum decomposition to changes in grouping factors, while the Y-L 
decomposition is by construction dominated by the within-group component (see. 
Tables 1-3). 
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Table 1. Decomposition of income inequality in Poland by socio-economic group 

Measure 
Socio-economic group 

Total Emplo-
yees Farmers Self-

employed 
Pensio-

ners 
Unearned 
sources 

Mean income iy   
[1000 PLN] 

3.781 4.556 4.738 2.108 1.695 3.186 

Population proportion pt 0.491 0.038 0.069 0.361 0.041 1 
Income proportion si 0.583 0.054 0.103 0.239 0.021 1 
Gini index Gi 0.293 0.483 0.319 0.306 0.370 0.352 
Stratification index Qi 0.313 –0.038 0.269 0.189 0.083  
Within-groups  
term (Y–L) 0.171 0.026 0.033 0.073 0.008 0.311 

Between-groups term (Y–L)  
0.085 

Stratification term (Y–L) –
0.044 

Within-groups  
term (D) 0.084 0.001 0.002 0.026 0.000 0.114 

Between-groups term (D) 0.154 
Transvariation (overlapping term) (D)  0.085 

Source: Author’s calculations. 
 
 
Table 2. Decomposition of income inequality in Poland by region  

Measure 
Region of Poland 

Total Central Southern  Eastern  North-
western  

South-
western  Northern 

Mean income iy   
[1000 PLN] 

3.554 3.093 2.861 3.227 3.159 3.122 3.186 

Population proportion pt 0.218 0.208 0.168 0.154 0.107 0.145 1 
Income proportion si 0.243 0.202 0.151 0.156 0.106 0.142 1 
Gini index Gi 0.381 0.318 0.355 0.342 0.352 0.348 0.352 
Stratification index Qi –0.025 0.054 –0.023 0.031 –0.001 0.005  
Within-groups  
term (Y–L) 0.093 0.064 0.054 0.053 0.037 0.049 0.351 

Between-groups term (Y–L)  0.006 

Stratification term (Y–L) –
0.003 

Within-groups  
term (D) 0.020 0.013 0.009 0.008 0.004 0.007 0.062 

Between-groups term (D) 0.042 
Transvariation (overlapping term) (D)  0.249 

Source: Author’s calculations 
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Table 3. Decomposition of  income inequality in Poland by family type 

Measure Family type (number of children)  Total 0 1 2 3 4 5… 
Mean income iy   
[1000 PLN] 

2.751 3.920 4.013 3.685 3.471 3.667 3.186 

Population proportion pt 0.643 0.183 0.126 0.035 0.009 0.004 1 
Income proportion si 0.559 0.226 0.160 0.041 0.009 0.005 1 
Gini index Gi 0.361 0.313 0.325 0.329 0.294 0.314 0.352 
Stratification index Qi –0.028 0.169 0.165 0.108 0.104 0.107  
Within-groups  
term (Y–L) 0.201 0.071 0.052 0.013 0.003 0.002 0.342 

Between-groups term (Y–L) 0.027 
Stratification term (Y–L) –0.017 
Within groups  
term (D) 0.129 0.013 0.006 0.000 0.000 0.000 0.150 

Between-groups term (D) 0.071 
Transvariation (overlapping term) (D)  0.131 

Source: Author’s calculations. 
 
 
 

Table 3a. Decomposition of income inequality in Poland by family type  
                (equivalised income) 

Measure Family type (number of children)  Total 0 1 2 3 4 5… 
Mean income iy   
[1000 PLN] 

1.947 2.066 1.910 1.563 1.330 1.260 1.942 

Population proportion 
pt 

0.643 0.183 0.126 0.035 0.009 0.004 1 

Income proportion si 0.645 0.194 0.124 0.028 0.006 0.003 1 
Gini index Gi 0.308 0.308 0.322 0.319 0.282 0.293 0.312 
Stratification index Qi 0.034 0.018 -0. 033 -0.058 0.064 0.107  
Within-groups  
term (Y–L) 0.198 0.060 0.040 0.009 0.002 0.001 0.310 

Between-groups term (Y–L) 0.027 
Stratification term (Y–L) –0.002 
Within-groups  
term (D) 0.128 0.011 0.005 0.000 0.000 0.000 0.144 

Between-groups term (D) 0.021 
Transvariation (overlapping term) (D)  0.147 

Source: Author’s calculations. 
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The overall income inequality in Poland in 2009, measured by means of the Gini 
index  and estimated on the basis of the Polish HBS, was 0.352 (for equivalent 
income G=0.312). These values confirm a high level of income inequality in Poland 
as compared with other European countries - according to EU-SILC in 2009 the Gini 
index calculated  for equivalent disposable net income was at the level of  0.314  and  
in 2011 at the level 0.311, what was still above the EU average. It is worth 
mentioning that one can observe substantial differences in the values of inequality 
measures while using different data sources. The discrepancies between the values of 
the Gini index obtained  on the basis of  HBS, EU-SILC and Social Diagnosis for the 
same category of income may come from different sample sizes, different sampling 
designs and what seems the most important  from the method of dealing with non-
response. For example, the methodology of EU-SILC includes a requirement for the 
imputation of the missing income, what can lead to the underestimation of  inequality 
measures and their standard errors.   Moreover, one can run into difficulties while 
trying to compare the results over time -  EU-SILC and Social Diagnosis are 
relatively new surveys and their implementation has been disturbed by many 
methodological changes. On the contrary, the Household Budget Survey is relatively 
stable  and  has the largest sample size, but even such a sample can be insufficient to 
provide reliable estimates in some divisions (see: Jędrzejczak, Kubacki, 2013).  

The impact of the number of children on the distribution of household 
available income is presented in table 3. Applying the Dagum decomposition, the 
overall Gini index is due to within-group (43%) and overlapping (37%) 
components, while the contribution of the between-group term was found to be 
rather small (20%). The families without children form an untypical group 
(Q0<0), which in fact consists of  two smaller ones differing in average income 
level: a group of individuals (mainly retirees) and a group of couples without 
children. The significant stratification emerges only for the households with 1 or 2 
children (Q1=0,169; Q2=0,165), identifying them as relatively similar within the 
groups and different from the outside. This result, however, can be misleading for 
two reasons. Firstly, the stratification indices Qi proposed by Yitzhaki and 
Lerman ignore group sizes and can be negligible even for relatively separated 
groups when they are sufficiently small.  Secondly, to compare subpopulations 
constructed on the basis of the number of children the equivalised income should 
be considered rather than the nominal one. After the transformation of available 
incomes with respect to household composition, the stratification indices, except 
for the first group, were found to be close to 0 (table 3a). Nevertheless, very high 
economic distance ratios Djh were observed between small but the poorest groups 
of households (with 4 and 5 or more children) and the wealthiest group of 
families possessing only one child. They both exceed 60% so the families 
possessing only one child are 60% more affluent than the families with 4 and 
more children. The economic distance ratios Djh consider pair comparisons 
between groups so they better detect income differences between various 
subpopulations than do Q indices.    
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The stratification and between-group inequality is much higher when the 
breakdown by socio-economic group is considered (table 1). The decomposition 
presented in table 1 takes into account the splitting up into households of self-
employed, households of employees (managers, office workers, blue-collar 
workers, school teachers, etc.), households of not employed (retirees and 
pensioners) and households of other not employed (mainly unemployed). The 
households of farmers constitute a separate group. 

Using the Dagum decomposition, the total income inequality in Poland  by 
socio-economic group is dominated by between-group term that accounts for 44% 
of the overall Gini index. This result coincides with serious stratification indices, 
which were observed for several socio-economic groups  and play an important 
role in Y-L decomposition. The within-group component (32%) reflects the inner 
polarization of  the groups what gives rise to remarkable differentials in average 
income between managers and blue-collar workers within the group of employees, 
between entrepreneurs and the others within the group of self-employed or 
between retirees and pensioners within the fourth group. The households of self-
employed are the wealthiest group, the one with the highest average income, but 
the group representing the highest level of inequality are farmers (G=0.48). The 
households of employees constitute a group with the highest share (24%) in the 
overall Gini index what is mainly due to its size and income share. The 
contribution of the overlapping component measured by transvariation is rather 
small (24%), contrary to high stratification indices for socio-economic groups 
except farmers and unearned sources. The negative value of the stratification 
index Q (and high G) observed for farmers suggests that this group is 
nonhomogeneous, being composed of the households that are not of the same 
kind (small and very large farms).      

The impact of regional differences on income inequality in Poland can be 
observed in table 2. Contrary to family types and socio-economic groups, regional 
differences contribute slightly to the overall value of  the Gini index. The 
between-group component accounts for only 12% of the overall income 
inequality. The Gini ratios and means within regions do not differ significantly so 
the contributions of particular subpopulations to the overall inequality are 
determined mainly by their sizes. The substantial contribution of transvariation, 
equal to 71% of the overall Gini index, is an evidence of notable overlapping of 
income distributions for NUTS 1 regions in Poland (see also: Jędrzejczak 2010).    

4. Concluding remarks 

Decomposition of the Gini index can be useful for social policy-makers in 
assessing the contributions of between-groups and within-groups inequalities to 
the overall inequality of a population. It can also be helpful in stratification and 
market segmentation by including the concept of overlapping.  
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 The most widespread approach to the group decomposition of the Gini index 
was given by Dagum and it is based on the concepts of economic distance 
between distributions and relative economic affluence. It takes into account 
different variances and asymmetries of income distributions in subpopulations 
and gives an important contribution to the understanding of the overlapping term.  

The Gini index decomposition proposed by Yitzhaki and Lerman 
encompasses the index of stratification  by linking social stratification with 
inequality. It can be applied to assess isolation of social groups expressed in terms 
of income.   

Estimation results obtained on the basis of Polish HBS revealed high 
discrepancies between socio-economic groups of households defined on the basis 
of primary source of maintenance, whereas regional differences were found to be 
relatively small and to contribute slightly to overall income inequality in Poland. 
Extremely large income differences were observed between some household 
groups differentiated by the number of children. One should also be conscious 
that the estimation results can be biased mainly because of a high non-response 
rate being an immanent feature of household budgets surveys all over the world.  
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APPLICATION OF COHERENT DISTORTION 
 RISK MEASURES  

Grażyna Trzpiot1 

ABSTRACT 

This paper concentrates on solving the portfolio selection problem. It starts with 
an extension of the well-known optimization framework for Conditional Value-
at-Risk (CVaR)-based portfolio selection problems [1, 2] to optimization over a 
more general class of risk measure - known as the class of Coherent Distortion 
Risk Measure (CDRM). The CDRM class of risk measures is the intersection of 
Coherent Risk Measure (CRM) and Distortion Risk Measure (DRM). It 
concludes with showing that many of the well-known risk measures are of special 
cases of the CDRM class what may facilitate to deal with the portfolio 
optimization problem 

Key words: coherent risk measure, distortion risk measure, coherent distortion 
risk measure. 

1. Introduction 

The problem of optimal portfolio selection is very important issue to 
investors, hedgers, fund managers and individual investors. The research on 
optimal portfolio selection has been growing rapidly. Researchers and 
practitioners are constantly looking for better and more sophisticated risk 
measures and reward trade-off in constructing optimal portfolios. The classical 
Markowitz2 model used variance as the benchmark for risk measurement and this 
is perceived to be undesirable since it penalizes equally both sides, regardless of 
downside risk or upside potential. Consequently, other measures of risk have been 
proposed in connection with portfolio optimization. These include semi-variance3, 

                                                           
1 University of Economics in Katowice. E-mail: trzpiot@ue.katowice.pl. 
2 H. M. Markowitz. Portfolio selection. The Journal of Finance, 7(1): pp. 77–91, 1952. 
3 H. M. Markowitz. Portfolio selection: efficient diversification of investments. New Haven, CT: 

Cowles Foundation, 94, 1959. 
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partial moments1, safety first principle2, skewness and kurtosis3, value-at-risk 
(VaR) and conditional value-at-risk (CVaR)4. 
Let us take some basic notation: let ρ(x) be a f unction which measures the 
riskiness of a portfolio x. Then, in general, the portfolio selection problem seeks 
the solution to  
 

min ρ(x)                    (1) 
 x∈S 

 
where the minimization is taken over all feasible portfolios S. If ρ corresponds to 
the variance of the return of the portfolio x, then this problem (1) reduces to the 
standard Markowitz model. We are concerned with the portfolio selection 
problem involving a p articular class of risk measure known as the coherent 
distortion risk measure (CDRM). CDRM is the intersection of two important 
families of risk measures: the coherent risk measure (CRM)5 and the distortion 
risk measure (DRM)6. We st udy the intersection of both classes: CVaR is an 
example of CDRM while VaR is neither CRM nor DRM, and hence not CDRM7. 

2. CVaR-based portfolio optimization model 

Let l = f (x,y) be the portfolio loss associated with the decision vector x , to be 
chosen from a set S ⊆ n , and the random vector y∈ m . The vector x represents 
what we may generally call a portfolio, with S capturing the set of all feasible 
portfolios subject to certain portfolio constraints. For every x , the loss f (x,y) is a 
random variable having a distribution induced by the distribution of y∈ m. 

                                                           
1 V. S. Bawa and E.B. Lindenberg. Capital market equilibrium in a m ean-lower partial moment 

framework. Journal of Financial Economics, 5(2):189–200, 1977, Trzpiot G. (2005). Partial 
Moments and Negative Moments in Ordering Asymmetric Distribution, in: Daniel Baier and 
Klaus-Dieter Wernecke (eds.): Innovations in Classification, Data Science and Information 
Systems, Proc. 27th Annual GFKL Conference, University of Cottbus, March 11-14 2003. 
Springer-Verlag, Heidelberg-Berlin, 181-188. 

2 A. D. Roy. Safety first and the holding of assets. Econometrica: Journal of the Econometric 
Society, pages 431–449, 1952. 

3 C. R. Harvey, J. Liechty, M. Liechty, and P. Müller. Portfolio selection with higher moments. 
Quantitative Finance, 10(5):469–485, 2010. 

4 R.T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of risk, 2,  
21–42, 2000. 

5 P. Artzner, F. Delbaen, J.M. Eber, and D. Heath. Coherent measures of risk. Mathematical finance, 
9(3):203–228, 1999. 

6 S. S. Wang. A class of distortion operators for pricing financial and insurance risks. The Journal of 
Risk and Insurance, 67(1):15–36, 2000. 

7 Trzpiot G. Własności transformujących miar ryzyka [Properties of transforming risk measures], 
Economic Studies of the University of Economics in Katowice - Faculty Scientific Papers No. 91, 
21–36, 2012. 
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The underlying probability distribution of y is assumed to be discrete with 
probability masses p , i.e., P[l = L(x, yi)] = pi for i = 1, … ,m. 

We can notice that in many cases it is assumed that X - the portfolio loss has a 
discrete uniform distribution. This is not a very limiting assumption if we restrict 
ourselves to discrete portfolio loss distributions, which is typically the case if we 
are obtaining distributional information via scenario generation or from historical 
data. In addition, given any arbitrary discrete distribution representable with 
rational numbers, we may always convert it to discrete uniform distribution for 
some large enough m.  

For every portfolio x denote the cumulative distribution function (cdf) of the 
portfolio loss l = f (x,y) as:  

∑
=

≤=Ψ
m

i
ii lIpx

1
}{),( ζζ  

Then α -VaR and α -CVaR are defined as follows1.  
 
Definition 2.1. Suppose for each x∈S, the distribution of the portfolio loss  
l = f(x,y) is concentrated in m < ∞points, and Ψ(x,⋅) is a step function with jumps 
at these points. Now, fixing x and l(1) < ....<  l(m) denoting the corresponding 
ordered portfolio loss points and p(i) > 0, i =1, …, m, represent the probability of 
realizing loss l(i). 
If   

minρ ( ) 
x∈S 

x denotes the unique index satisfying α then α -VaR and α -CVaR of the portfolio 
loss are given, respectively, by ζα (x) = l(iα ) and 
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As pointed out, if ρ is set to VaR, then the resulting portfolio problem (1) is 
numerically challenging due to its lack of convexity. In contrast, the CVaR-based 
portfolio optimization problem (1) is a convex program and hence it is 
computationally amenable. The CVaR-based portfolio model becomes even more 
popular and more practical when [1] shows that the convex program can in fact be 
formulated as a l iner program. The key to Rockafellar-Uryasev's linear 
optimization scheme of CVaR-based portfolio selection problem is expressing 
φα(x) and ζα(x) in terms of the following special function: 
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1 R.T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions. Journal 

of Banking & Finance, 26(7):1443–1471, 2002. 
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If f (x,y) is convex with respect to x , then ϕα(x) is convex with respect to x . 
In this case, Fα(x,ζ ) is also jointly convex in (x,ζ ). Armed with these findings, 
Rockafellar and Uryasev derived the following equivalence formulation1: 
 
Theorem 2.1. Minimizing φα(x) with respect to x∈S is equivalent to minimizing 
Fα(x,ζ ) over all (x,ζ )∈S×, in the sense that 

( )
( )

( )ζφ α
ζ

α ,xFminxmin
RS,xSx ×∈∈

=          (4) 

where moreover 

( )
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( ) ( )
( )

( )ζζφζζ α
ζ
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,xFmin,xminargx,xFmin,x *
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Sx
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(5) 

The above theorem links the representation (3) explicitly to both VaR and 
CVaR simultaneously. The theorem asserts that for the purpose of determining an 
optimal portfolio with respect to CVaR, we can replace φα(x) by Fα(x,ζ ) in 
portfolio selection problems. More importantly, by exploiting (3) the general 
convex programming of CVaR portfolio optimization problem can be linearized 
into a linear objective function with additional linear auxiliary constraints. With 
such linear representation we can cast any portfolio selection problem with CVaR 
objective and linear constraint(s) as a linear program. 

3. Coherent Risk Measure (CRM) and Distortion Risk Measure 
(DRM) 

The uncertainty for future value of an investment position is usually described 
by a function X : Ω → R, where Ω is a fixed set of scenarios with a probability 
space (Ω, F, P ). Let X  be a linear space of random variables on Ω, i.e., a set of 
functions X : Ω → R. Note that X can be thought of as a loss from an uncertain 
position.  

We can find out some properties of risk measures.  

Property 1. Law-invariance 

Law-invariance states that a risk measure ρ(X) does not depend on a risk itself 
but only on i ts underlying distribution, i.e. ρ (X) = ρ (FX), where FX is the 
distribution function of X. This condition ensures that FX contains all the 
information needed to measure the riskiness of X. Law-invariance can be phrased 
as: 

FX = FY ⇒ ρ(X) = ρ(Y ) 

                                                           
1 Ibid. 
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for every random portfolio returns X and Y with distribution functions FX and 
FY. In other words, ρ is law-invariant in the sense that ρ(X) = ρ(Y), whenever X 
and Y have the same distribution with respect to the initial probability measure P. 
This assumption is essential for a risk measure to be estimated from empirical 
data, which ensures its applicability in practice. 

Property 2. Positive homogeneity 

Positive homogeneity (also known as positive scalability) formulates as 
follows: for each positive λ and random portfolio return X ∈ X: 

ρ(λX) = λkρ (X). 
Positive homogeneity signifies that a m easure has the same dimension 

(scalability) as a v ariable X. When the parameter k = 0, a risk measure does not 
depend on the scalability. 

From a financial perspective, positive homogeneity implies that a linear 
increase of the return by a positive factor leads to a linear increase in risk by the 
same factor.  

Property 3. Sums of risks 

Consider two different financial instruments with random payoffs X, Y ∈ X: The 
payoff of a portfolio consisting of these two instruments will equal X + Y . 

Property 3.1. Sub-additivity1 
Sub-additivity states that the risk of the portfolio is not greater than the sum of 
the risks of the portfolio components. In other words, “a merger does not 
create extra risk”. 

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) 
Compliance with this property tends to the diversification effect. Although 
Artzner treat sub-additivity as a n ecessary requirement for constructing a risk 
measure in order for it to be coherent, empirical evidence suggests that sub-
additivity does not always hold in reality2. 
Property 3.2. Additivity 
The additivity property is expressed in the following form: 

ρ(X + Y) = ρ(X) + ρ(Y ) 
This property is valid for independent and comonotonic3 random variables X 
and Y. The comonotonic random variables with no-hedge condition result in 
comonotonic additivity. 

                                                           
1 Artzner et al. (1999). 
2 Critiques of sub-additivity can be found in Dhaene et al. (2003) and Heyde et al. (2006). 
3 Comonotonic or common monotonic random variables (Yaari (1987), Schmeidler (1986), Dhaene 

et al. (2002a, 2002b)) are such that if the increase of one follows the increase of the other variable: 
P[X ≤ x, Y ≤ y] = min{P[X ≤ x], P[Y ≤ y]} for all x, y ∈ R. 
Intuitively, such variables have a maximal level of dependency. Comonotonic random variables 
are necessarily positively correlated. In financial and insurance markets, this property appears 
quite frequently. 
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Property 3.3. Super-additivity 
Super-additivity states that the portfolio risk estimate could be greater than the 
sum of the individual risk estimates. 

ρ(X + Y ) ≥ ρ(X) + ρ(Y ) 

The super-additivity property is valid for risks which are positive (negative) 
dependent. 
 

Property 4. Convexity 

(1) For all X, Y ∈ X, 0 ≤ λ ≤ 1, the following inequality is true: 

ρ(λX + (1 − λ)Y ) ≤ λρ (X) + (1 − λ)ρ (Y ). 

Convexity ensures the diversification property and relaxes the requirement that a 
risk measure must be more sensitive to aggregation of large risks. 

 (2) For any λ, μ ≥ 0, λ+μ = 1, and distribution functions F,G, the following 
inequality holds 

ρ(λF + μG) ≤ λρ(F) + μρ(G). 

(3) Generalized convexity. For any λ, μ ≥ 0, λ+μ = 1 and distribution functions U, 
V, H, such that the following random variables exist X, Y , λX + μY , for which 
FX = U, FY = V,  FλX+μY = H, the inequality is true 

ρ(H) ≤ λρ (U) + μρ(V ). 
 

Property 5. Monotonicity 

For every random portfolio returns X and Y such that X ≥ Y , 

ρ(X) ≤ ρ(Y ). 

Monotonicity implies that if one financial instrument with the payoff X is not less 
than the payoff Y of the other instrument, then the risk of the first instrument is 
not greater than the risk of the second financial instrument. Another presentation 
of the monotonicity property with a risk-free instrument is as follows: 

X ≥ 0 ⇒⇒ ρ(X) ≤ ρ (0) 

for X ∈ X,. 
 

Property 6. Translation invariance 

Property 6.1. For the non-negative number α ≥ 0 and C ∈ R, the property has 
the following form: 

ρ(X + C) = ρ(X) − αC. 
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This property states that if the payoff increases by a known constant, the risk 
correspondingly decreases. In practice, α = 0 or α = 1 are often used. 
Property 6.2. When α = 0, it implies that the addition of a certain wealth does 
not increase risk. This property is also known as the Gaivoronsky-Pflug (G-P) 
translation invariance1 . 
Property 6.3. The case when α = 1 implies that by adding a certain payoff, the 
risk decreases by the same amount. 

ρ(X + C) = ρ(X) − C. 

Property 6.4. When a constant wealth has a positive value, i.e., C ≥ 0, one gets 

ρ(X + C) ≤ ρ(X). 

This result is in agreement with the monotonicity property of X + C ≥ X. 
Property 6.5. In particular, translation invariance involves 

ρ(X + ρ(X)) = ρ(X) − ρ(X) = 0, 

obtaining a risk-neutral position by adding ρ(X) to the initial position X. 
 

Property 7. Consistency 

Property 7.1. Consistency with respect to n-order stochastic dominance has the 
following general form: 

X ≥n Y, ρ(X) ≥ ρ (Y ). 

In practice, the maximal value of n = 2; n = 0 just stands for a monotonicity 
property. 
Property 7.2. Monotonic dominance of n-order 

X ≥M(n) Y, if E[u(X)] ≥ E[u(Y )] 

for any monotonic of order n functions, that is u(n)(t) ≥ 0. 

It is known, that X ≥1 Y is equivalent to X ≤M(1) Y. X ≤M(2) Y is also called the 
Bishop-de Leeuw ordering or Lorenz dominance. 
Property 7.3. First-order stochastic dominance (FSD) 

For X ≥1 Y, FX(x) ≤ FY (x) 

If an investor prefers X to Y, then FSD will indicate that the risk of X is less 
than the risk of Y. In terms of utility function u, the following holds 

If X ≥1 Y, then E[u(X)] ≥ E[u(Y )] 

                                                           
1 Gaivoronski A. and Pflug G., 2001, Value at risk in portfolio optimization: properties and 

computational approach, Technical Report, University of Vienna. 
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for all increasing utility functions u. FSD characterizes the preferences of risk-
loving investors. Ortobelli et al. (2006) classified risk measures consistent with 
respect to FSD as safety-risk measures1. 

Property 7.4. Rothschild-Stiglitz stochastic order dominance (RSD) 
RSD has the form2: 

If X ≤RS Y, then E[u(X)] ≥ E[u(Y )] 

for any concave, not necessarily decreasing, utility function u. RSD describes 
preferences of risk-averse investors. Dispersion measures are normally 
consistent with RSD.  

Property 7.5. Second-order stochastic dominance (SSD) 
SSD has the following form: 

For X ≥2 Y, E[u(X)] ≥ E[u(Y )] 

for all increasing, concave utility functions u. SSD characterizes non-satiable 
risk averse investors3. 

Property 7.6. Stochastic order - stop-loss Y dominates X (Y ≥SL X) in stop-
loss order, if for any number α the following inequality is true: 

E[(Y − α)+] ≥ E[(X − α)+]. 

Here, α+ = max{0, α}. Such order is essential in the insurance industry. If the 
insurer takes the responsibility for the claims greater than α (deductible), then 
the expected claim Y is not smaller than X. 

Property 7.7. Convex order Y dominates X with respect to convex order (Y 
≥CX X) if the relation Y ≥SL X is true and when α = −∞ in stop-loss order, i.e. 
E[X] = E[Y]. Convex ordering is related to the notion of risk aversion4. 
Consistency with the stochastic dominance is a necessary property for a risk 
measure, because it enables one to characterize the set of all optimal portfolio 
choices when either wealth distributions or expected utility functions depend 
on a finite number of parameters 5. 

Property 8. Non-negativity 

Property 8.1. ρ(X) ≥ 0, while ρ(X) > 0 for all non-constant risk. 

Property 8.2. If X ≥ 0, then ρ(X) ≤ 0; if X ≤ 0, then ρ(X) ≥ 0. 

                                                           
1 In the portfolio selection literature, two disjoint categories of risk measures are defined: dispersion 

measures and safety-first risk measures. (Ortobelli S., Rachev S., Shalit H. and Fabozzi F., 2006). 
2 Rothschild M. and Stiglitz J., 1970. 
3 Hadar J. and Russell W., 1969. 
4 See also Kaas et al. (1994, 2001).  
5 Ortobelli S., 2001. 
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Property 9. Continuity 

Property 9.1. P robability convergence continuity: If Xn 
P→ X, then ρ(Xn) 

converges and has the limit ρ(X). 

Property 9.2. Weak topology continuity: If FXn 
w→ FX, then ρ(FXn) converges 

and has the limit ρ(FX). 

Property 9.3. Horizontal shift continuity: limδ→0 ρ(X + δ) = ρ(X). 

Property 9.4. Opportunity of arbitrary risk approximation with the finite 
carrier is expressed by the equality1: 

)(}),(min{lim}),(min{lim XXX ρδρδρ
σσ

==
−∞→+∞→

 

Property 9.5. Lower semi-continuity: For any C ∈ R, the set {X ∈ X: ρ(X) ≤ 
C} is σ(L∞,L1) - closed. 

Property 9.6. Fatough property2 

For any bounded sequence (Xn) for which Xn
P→ X, the following holds: 

ρ(X) ≤ )(inflim n
n

Xρ
∞→

. 

These properties are cardinally important. Nonfulfilment of the continuity 
property implies that even a small inaccuracy in a forecast can lead to the poor 
performance of a risk measure. 

Property 10. Strictly expectation-boundedness 

The risk of a portfolio is always greater than the negative of the expected portfolio 
return. 

ρ(X) ≥ −E[X], while ρ (X) > −E[X] for all non-constant X, 
where E[X] is the mathematical expectation of X. 

Property 11. Lower-range dominated 

Deviation measures possess lower-range dominated property of the following 
form: 

D(X) ≤ E(X) 
for a non-negative random variable. From property 10 and property 11 one can 
derive: 
D(X) = ρ(X − EX), ρ(X) = D(X) − E(X) 

Property 12. Risk with risk-free return C 

                                                           
1 Wang et al. (1997). 
2 In some contexts, it is equivalent to the upper semi-continuity condition with respect to σ(L∞,L1). 
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Property 12.1. ρ (C) = −C, it follows from the invariance property 6.3. If 
C > 0, then the situation is stable, risk is negative. The opposite situation 
occurs with C < 0. 
Property 12.2. ρ (C) = 0, risk does not deviate with the zero certain return. 

Property 13. Symmetric property 

(1) ρ(−X) = −ρ(X), which corresponds to property 8.1. 
(2) ρ(−X) = ρ(X), this property makes sense for the measures with 
possible negative values (property 8.2 fulfilled). 

Property 14. Allocation 

A risk measure need not be defined on the whole set of values of a random 
variable. Formally, in a given set U, from the condition FX = FY , when x ∉ U, it 
follows that ρ(X) = ρ(Y ). Apparently, this property holds only for law-invariant 
measures. Most often, some threshold value T is assigned, and the set U takes 
values U = (−∞, T] or U = [T,∞). 

Property 15. Static and dynamic natures 

It is useful to use a dynamic and multi-period framework to answer the following 
question: how should an institution proceed with new information in each period 
and how should it reconsider the risk of the new position? Riedel (2004) 
introduced the specific axioms such as p redictable translation invariance and 
dynamic consistency for a risk measure to capture the dynamic nature of financial 
markets.  

CRM satisfies properties of monotonicity, translation invariance, positive 
homogeneity, and subaddivity1. 

DRM satisfies properties of conditional state independence, monotonicity, 
comonotonic additivity and continuity2.  

The notion of comonotonicity is central in risk measures3. Imposed axiom 
comonotonic additivity based on the argument that the comonotonic random 
variables do not hedge against each other, leads to additivity of risks.  

It was also proved4 that  for all the Bernoulli(n, p) random variables, if 0 ≤ p ≤1, 
then a D RM ρ satisfies ρ (1) = 1 if and only if ρ has a Choquet integral 
representation with respect to a distorted probability; i.e. 

                                                           
1 P. Artzner, F. Delbaen, J.M. Eber, and D. Heath. Coherent measures of risk. Mathematical finance, 

9(3):203–228, 1999. 
2 Trzpiot G., O własnościach transformujących miar ryzyka, Studia Ekonomiczne UE w Katowicach 

nr 91, 21–36, 2012. 
3 J. Dhaene, S.S. Wang, V.R. Young, and M.J. Goovaerts. 
4 Wang, 2000. 
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where g(⋅) is known as the distortion function which is nondecreasing with  
g(0) = 0, 
and  
g(1) =1 and (gP)(A):= g(P(A)) is called the distorted probability. The Choquet 
integral representation of DRM can be used to explore its mathematical 
properties. Furthermore, calculations of DRMs can easily be done by taking the 
expected value of X under probability measure P*:= g   P. 
For discretely distributed portfolio losses random variable l (l1, …,lm)  with 
probability masses P[l = li] = pi dla i = 1,…,m, with cdf done as 

∑=
=

≤
m

i
lilil plF

1
}{)( 1  

and the survival function Sl(l) =1−Fl(l), (6) becomes 

∫∫
∞∞

−−=
0

*

0

* )()()(* dxxFdxxSXEP ∫∫
∞∞

−−=
00

)]([~)]([ dxxFgdxxSg  

∫ =−−−∫=
∞∞

00
)()]}([1{)]([ XdxxSgdxxSg gρ . 

 
Here we list some commonly used distortion functions: 
− CVaR distortion: 
  

gCVaR (x, α) = min{x/(1−α), 1} dla  α ∈[0,1)      (7) 

 
− Wang Transform (WT) distortion:  

 
gWT(x, β ) =  Φ[Φ−1(x) − Φ−1(β )] dla β ∈[0,1)    (8) 

 
-  the dual-power gDP distortion1: 

νν
1

)1(1),( xxgDP −−=  , x ∈ [0, 1], ν≤ 1     (9) 

 

– Proportional hazard (PH) distortion: 
γγ xxgPH =),(  , x ∈ [0, 1], γ ≤ 1 .        (10) 

                                                           
1 Wirch J, Hardy MR (2001), Trzpiot (2004a, 2006). 
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4. Coherent Distortion Risk Measure (CDRM)-based portfolio 
selection 

Recall that CDRM is the intersection of CRM and DRM. There are two ways 
to define CDRM. 
 
Definition 4.1. We say ρ is a coherent distortion risk measure (CDRM) if: 

a) ρ g  is a distortion risk measure (DRM) with a concave distortion function 
g  

 or equivalently 
b) ρ is a co herent risk measure (CRM) that is also comonotonic and law-

invariant.  
 
The following representation theorem for CDRM is the key result that enables 

us to use a convex optimization framework for any CDRM portfolio selection 
problem. 
 
Theorem 4.1.1 For any random variable X and a given concave distortion 
function g, risk measure ρg is a CDRM if and only if there exists a function 

w:[0,1] → [0,1], satisfying ( )∫ =
=

1

0
1

α
αα dw  such that  

( ) ( ) ( )∫=
=

1

0α
αα αφαρ dXwX           (11) 

where (X) α φ is the α -CVaR of X . 
 

This representation theorem says that any CDRM can be represented as a 
convex combination of CVaRα (X), α ∈[0,1] and we can construct any CDRM 
based on a  convex combination of CVaRα (X). Such result was proved for 
continuous portfolio loss distributions2. Proved and strengthened was the 
representation theorem that any CDRM can be represented as a convex 
combination of finite number of CVaRα (X) under the assumption that the 
portfolio loss has a discrete uniform distribution3.  

For solving convex programming formulation CDRM portfolio selection 
problem, we need a theorem for CDRM to general discrete loss distributions. We 
notice the following definition4:  
 
                                                           
1 S. Kusuoka, On law invariant coherent risk measures. Advances in mathematical economics, 

3:83–95, 2001. 
2 Ibid. 
3 D. Bertsimas and D.B. Brown. Constructing uncertainty sets for robust linear optimization. 

Operations research, 57(6):1483–1495, 2009. 
4 Feng M. B., Tan K. S. (2012). 
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Definition 4.2. For a given loss observation l = (l1, …,lm) and its ordered losses 
l(1) < l(2) < … < l(m), p(i) be the probability of realizing l(i), i =1, m and 

( )( ) ( )∑−=
=

i

j
iil plS

1
1 . Define a CVaRa matrix Q∈  Rm × Rm with columns m Qi ∈ Rm ,  

i = 1, m as 
 

Q = [Q1, Q2,…,Qm] = 

( )

( )
( )

( )( )
( )

( )
( )( )

( )
( )( )

( )
( )

( )( )
( )

( )( )
( )

( )( )





























−−−

−−

−

−121

2

3

1

3
3

1

2
2

1

1
...

11

..............

0...
11

0...0
1

0...00

ml

m

l

m

l

m
m

ll

l

lS
p

lS
p

lS
p

p

lS
p

lS
p

p

lS
p

p

p

 

 
 

Since portfolio losses are discretely distributed at m points, there are m jumps 
in the cumulative function of l . 
 

By defining 

( )





=∑

=
= −

=
m,...idlap

idla,
i

j
j

i 2

10
1

1

α         (12) 

 
at these m jumps, the m CVaRs at these probability levels are given by 
 

( ) ( ) ( )
( )
( )( ) ( ) ( )j

m

ij
ijj

m

ij ml

jm

ij
jj

ii lQl
lS

p
lpl ∑=∑

−
=∑

−
=

== −= 111
1
α

φα    (13) 

 
for i =1, m and Qij is the (i, j) -th entry of Q. Note that column Qi is essential to 
the calculation of CVaR(i−1)/m (l) and hence it explains the name of the matrix. 

We consider the following special function for some w(α ) ≥ 0 and 

( )∫ =
=

1

0
1

α
αα dw ,  

( )∫=
=

1

0
),(),(

α
α αζαζ dxFwxM g .         (14) 
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Theorem 4.1. of CDRM ensures the existence of w(α ), α ∈[0,1] and defines 
CDRM for a given set of weights. For each α there is a corresponding auxiliary 
variable ζα . Taking partial derivatives w.r.t. all ζα and setting them equal to zeros 
give the extremal properties of Mg (x,ζ). This provides more insights about the 
connection between a particular CDRM, ρg(x), and its convex representation Mg 
(x,ζ)1 . Yet ζ may have infinitely many entries ζα.  

Taking partial derivative w.r.t. all ζα  for α ∈ [0,1] requires calculus of 
variations, which is outside the scope of this thesis. We alleviate such difficulty 
by applying properties of Choquet integrals because CDRM is a subclass of 
DRM. 

We conclude by presenting this generalized CVaR-based portfolio model of 
[1] to the more general class of CDRM-based portfolio model: 
 
Theorem 4.2 Let ρg(x) be a CDRM with a corresponding distortion function g. 
Minimizing ρg(x) with respect to x∈S is equivalent to minimizing Mg (x,ζ) over all 
(x,ζ)∈S× |ζ|, in the sense that 

( )
( )

( )ζρ
ςζ

,minmin
,

xMx g
RSx

g
Sx ×∈∈

=         (15) 

where moreover 
( )

( )
( ) ( ) ( )ζζρζζ

ςζςζ
,minarg,minarg,minarg, ***

,

** xMxxxMx g
R

g
Sx

g
RSx ∈∈×∈

∈∈⇔∈  

     (16) 
 
As some remarks we can notice that: 
- It is of interest to note that the PH portfolio optimization is almost equivalent 

to optimization over two extreme CVaR-based portfolios: one with α  = 0.99 
and the other with α  = 0. Recall that minimizing CVaR with high value of 
α implies that you are someone who is very risk averse and hence is interested 
in risk minimization. In contrast, minimizing CVaR with α close to 0 implies 
an investor is a risk seeker and is only interested in maximizing expected 
return. 

- Consistent with the classical trade-off theory on risk and reward, a more risk 
averse investor seeks an optimal portfolio with lower risk (as measured by the 
respective CDRM) but at the expense of lower expected return. Hence, the 
expected return of the optimal portfolio decreases with α for CVaR, decreases 
with β for WT, increases with γ for PH, and increases with δ for LB.2 

 

                                                           
1 Ibid. 
2 Trzpiot G. (2010). Pessimistic portfolio optimization, In: Modelling of preferences and risk '09, 

Scientific Papers, University of Economics in Katowice, 121–128. 
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5. Conclusion  

In this paper we present extension of the well-known linear optimization 
framework for CVaR to a general class of risk measure known as the CDRM. We 
generalized the finite generation theorem for CDRM and showed that any CDRM 
can be defined as a convex combination of ordered portfolio losses and 
equivalently a co nvex combination of CVaRs. We make use of the latter to 
develop a CDRM-based portfolio optimization framework.  
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SELECTED TESTS COMPARING THE ACCURACY OF 
INFLATION RATE FORECASTS CONSTRUCTED BY 

DIFFERENT METHODS 

Agnieszka Przybylska-Mazur1 

ABSTRACT 

The forecasts of macroeconomic variables including the forecasts of inflation rate 
play an important role in estimating future situation in the economy. Knowledge 
of effective forecasts allows making optimal business, financial and investment 
decisions. The forecasts of macroeconomic variables and as a result also inflation 
rate forecasts can be determined by different methods often giving different 
results. Therefore, in this paper we apply selected tests to the evaluation of the 
accuracy of inflation rate forecasts determined by different methods. 

Key words: forecast accuracy, parametric tests, Morgan-Granger-Newbold test, 
Meese-Rogoff test and Diebold-Mariano test. 

1. Introduction 

The forecasts of macroeconomic variables and therefore also inflation rate 
forecasts can be determined by different methods often giving different results 
(Dittmann, 2008). The purpose of the paper is to apply selected statistical tests to 
the evaluation of the accuracy of inflation rate forecasts constructed by different 
methods. Of particular and practical importance are tests which do no t need to 
know the model on which the forecasts that allow comparing the accuracy of 
forecasts constructed by different methods were determined. This group of 
parametric tests include: Morgan-Granger-Newbold test, Meese-Rogoff test and 
Diebold-Mariano test. For this group of tests - the model-free tests - we assume 
that we have the actual values and the set or sets of forecasts of the prediction.   

At the beginning we present the tests which assumes the squared-error loss 
and zero-mean, serially uncorrelated forecast errors in the context of the 
application of this tests to the evaluation of the accuracy of inflation rate forecasts 
determined  by different methods. Next, we present tests that are asymptotically 
valid under more general conditions allowing loss functions other than the 
                                                           
1 Ph.D., Department of Statistical and Mathematical Methods in Economy, University of Economics 

in Katowice. 
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quadratic and covering situations when forecast errors are non-Gaussian, non-
zero-mean, serially correlated, and contemporaneously correlated. These tests are 
applied also to the evaluation of the accuracy of inflation rate forecasts.    

2. Preliminary notions 

We assume that the available information consists of the following:  
- actual values of the inflation rate Ttt ...,,2,1, =π ,              
- two forecasts: Ttt ...,,2,1,ˆ1 =π  and Ttt ...,,2,1,ˆ2 =π . 

We define the forecast errors as  

                            ttitiQ ππ ˆˆ −=  for Tti ...,,2,1,2,1 ==                                  (1) 

Moreover, we assume that the loss associated with the forecast i is a function 
of the actual and forecast values only through the forecast error, and is denoted 
by: 

                             )()ˆ()ˆ,( tittitit QLLL =−= ππππ                                   (2) 

The error loss function L can take various forms. Typically, we take into 

consideration the squared-error loss of the form 2)( titi QQL =  or the absolute 

error loss of the form titi QQL =)( .  

We also denote the loss difference between the two forecasts by  

                           )()( 21 ttt QLQLd −=  for Tt ...,,2,1=                                  (3) 

Since the tests are presented below verified forecast accuracy, now we define 
the concept of equality accuracy of inflation rate forecasts. We say that the two 
inflation rate forecasts have equal accuracy if and only if the loss difference has 
zero expectation for all t. 

3. Application of Morgan-Granger-Newbold test to compare the 
accuracy of inflation rate forecasts 

We can apply the Morgan-Granger-Newbold test when the inflation forecasts 
errors are:  

- zero mean,  
- Gaussian,  
- serially uncorrelated,  
- contemporaneously uncorrelated. 

Furthermore, we assume the squared-error loss. Moreover, this test is 
applicable only to one-step predictions. 
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We would like to test the null hypothesis  

   0)(:0 =tdEH  for all Tt ...,,2,1=  

versus the alternative hypothesis  

  0)(:1 ≠= cdEH t . 

Therefore, the test statistics is (Diebold, Mariano, 1995, Clements (ed.), 
Hendry (ed.), 2004): 

                   

1
1 2

−
−

=

T
r

rMGN                                               (4) 

where: 

)()( zzxx

zxr
TT

T

⋅⋅⋅

⋅
= , 

 

 x  is the 1×T  matrix with t-th element tx , 

 z  is the 1×T  matrix with t-th element tz , 
 ttt QQx 21 += , ttt QQz 21 −= . 

The MGN statistics has a t-distribution with 1−T  degrees of freedom. 

4. Use of Meese-Rogoff test to compare the accuracy of inflation rate 
forecasts 

The Meese-Rogoff test is the test of equal forecast accuracy when the forecast 
errors are serially and contemporaneously correlated, have zero mean and are 
Gaussian.  In this test we assume also the squared-error loss. 

We would like to test the null hypothesis: 0)(:0 =tdEH  for all 

Tt ...,,2,1=  versus the alternative hypothesis 0)(:1 ≠= cdEH t . 
Verifying  the null hypothesis of equal accuracy of inflation rate forecasts we 

use also the series: ttt QQx 21 += , ttt QQz 21 −=  for Tt ...,,2,1= . 
The statistics for Meese-Rogoff test is then (Rossi, 2005) 

                      

T

MR xz

Ω
=

ˆ
)0(γ̂

                                                               (5) 
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where: 
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)(ˆ kxzγ , )(ˆ kzxγ  - cross-autocovariances, 

)(ˆ kxxγ , )(ˆ kzzγ  - own-autocovariances, 

),cov()(ˆ kttxz zxk −=γ  

),cov()(ˆ kttzx xzk −=γ  

),cov()(ˆ kttxx xxk −=γ  

),cov()(ˆ kttzz zzk −=γ  
)(Tm  - the truncation lag that increases with sample size T. 

Given the maintained assumptions, the following result holds under the 
hypothesis of equal forecast accuracy ),0()0(ˆ Ω→⋅ NT xzγ  in distribution. 

5. Application of Diebold-Mariano test to compare the accuracy of 
inflation rate forecasts 

Diebold and Mariano (1995) consider model-free tests of inflation rate 
forecast accuracy that are directly applicable to non-quadratic loss functions, 
multi-period inflation rate forecasts, and inflation rate forecast errors that are non-
Gaussian, non-zero-mean, serially correlated, and contemporaneously correlated.  

We use this test when sample sizes are large. 
The Diebold-Mariano test verify the null hypothesis 0)(:0 =tdEH  for all 

Tt ...,,2,1=  versus the alternative hypothesis 0)(:1 ≠tdEH . 

Assuming covariance stationarity of the process td , we have the following 
Diebold-Mariano statistics when the sample size is large (Diebold, Mariano, 
1995):   

                                       

T
f

dDM
d )0(ˆ2 ⋅

=
π

                                                  (6) 

where: 
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)0(ˆdf  is a consistent estimate of )0(df , 

∑
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⋅

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∑
+=

− −⋅−=
T

kt
kttd dddd

T
k

1
)()(1)(γ̂  

)(Tm  - the bandwidth or lag truncation that increases with T, 
)(⋅w   - the weighting scheme or kernel. 

One weighting scheme, called the truncated rectangular kernel and used in 
Diebold and Mariano (1995), is the indicator function that takes the value of unity 
when the argument has an absolute value less than one, thus )1(1)( <= xxw .    

The statistics ))0(2,0()( dfNcdT ⋅→−⋅ π  in distribution, where: )( ⋅df  

is the spectral density of td  for Tt ...,,2,1= , ∑
∞

∞−=

−⋅=
k

ki
dd ekf λγ

π
λ )(

2
1)(  

for πλπ ≤≤− , )(kdγ  is the autocovariance of td  at displacement k. 
The null hypothesis is rejected in favour of the alternative hypothesis when 

DM, in absolute value, exceeds the critical value of a standard unit Gaussian 
distribution. 

Harvey, Leybourne and Newbold (1997) propose a small-sample modification 
of Diebold-Mariano test.  

When we assume that the inflation rate forecast accuracy is measured in terms 
of mean-squared prediction error, and optimal h-step ahead inflation rate 
predictions are likely to have forecast errors that are )1( −hMA  moving average 
process of order 1−h , we have autocovariances 0)( =kγ  for  hk ≥  and 

∑
+=

− −⋅−=
T

kt
kttd dddd

T
k

1
)()(1)(γ̂  for hk ≤≤0 . 

Then, the test statistics that is the modification of DM  test statistics, is the 
following (Harvey, Leybourne, Newbold, 1997):   

                                 

T
T
hhhT

DMDM
)1(21 −

+−+
=∗                                      (7) 

To make a d ecision of rejection or acceptance of the null hypothesis the 
empirical value with critical value from the t-distribution with )1( −T  degrees of 
freedom should be compared. 



304                                                                            A. Przybylska-Mazur: Selected tests … 

 

 

6. Empirical analysis 

Below we present the results of testing inflation rate forecast accuracy for 
monthly inflation rate determined on the basis of the autoregressive model and the 
traditional VAR monetary policy model, and also for the quarterly inflation rate 
that come from the reports “Inflation projection of the NBP based on the 
NECMOD model”. 

6.1. Comparison of the accuracy of inflation rate forecasts for the 
forecasts obtained from the autoregressive model and from the 
traditional VAR monetary policy model 

When testing the equality of inflation rate forecasts accuracy we take into 
account one-step forecast monthly inflation rates determined on the basis of the 
first-order autoregression model and on the basis of the traditional VAR monetary 
policy model, which contains three variables: inflation rate, industrial production 
growth rate and reference rate. We assume the significance level equals 0,01. The 
data concerning the monthly forecast of  inflation rates, the real values of inflation 
rate and the forecast errors are presented in the table below. 

Table 1. Forecasts and real values of monthly inflation rate and forecast errors 

Time 

Inflation 
forecasts 

determined on 
the basis of the 

first-order 
autoregression 

model 

Inflation 
forecasts 

determined 
on the basis 

of 
the traditional 

VAR 
monetary 

policy model 

Real values 
of inflation 

rate 
tQ1  tQ2  

April 2011 4.59 4.55 4.5 0.09 0.05 

May 2011 4.71 4.33 5 -0.29 -0.67 

June 2011 4.76 4.83 4.2 0.56 0.63 

July 2011 4.78 4.9 4.1 0.68 0.8 

August 2011 4.79 4.54 4.3 0.49 0.24 

Source: Own calculations. 

Since the inflation forecasts errors do not have zero mean ( tQ1 = 0.306, 

tQ2 = 0.21), then to test the equality of forecasts accuracy we use the 
modification of Diebold-Mariano test for a small sample proposed by Harvey, 
Leybourne and Newbold. 

http://www.nbp.pl/en/publikacje/raport_inflacja/necmod_november_2013.pdf
http://www.nbp.pl/en/publikacje/raport_inflacja/necmod_november_2013.pdf
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The null hypothesis and alternative hypothesis are the following: 
0)(:0 =tdEH  for all 5...,,2,1=t  

0)(:1 ≠tdEH  

The test statistics is given by (7) 

                                  

T
T
hhhT

DMDM
)1(21 −

+−+
=∗              

Assuming 3)( =Tm  we obtain =DM  -1.28 and ∗
empDM = -1.43. Because 

the critical value read from the table of t-distribution with 4 degrees of freedom is 
equal to 604,44;01,0 == tDMα , then for this significance level we have 

αDMDM emp <∗ , thus there is no evidence to reject the null hypothesis of 

equal forecast accuracy of monthly inflation rates determined on the basis of the 
first-order autoregression model and on the basis of the traditional VAR monetary 
policy model. 

6.2. Comparison of the accuracy of inflation rate forecasts and   
“Inflation projection of the NBP based on the NECMOD model” 

When comparing the accuracy of inflation rate forecasts we now take into 
account forecasts of quarterly inflation rates provided in the report "Inflation 
projection of the NBP based on the NECMOD model". We assume the significance 
level equals 0.01. 

The obtained data concerning the quarterly forecasts of inflation rate, the 
real values of inflation rate, the forecast errors and the loss difference  are 
presented in the tables below. 

Table 2. Forecasts and real values of quarterly inflation rate 

Year Quarter 
Inflation 

forecasts from 
given report 

Inflation 
forecasts from 
the next report 

Real values of 
inflation rate 

2008 
I 4.2 4.3 4.3 
II 4.6 4.7 4.7 
III 3.8 3.8 3.8 

2009 

I 3.4 3.3 3.3 
II 3.3 3.7 3.7 
III 3.6 3.6 3.5 
IV 3.0 3.3 3.3 

 

http://www.nbp.pl/en/publikacje/raport_inflacja/necmod_november_2013.pdf
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Table 2. Forecasts and real values of quarterly inflation rate  (cont.) 

Year Quarter 
Inflation 

forecasts from 
given report 

Inflation 
forecasts from 
the next report 

Real values of 
inflation rate 

2010 

I 2.6 3.0 3.0 
II 2.4 2.3 2.3 
III 2.1 2.2 2.2 
IV 2.9 2.9 2.9 

2011 

I 3.5 3.8 3.8 
II 4.3 4.6 4.6 
III 4.1 4.1 4.1 
IV 4.6 4.6 4.6 

2012 

I 4.3 4.1 4.1 
II 3.9 4.0 4.0 
III 3.9 3.8 3.9 
IV 3.1 2.9 2.9 

2013 I 1.7 1.3 1.3 
II 1.4 0.6 0.5 

Source: Report “Inflation projection of the NBP based on the NECMOD model”. 
 

Table 3. The forecast errors and the loss difference 

Year Quarter tQ1  tQ2  
Loss difference 

td  

2008 
I 0.0 -0.1 -0.01 
II 0.0 -0.1 -0.01 
III 0.0 0.0 0.00 

2009 

I 0.0 0.1 -0.01 
II 0.0 -0.4 -0.16 
III 0.1 0.1 0.00 
IV 0.0 -0.3 -0.09 

2010 

I 0.0 -0.4 -0.16 
II 0.0 0.1 -0.01 
III 0.0 -0.1 -0.01 
IV 0.0 0.0 0.00 

2011 

I 0.0 -0.3 -0.09 
II 0.0 -0.3 -0.09 
III 0.0 0.0 0.00 
IV 0.0 0.0 0.00 

2012 

I 0.0 0.2 -0.04 
II 0.0 -0.1 -0.01 
III -0.1 0.0 0.01 
IV 0.0 0.2 -0.04 

2013 I 0.0 0.4 -0.16 
II 0.1 0.9 -0.80 

Source: Own calculations. 

http://www.nbp.pl/en/publikacje/raport_inflacja/necmod_november_2013.pdf
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In this case to compare the forecasts accuracy we use the modification of 
Diebold-Mariano test for a small sample. 

 
The null hypothesis and the alternative hypothesis are as follow: 

0)(:0 =tdEH  for all 21...,,2,1=t  

0)(:1 ≠tdEH  
The test statistics is given by (7) 

Assuming 5)( =Tm  we obtain =DM 2,22 and ∗
empDM = 2,39. Because the 

critical value read from the table of t-distribution with 20 degrees of freedom is 
equal to     845,220;01,0 == tDMα , then for the significance level which equals 

0.01 we have αDMDM emp <∗ . Subsequently, there is no evidence to reject the 

null hypothesis of equal forecast accuracy of quarterly forecasts of inflation rate 
determined on the basis of NECMOD model. Therefore, all determined forecasts 
have equal accuracy. The differences in values result from the change in the 
assumptions about the projections in the individual reports. 

7. Conclusion 

It follows from the analyses that the most frequently used test for the 
comparison of the accuracy of inflation rate forecasts (the forecasts constructed 
by different methods) is the modification of Diebold-Mariano test for a small 
sample proposed by Harvey, Leybourne and Newbold. It can be concluded that 
there is no evidence to reject the null hypothesis of equal forecast accuracy of 
monthly inflation rates determined on the basis of the first-order autoregression 
model and on the basis of the traditional VAR monetary policy model. We also 
conclude that the quarterly forecasts of inflation rate determined on the basis of 
NECMOD model and presented in two subsequent reports have equal accuracy. 
The differences in values result from the change in the assumptions about the 
projections in the individual reports. 
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TESTS FOR CONNECTION BETWEEN CLUSTERING 
OF POLISH COUNTIES AND PROVINCE STRUCTURE 

Małgorzata Markowska1, Marek Sobolewski2, Andrzej Sokołowski3, 
Danuta Strahl4 

ABSTRACT 

The general idea of statistical tests which allow testing the influence of 
geographical or administrative units of upper level on clustering results of lower 
level units is presented, basing on the authors' earlier works. The so-called “active 
border” notion is used in these methods. If two counties (powiats) have been 
classified into different clusters then the border between them is called active. 
This border can be also the border between provinces. The number and length of 
active borders are used in the proposed test statistics. Their distribution depends 
on the actual geographic division of a given country. In this paper we present 
results for Poland and division for provinces and counties. Tables for test critical 
values and the approximation functions are given.   

Key words: cluster analysis, NUTS, comparing partitions.  

1. Introduction 

In Sokolowski et al. (2013a), (2013b) the general idea of statistical tests 
which allow testing the influence of geographical or administrative units of upper 
level on clustering results of lower level units was presented. The so-called 
“active border” notion is used in these methods. If two counties have been 
classified into different clusters then the border between them is called active. 
This border can be also the border between provinces. If the upper level has no 
influence on the lower level partition results, then only randomness should decide 
if the active border is also the upper level border. Distribution of test statistic 
depends on t he actual geographic division of a given country. In this paper we 
present results for Poland and division for provinces and counties. There are 978 
borders between counties and 210 of them are also elements of between-province 
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border. The total length of borders between counties sums up t o 88,869 km, 
including 16,062 km of borders between provinces. 

2. Test statistics 

Both of the proposed test statistics are being used for testing the same 
following hypotheses: 

H0: Province level has no influence on the partition results obtained for 
counties 

H1: Province level influences significantly the results of counties partition 
It seems natural that if the upper level has no i nfluence on t he lower level 

partition results, then only randomness should decide if the active border is also 
the upper level border. If “too many” active borders between counties are also 
borders between provinces one should reject the null hypothesis. Thus, the 
proposed tests have right-sided critical region. The following two test statistics 
are considered: 
 

𝐿1 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑏𝑜𝑟𝑑𝑒𝑟𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑏𝑜𝑟𝑑𝑒𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑠
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑒 𝑏𝑜𝑟𝑑𝑒𝑟𝑠

    (1) 
    

 
𝐿2 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑏𝑜𝑟𝑑𝑒𝑟𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑏𝑜𝑟𝑑𝑒𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑒 𝑏𝑜𝑟𝑑𝑒𝑟𝑠
    (2) 

3. Simulation study 

For partition simulations we use the simplified version (with given number of 
groups) of random partition generator proposed by Sokolowski (1979): 

- set k (number of groups), 
- assign random number from uniform distribution to each object, 
- order objects according to values of this random variable, 
- now we have (n-1) potential borders between objects, 
- assign random number from uniform distribution to each potential 

border, 
- make “active” first k borders with the biggest values of these 

random numbers. 
We have considered partitions of Poland’s counties from 2 to 16 groups. With 

1000 simulation runs we have found that the distribution of L1 and L2 statistics 
can be approximated by normal distribution. Empirical distribution for k=5 as an 
example is presented on Fig 1. 
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Figure 1. Empirical distribution of L1 statistic under null 

 
Expected value of L1 equals 210/978=0.2147, while standard distribution 

depends on the number of clusters, but it can be very well approximated by (1), 
see Fig.2 
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Figure 2. Standard deviation of L1 depending on the number of clusters 

Critical values for 0.05 and 0.10 significance levels can also be approximated 
by fractional polynomials. Fig. 3 gives just one example of goodness-of-fit. 
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Figure 3. Critical value of L1 approximation for α=0.10 

We have found that the distribution of L2 statistic can be also approximated 
by normal distribution. Expected value of L2 under null equals 
16062/88869=0.1807 while standard deviation and critical values follows well 
fitted functions. Approximating functions are given in Table 1 and smoothed 
critical values in Table 2. 

 

Table 1. Approximating functions 

Parameter Function 
Adjusted 

coefficient of 
determination 

Standard 
error of 

residuals 

SD(L1) 0.000802+0.074792k-1-0.210665k-

2+0.404299k-3 0.999 0.0003 

Q0.90(L1) 0.216349+0.076325k-1-0.145002k-

2+0.219535k-3 0.996 0.0004 

Q0.95(L1) 0.215771+0.119359k-1-0.289479k-

2+0.446677k-3 0.995 0.0006 

SD(L2) 0.002043+0.052128k-1-0.098926k-

2+0.230704k-3 0.999 0.0002 

Q0.90(L2) 0.184717+0.037557k-1+0.032073k-2 0.996 0.0004 

Q0.95(L2) 0.184124+0.080401k-1-0.121491k-

2+0.233468k-3 0.997 0.0005 
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Table 2. Critical values 

Number of 
clusters 

L1 L2 

α=0.10 α=0.05 α=0.10 α=0.05 

2 0.2457 0.2589 0.2115 0.2231 

3  0.2338  0.2399  0.2008  0.2061  

4  0.2298  0.2345  0.1961  0.2003  

5  0.2276  0.2316  0.1935  0.1972  

6  0.2261  0.2297  0.1919  0.1952  

7  0.2249  0.2282  0.1907  0.1938  

8  0.2241  0.2270  0.1899  0.1927  

9  0.2233  0.2261  0.1893  0.1919  

10  0.2228  0.2253  0.1888  0.1912  

11  0.2223  0.2246  0.1884  0.1906  

12  0.2218  0.2240  0.1881  0.1901  

13  0.2215  0.2234  0.1878  0.1897  

14  0.2211  0.2230  0.1876  0.1893  

15  0.2209  0.2226  0.1874  0.1890  

16  0.2206  0.2222  0.1872  0.1887  

4. Example 

We have taken four variables characterizing Polish counties: number of births 
per 1000 population, unemployment rate, average salary and number of new flats 
per 1000 population. Ward’s agglomerative clustering method suggests the 
division into seven clusters (see Fig. 4) 
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Figure 4. Ward’s dendrogram of Polish counties 

On Fig. 5 we can see the geographical distribution of clusters together with 
borders between provinces.  

 

 

Figure 5. Clusters of Polish counties 

Observed value of L1 equals 0.215 while critical value for α=0.10 is 0.2249 
(p=0.450), and L2=0.185 with critical value 0.1907 and p=0.273. It is clear from 
both test statistics that there is no proof for statistically significant influence of 
province level on counties partition based on four considered variables.  
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5. Conclusions 

It has been found that critical values for both proposed test statistics can be 
very well approximated by relatively simple functions while testing the influence 
of voivodship level of Polish provinces on county level. The example provided is 
only an illustrative effort. The proposed test can be widely used in testing the 
relations between administrative levels in Poland with respect to economic 
phenomena, politics, public administration and quality of life. 
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ON CERTAIN A-OPTIMAL BIASED SPRING BALANCE 
WEIGHING DESIGNS  

Bronisław Ceranka1, Małgorzata Graczyk2 

ABSTRACT 

In the paper, the estimation of unknown measurements of p objects in the 
experiment, according to the model of the spring balance weighing design, is 
discussed. The weighing design is called biased if the first column of the design 
matrix has elements equal to one only. The A-optimal design is a design in which 
the trace of the inverse of information matrix is minimal. The main result is the 
broadening of the class of experimental designs so that we are able to determine 
the regular A-optimal design. We give the lowest bound of the covariance matrix 
of errors and the conditions under which this lowest bound is attained. Moreover, 
we give new construction methods of theregular A-optimal spring balance 
weighing design based on the incidence matrices of the balanced incomplete 
block designs. The example is also given.  

Key words: A-optimal design, spring balance weighing design. 

1. Introduction 

Let us consider ( )1,0pn×Φ , the class of all possible pn×  matrices of the 
elements equal to zero or one and, moreover, the first column of this matrix 
consists only of ones. Any matrix ( )1,0pn×∈ΦX  is called the design matrix of the 
biased spring balance weighing design if the result of the experiment we are able 
to present in the form eXwy += * , where y  is an 1×n  vector of observations, 

*w  is a 1×p  vector of unknown parameters and e  is an 1×n  vector of random 

errors. Furthermore, assume that ( ) n0e =E  and ( ) Ge 2Var σ= , where n0  is 

vector of zeros, 2σ  is the constant variance of errors, G  is the nn×  symmetric 
positive definite diagonal matrix of known elements.  
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The normal equations estimating *w  are of the form yGXwXGX 1'*1' ˆ −− = , 

where *ŵ  is the vector of the weights estimated by the least squares method. Any 
weighing design is nonsingular if the matrix XGX 1' −  is nonsingular. It is obvious 
that G  is the symmetric positive definite matrix, and any weighing design is 
nonsingular if and only if the matrix XX '  is nonsingular and then in that case all 
the parameters are estimable. The estimator of the vector representing unknown 

measurements of objects *w  is equal to ( ) yGXXGXw 1'11'*ˆ −−−=  assuming that 

X  is of full column rank. The covariance matrix of *ŵ  is given by 

( ) ( ) 11'2*ˆVar
−−= XGXw σ .  

In the special case of experimental designs, when bias is present, then 
[ ] '

1
* ww w=  is the 1×p  vector of unknown measurements of objects, 1w  is 

the parameter corresponding to the bias (systematic error), 
[ ] '

32 pwww =w  is the ( ) 11 ×−p  vector of unknown measurements of 
object excluding bias. In such experiment we assume that there is one object 
whose value is estimated by taking the column of ones in the design matrix X  
corresponding to the bias. Thus, we consider the design matrix ( )1,0pn×∈ΦX  in 
the following form 

[ ]1X1X n= ,                       (1) 
where n1  is 1×n  vector of ones, 1X  is ( )1−× pn  matrix of elements equal to 
zero or one. 

It is worth emphasizing that for each pattern of G  the conditions determining 
optimal design must be separately investigated. For the case nIG = , Banerjee 
(1975), Raghavarao (1971) and Katulska (1989) present the problems related to 
the biased spring balance weighing designs. Some considerations connected with 
the diagonal covariance matrix of errors G2σ  are presented in Ceranka and 
Katulska (1990, 1992). 

2. The main result 

The statistical problem is to determine the most efficient design in some sense 
by a proper choice of the design matrix X  among many at our disposals in 

( )1,0pn×Φ . Some optimal criteria have been considered in the literature, see 
Pukelsheim (1993). One of them is A-optimality which minimizes the average 
variance of the estimator of unknown measurements of the objects.  

For the case G  there is a positive definite diagonal matrix of known 
elements. The problems related to the regular A-optimal biased spring balance 
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weighing design have been considered in the literature, see, for instance, Graczyk 
(2011). In this paper, the following definition is presented. 

 
Definition 1. Any nonsingular ( )1,0pn×∈ΦX  of the form (1) with the diagonal 

covariance matrix of errors G2σ  is called the regular A-optimal biased spring 

balance weighing design for estimation of ŵ  if ( )( ) ( )
( )1

2

tr
14ˆVartr −

−
=

G
w pσ . 

In addition, in the same paper, the following corollaries are presented. 
 
Corollary 1. Any nonsingular ( )1,0pn×∈ΦX  of the form (1) with the diagonal 

covariance matrix of errors G2σ  is called the regular A-optimal biased spring 
balance weighing design for estimation of ŵ  if and only if 

( )( )'
111

1

1
1'

1 4
tr

−−−

−
− += ppp 11IGXGX . 

Corollary 2. In the regular A-optimal biased spring balance weighing design 
( )1,0pn×∈ΦX  of the form (1) with the diagonal covariance matrix of errors G2σ , 

( ) ( )1

2

1 tr
ˆVar −=

G
pw σ , where 1ŵ  is the estimator of the bias. 

 
In the present paper, we construct the regular A-optimal biased spring balance 

weighing design with the covariance matrix of errors G2σ  for G  of the form  
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Suppose further that the design ( )1,0pn×∈ΦX  is partitioned in the same way 
as the matrix G , i.e. we have  

0,,

2

'
1

'
1

≥



















=

−−

−

−

dc

dcn

pdd

pcc

X1
111
001

X .                      (3) 

In the special case 0=c  (or 0=d ), the respective element of the matrix does 
not exist. That way we obtain the Theorem. 
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Theorem 1. Any nonsingular biased spring balance weighing design 
( )1,0pn×∈ΦX  given by (3) with the covariance matrix of errors G2σ , where G  

is given by (2), is the regular A-optimal if and only if 
 

( ) ( ) ( ) ( ) '
11

1
1

1
2

'
2 4

131
4

11
−−−

+−−+
+

−+−+
= ppp

gdgcngdgcn 11IXX ,      (4) 

0,,0, 1 ≥> dcgg . 

Proof. If [ ]''
2

'
1

'
11 X1100X dpcp −−=  then 2

'
2

'
1111

1'
1 XX11XGX += −−

−
ppdg . 

Consequently, in that case ( ) ( ) ( )11tr 1
1 −+−+=− gdgcnG . From the above and 

from Corollary 1, =−
1

1'
1 XGX ( ) ( ) ( )'

111
1

4
11

−−− +
−+−+

ppp
gdgcn 11I . This gives  

=2
'
2XX ( ) ( ) ( ) ( ) '

11
1

1
1

4
131

4
11

−−−
+−−+

+
−+−+

ppp
gdgcngdgcn 11I , 

when 0,,0, 1 ≥> dcgg . Hence the Theorem follows.  
 

It is worth noting that the condition (4) implies that for the matrix 2
'
2XX , 

diagonal elements satisfy the condition ( ) ( ) ( )2mod011 1 ≡+−−+ gdgcn  and 
off-diagonal elements satisfy the condition ( ) ( ) ( )4mod011 1 ≡−+−+ gdgcn . 
Afterwards, we have to determine the matrix 2X  of elements equal to 1 or  0 
which satisfied these conditions. Several methods of construction of the design 
matrix of the optimal spring balance weighing design are presented in the 
literature. Some of them are based on the incidence matrices of known block 
designs, another ones rely on using some algorithms.  

In the following part of the paper we present the problem of constructing a 
regular A-optimal biased spring balance weighing design based on the incidence 
matrix of the balanced incomplete block design. 

3. Regular A-optimal designs 

Here, we present the application of the incidence matrix of balanced 
incomplete block design to the construction of the design matrix ( )1,0pn×∈ΦX  
of the regular A-optimal spring balance weighing design. The balanced 
incomplete block design with the parameters v , b , r , k , λ  is the design where 
we replace v  objects in b  blocks, each of size k . That is why each object occurs 
r  times altogether and each pair of different objects occurs together in λ  blocks. 
For more details see Raghavarao and Padgett (2005). Let us denote by N  the 
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bv×  incidence matrix of the binary incomplete block design.  Then the matrix X  
is shown by the equations 

0,,
'

'

'

≥
















= dc

b

vdd

vcc

N1
111
001

X .                       (5) 

( )1,0pn×∈ΦX in the form (5) is the matrix of the biased spring balance weighing 
design. In this design we determine unknown measurements of 1+= vp  in 

dcbn ++=  measurement operations.  
 
Theorem 2. The biased spring balance weighing design ( )1,0pn×∈ΦX  given by 

(5) with the covariance matrix of errors G2σ , where G  is given by (2) is the 
regular A-optimal if and only if 

)4mod(03 1 ≡−+ dgcgb                  (6) 
and 

12 dgr += λ .                   (7) 
 
Proof. The main idea of the proof is to show that any biased spring balance 
weighing design X  given by (5) with the covariance matrix of errors G2σ , 
where G  is given by (2), is the regular A-optimal if and only if 

'11'

4
3

4 vvv
dgcgbdgcgb 11INN −+

+
++

= , 0, ≥dc , which follows from 

Theorem 1. A ssume the formula ( ) ''
vvvr 11INN λλ +−=  holds, then we obtain 

the equalities (6) and (7) that is our claim. 
 
Theorem 3. If there exists a balanced incomplete block design with the 
parameters v , b , r , k , λ  and the design matrix X  given by (5) is the matrix of 
the regular A-optimal biased spring balance weighing design with the covariance 
matrix of errors G2σ , where G  is given by (2), then 

( )( )

( )( )
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2
1

11
1

1

2
1

2
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11
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34

34
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=
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−+=

++
+−+

=

λλ
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λ

λλ
λλ

.                    (8) 
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Proof. Let us first observe that from (6) and (7) it follows that 12 dgr += λ  and 
cgdgb −+= 134λ . The proof is completed by showing that if the parameters v , 

b , r , k , λ  of the balanced incomplete block design satisfy the conditions 
bkvr =  and ( ) ( )11 −=− krvλ , then v  and k  are given as in (8).  

 
We have seen in Theorem 3 that if the parameters of the balanced incomplete 

block design satisfy the condition (8) then the biased spring balance weighing 
design X  given by formula (5) with the covariance matrix of errors G2σ , where 
G  is given by (2), is the regular A-optimal. The parameters v , b , r , k , λ  must 
be positive integers as the parameters of the balanced incomplete block design. 
From the above reasoning and the condition (8) we obtain the theorem. 
 
Theorem 4. For any positive definite integer λ  and integers 0, ≥dc  the 
parameters v , b , r , k  given by (8) are positive integers if and only if one of the 
following conditions holds: 

(i) 0=d , 0>c , )mod(02 cg≡λ , 
(ii) 0>d , 0=c , )mod(02 1dg≡λ , 

(iii) 0>d , ( )
g

dgc 12 +
=

λ , ( ) )mod(02 1 gdg ≡+λ , 

(iv) cgdg =1 , )mod(0 1dg≡λ . 
 

Proof. It is sufficient to show that from the condition (8) it follows that akv += 2 , 

where ( )( )
2
1

2
1

11

gdcgdg
dgcgdga

++
+−

=
λλ
λ  is such an integer that v  is a positive integer. If 

0=d , 0>c  then 1−=a  and 
cg

k λ2
= . It implies that )mod(02 cg≡λ , i.e. the 

condition (i) is fulfilled. By similar arguments, if 0>d , 0=c  then 1=a  and 

1

21
dg

k λ
+= , and it implies that )mod(02 1dg≡λ , i.e. the condition (ii) holds. If 

0>d , ( )
g

dgc 12 +
=

λ , then ( ) )mod(02 1 gdg ≡+λ , 1−=a , 1=k , which means 

the condition (iii) is true. If cgdg =1  then 0=a  and 
1

1
dg

k λ
+= , it implies 

)mod(0 1dg≡λ . If one of the conditions (i)-(iv) is fulfilled then it is obvious that 
v , b , r , k  are positive integers, which is the desired conclusion. 
 

Based on the theoretical results presented in Theorems 3 and 4 we can 
formulate the following Corollaries.  



STATISTICS IN TRANSITION new series, Spring 2014 

 

323 

Corollary 3. If there exists a balanced incomplete block design with the 
parameters v , b , r , k , λ  and the matrix X  given by (5) is the matrix of the 
regular A-optimal biased spring balance weighing design with the covariance 
matrix of errors G2σ , where G  is given by (2), then  

(i) 12 −= kv , cgb −= λ4 , λ2=r , 
cg

k λ2
=  if 0>c  and ( )cgmod02 ≡λ , 

(ii) 12 += kv , 134 dgb += λ , 12 dgr += λ , 
1

21
dg

k λ
+=  if 0>d  and  

            ( )1mod02 dg≡λ , 

(iii) kv 2= , ( )122 dgb += λ , 12 dgr += λ , 
1

1
dg

k λ
+=  if 0>d  and  

           ( )1mod0 dg≡λ . 
 

Corollary 4. If 0>d , ( )1
12 dggc += − λ , ( ) ( )gdg mod02 1 ≡+λ , then 1== kv , 

12 dgrb +== λ  and 















=

bb

dd

cc

11
11
01

X  is the matrix of the regular A-optimal biased 

spring balance weighing design with the covariance matrix of errors G2σ , where 
G  is given by (2), for two objects. 

 
We have seen in Corollary 3 that if the parameters of the balanced incomplete 

block design are of the form (i)-(iii), then a biased spring balance weighing design 
X , given by (5) with the covariance matrix of errors G2σ , where G  is given by 
(2), is the regular A-optimal. Then we obtain the series of the parameters of the 
balanced incomplete block designs. Based on these parameters we form the 
incidence matrix N  and then the design matrix X .  

 
Corollary 5. Let 0=d  and let N  be the incidence matrix of the balanced 
incomplete block design with the parameters 

(i) 14 −= tv , ( )14 −= tcgb , cgtr 2= , tk 2= , cgt=λ , ,...2,1=t , for odd cg , 

(ii) 12 −= tv , ( )12 −= tcgb , cgtr = , tk = , 
2

cgt
=λ , ,...3,2=t , for even cg , 

then the matrix X  given by (5) is the regular A-optimal biased spring balance 
weighing design with the covariance matrix of errors G2σ , where G  is given 
by (2). 

 
Corollary 6. Let 0=c  and let N  be the incidence matrix of the balanced 
incomplete block design with the parameters 
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(i) 34 += tv , ( )341 += tdgb , ( )121 += tdgr , 12 += tk , tdg1=λ  for odd 1dg , 

(ii) 12 += tv , ( )121 += tdgb , ( )11 += tdgr , 1+= tk , 
2

1tdg
=λ  for even 1dg , 

,...2,1=t , then the matrix X  given by (5) is the regular A-optimal biased spring 

balance weighing design with the covariance matrix of errors G2σ , where G  is 
given by (2). 

 
Corollary 7. Let cgdg =1  and let N  be the incidence matrix of the balanced 
incomplete block design with the parameters ( )12 += tv , ( )122 1 += tdgb , 

( )121 += tdgr , 1+= tk , tdg1=λ , ,...2,1=t , then the matrix X  given by (5) is 
the regular A-optimal biased spring balance weighing design with the covariance 
matrix of errors G2σ , where G  is given by (2). 

4. Example 

Weighing designs can be applied in all experiments in which the experimental 
factors are on two levels. Let us suppose we study four marketing factors: the 
kind of advertisement (television or outdoor), assortment (basic or 
complementary), personal promotion (present or not), sale (directly by producer, 
mail-order). We will study the level of sale of chosen product on the basis on the 
nationwide range. From the statistical point of view, we are interested in 
determining the influences of these factors using sixteen different combinations. 
In the notation of weighing designs we determine unknown measurements of 

5=p  objects in 16=n  measurements, so ( )1,0516×∈ΦX . In order to illustrate 
the theory given above we consider the case that we compare the influence of 
these factors in three different cities. Thus, the variance matrix of errors G2σ  is 

given by the matrix 























=

12
'
31212

'
123312

'
12

'
3

2
3

2
1

I000

00I0

00

G  for 
3
2,2,3,1 1 ==== ggdc . 

Moreover, ( ) 16tr 1 =−G . Then we form the design matrix X  of the form (5) for 
the case 0, >dc . That is why we consider 12 N1N ⊗= , where 1N  is the 
incidence matrix of the balanced incomplete block design with the parameters 
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4=v , 6=b , 2=r , 3=k , 1=λ  given by 




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
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1N . Thus we 

obtain  
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
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X  and 

[ ]'
4441

1'
1 4 11IXGX +=− , i.e. the design X  is the regular A-optimal (see 

Corollary 1). The first column of the design matrix X  responds to the influence 
of a nationwide range, the second one to the kind of advertisement, the third one 
to the influence of the assortment. The next column exposes a p ersonal 
promotion, and finally the kind of sale. The form of the matrix can be interpreted 
in the following sense: the eighth row indicates that we take the nationwide range, 
a basic assortment and a personal promotion. Let us suppose y  be the 116×  

vector of the results of the experiment. Thus ( ) == −−− yGXXGXw 1'11'*ˆ  

y









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
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
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3333333333332226
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15151515151515151515151533315

24
1 . 

5. Discussion 

In the paper, some problems related to A-optimality criterion are presented. 
The special class of experimental designs, i.e. biased spring balance weighing 
designs are considered here. It is not possible to determine a regular A-optimal 
biased spring balance weighing design in any class ( )1,0pn×∈ΦX . Therefore, in 
the literature new construction methods of A-optimal designs have been 
presented. In the most cases the construction of such design is based on the 
incidence matrices of some known block designs. It is worth emphasizing that in 
the regular A-optimal biased spring balance weighing design we are able to 
determine unknown measurements of the object with a minimal average variance. 
From the viewpoint of the experimenters such property is expectable.  
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It is clear that in the case presented in the example, the experimental design 
42  may be used. It should be underlined that, for nIG = , the sum of variances of 

estimators of the vector of unknown parameters in both designs is the same. 
When G  is any positive definite diagonal matrix, the sum of variances of 
estimators of the vector of unknown parameters in the regular A-optimal spring 
balance weighing design is less than the sum of variances of estimators of the 
vector of unknown parameters in the design 42 . 
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27-28 June 2014, Krasiczyn-Arlamow, Poland 

The conference Coherence Policy and the Development of Cross-border Areas 
Along the European Union’s External Border (Polityka spójności a rozwój 
obszarów transgranicznych na zewnętrznej granicy Unii Europejskiej) was held 
in Krasiczyn and Arlamow from 27th to 28th June 2014. The Conference was 
organized by the Central Statistical Office of Poland and the Statistical Office in 
Rzeszow, under the honorary patronage of: Marshal of Podkarpackie Voivodship 
– Wladyslaw Ortyl, Rector of the University of Rzeszow – Prof. Aleksander 
Bobko, Director of the Regional Research Institute of the Ukrainian Academy of 
Sciences – Prof. Vasyl Kravtsiv and Rector of the School of Economics and 
Management of Public Administration in Bratislava – Prof. Viera Cibáková. 

Members of the Conference Scientific Council  
• Prof. Janusz Witkowski – Chairman, Central Statistical Office of Poland.  
• Dr. Marek Cierpial-Wolan – Statistical Office in Rzeszow.  
• Dr Jana Fiserova – University of Staffordshire, Huddersfield, Great Britain. 
• Prof. Vladimir Gozora – Higher School of Economics and Management  

in Public Administration, Slovakia.  
• Prof. Monika Hudakova – Higher School of Economics and Management 

in Public Administration, Slovakia.  
• Dr. Krzysztof Jakobik – Statistical Office in Krakow. 
• Prof. Vasyl Kravtsiv – Institute of Regional Research, Ukrainian Academy 

of Science.  
• Prof. Franciszek Kubiczek – Council of Statistics.  
• Dr. Krzysztof Markowski – Statistical Office in Lublin. 
• Prof. Semen Matkovskyy – State Statistics Service of Ukraine. 
• Prof. Janusz Merski – ALMAMER Higher School, Warsaw. 
• Dr. Marek Mroczkowski – Central Statistical Office of Poland. 
• Prof. Wlodzimierz Okrasa – Central Statistical Office of Poland. 
• Prof. Oleksandr Osaulenko – State Statistics Service of Ukraine. 
• Dr. Tomasz Potocki – University of Rzeszow. 
• Prof. Iva Ritschelová – The Czech Statistical Office.  
• Prof. Vasily Simchera – Russian Academy of Economic Science.  
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• Prof. Grzegorz Slusarz  – University of Rzeszow. 
• Dr. Bogdan Wierzbinski – University of Rzeszow. 
• Prof. Stanislaw Zieba – ALMAMER Higher School, Warsaw. 

 
The Conference was an interdisciplinary venture. Representatives of official 

statistics and the scientific institutions of Poland, Ukraine and Slovakia, as well as 
representatives of political and administrative authorities involved in the regional 
development, attended the conference (a total of about 70 people). Topics 
discussed covered the achievements and experience in research and monitoring of 
the processes of socio-economic development  of cross-border areas, along the 
role of official statistics in the formulation and implementation of territorially 
targeted cohesion policy. 

The Conference was opened by the President of the Central Statistical Office 
of Poland Prof. Janusz Witkowski, followed by a greeting address of Prof. 
Jozefa Hrynkiewicz, Member of the Parliament (Sejm) of the Republic of 
Poland.  

The plenary session was devoted to Monitoring socio-economic processes in 
the border areas in the context of the objectives of cohesion policy. It was led by 
Prof. Grzegorz Slusarz, the Dean of the Faculty of Economics of the University 
of Rzeszow. The opening lecture was delivered by Prof. Janusz Witkowski on 
Transborder statistics in monitoring development, stressing, among others, 
information needs for border areas as a new type of economic space, pointing to 
challenges to the statistics of the border areas and the need for international 
cooperation of statisticians. Then Prof. Oleksandr Osaulenko, President of the 
State Statistics Service of Ukraine, presented the topic Improvement to statistical 
support for monitoring of cross-border cooperation, pointing, in particular, to 
the regional statistics as a source of information for monitoring the effectiveness 
of cross-border cooperation, the challenges of Ukraine's cooperation with the EU 
in the field of regional statistics, or the need for improvement of statistical 
performance cross-border cooperation in order to create a coherent system of 
cross-border statistics. Next, Mr. Juraj Horkay, Vice President of the Statistical 
Office of the Slovak Republic, presented Draft cross-border cooperation, funded 
by the Norwegian Financial Mechanism, which aims to create a statistical system 
for the border regions of Slovakia and Ukraine. 

The plenary session was followed by two parallel panel sessions. First session 
was dedicated to Information needs of the coherence policy in the regional 
approach. It was chaired by Prof. Osaulenko. Second panel session, led by the 
President of the Statistical Council, Prof. Franciszek Kubiczek, was devoted to 
Spatial differentiation of development level alongside the European Union’s 
external border. On the second day of the Conference the third panel session took 
place, which was led by Prof. Witkowski. The session was devoted to The role 
of statistics in monitoring the socio-economic development of cross-border 
areas. 
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Altogether, 22 papers were delivered during the plenary session and three 
panel sessions. The first panel session was opened by Dominika Rogalinska's 
(CSO) presentation Official statistics in monitoring the territorial dimension of 
coherence policy, noting, among other, new challenges facing the official 
statistics, the STRATEG portal, project "Support to the monitoring system of 
cohesion policy" and the role of the CSO in monitoring the cohesion policy in 
financial perspective in the 2014-2020. Then Prof. Wlodzimierz Okrasa, 
Advisor to the President of the CSO, presented a paper on Statistical aspects of 
coherence: Towards a spatial integration of local development indicators. He 
pointed out, among others, information needs of coherence policy in the regional 
approach, the local dimension of cohesion policy and recognition of multifaceted 
character of local development. He also presented the conceptualisation of local 
development and well-being, research on spatial inequalities of local and 
individual welfare as well as the impact of the allocation of development funds to 
reduce local deprivation at the NUTS5 level. Prof. Stanislaw Zieba (Almamer 
University) gave a presentation on Macroeconomic situation in Poland in the 
context of coherence policy for the period 2004-2015. He focused mainly on the 
results of evaluation studies of the impact of EU cohesion funds for the period 
2004-2015, including the study of selected macroeconomic indicators as factors 
affecting the economic and social cohesion of the country. Then Prof. Semen 
Matkovskyi, Advisor to the President of the State Statistics Service of Ukraine, 
presented a paper Development of regional statistics in the context of the 
Ukrainian-Polish cross-border cooperation. The first session was concluded by 
papers on special aspects of cross-border cooperation: Impact of financial and 
economic crisis on the economy of border regions by Prof. Larisa Yaremko and 
Yuliia Poliakova, PhD (Lviv Academy of Commerce), Monitoring of business 
processes in the Euroregion Tatry area using the data of official statistics of 
Poland and Slovakia by Krzysztof Jakobik, PhD (Statistical Office in Krakow) 
and The role of cross-border cooperation in regional development by Ivan 
Ustich, PhD (Foundation for the Development of Cross-Border Cooperation and 
Special Economic Zones, Uzhhorod). 

During the second session Prof. Romuald Polinski (Almamer University) 
and Marian Szolucha, PhD (Vistula University) presented the paper Economic 
development in Poland and Slovakia and the financial crisis in the years 2008-
2013. Another paper presented by Prof. Vladimir Gozora (VSEMVS in 
Bratislava), entitled Economic and social diversity of Polish and Slovakian 
border areas in specific breakdowns, presented the results of research of small 
and medium-sized enterprises in the regions of Nitra, Zilina and Presov, and ideas 
for the development of trans-border cooperation. During the second session the 
following papers were also presented: The role of social development indicators 
in ensuring coherence between border regions of Slovakia and Poland by Prof. 
Monika Hudáková (VSEMVS in Bratislava), Development of entrepreneurship 
in border areas of the Euroregion Bug in the years 2000-2013 by Krzysztof 
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Markowski, PhD (Statistical Office in Lublin), Respect the border by Marek 
Morze (Statistical Office in Olsztyn) and Monitoring of threats to coherence in 
the Polish-Slovakian border area during the European financial crisis in the 
years 2008-2013 by Ewa Gucwa-Lesny, PhD (Almamer University).  

On the second day of the Conference (during the third session) the opening 
lecture on Statistics in stimulating the development of cross-border regions was 
delivered by Prof. Grzegorz Slusarz (University of Rzeszow). He drew attention 
to a need to recognize the complexity of the development processes in the context 
of the use of statistics (broadly defined) as a tool to stimulate the development of 
territorial units with special reference to border areas. Then Prof. Vasyl Kravtsiv 
(Regional Research Institute of the Ukrainian Academy of Sciences) presented a 
paper entitled Problems of information-statistical support for the development of 
the model of administrative-territorial reform of Lviv region as a border region.  
Prof. Franciszek Kubiczek (Statistical Council) in his speech entitled The role 
of the Statistical Council in monitoring the socio-economic processes and 
phenomena observed in cross-border areas, stressed the importance of the work 
carried out by official statistics for the study of border areas. He also presented 
two interesting initiatives on Human Developmet Index in local terms and Doing 
Business. Then Ján Cuper (Statistical Office in Prešov) gave a presentation on 
Tourism in Slovakia and in Prešov region and Roman Fedak (Statistical Office 
in Zielona Gora) shared practical insights in the presentation The role of regional 
statistics in the process of meeting the information needs of coherence policy. 
The experience of SO Zielona Gora.  

At the end of the third session, Maria Jeznach (CSO), Jozef Sobota (NBP) 
and Marek Cierpial-Wolan, PhD (Statistical Office in Rzeszow) together 
presented the subject of Multi-method surveys of travel for the needs of tourism 
statistics, national accounts and balance of payments – the use of multiple 
research methods. M. Cierpiał-Wolan, PhD, pointed out, among other, the effects 
of integration and disintegration of economic processes, presented a coherent 
research system for cross-border areas, which due to the nature of the studied 
phenomena requires the use of different research methods. In turn, M. Jeznach 
stressed, among other, the importance of using these research results in the 
statistics of national accounts and balance of payments and the transnational and 
multidimensional nature of cross-border processes, which results in the need for 
international cooperation to carry out the research. J. Sobota drew attention to the 
essential role of statistics of cross-border areas in the work of the Statistics 
Department of the NBP. In summary of the last presentation Prof. J. Witkowski 
stressed the importance of research conducted jointly by the various institutions, 
in this case, CSO, NBP and MSiT, which provide a wide range of 
methodologically consistent data and to satisfy different needs. 

At the end of the conference the President of the Central Statistical Office 
handed the honorary badges For services for Statistics of the RP to people who 
work for years with the Polish Statistics: Mr. Juraj Horkay, Vice President of 
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the Statistical Office of the Slovak Republic, Prof. Vasyl Kravtsiv, Director of 
the Regional Research Institute of the Ukrainian Academy of Sciences,  
Mrs. Svitlana Zymovina, Director of the Main Statistical Office in Lviv Region. 

The conference was concluded by Prof. Janusz Witkowski as very effective. 
He also emphasized the role and the importance of such meetings. The conference 
provided a platform for presentation of the current state of knowledge and 
innovative research approaches, and allowed to identify directions for further 
research.  

 
 

Prepared by: 

Marek Cierpial-Wolan 
Elzbieta Wojnar 
Statistical Office in Rzeszow 



 

 

E R R A T U M 

The proper title of the paper by Dorota Pekasiewicz published in the previous 
issue of the Statistics in Transition new series (Volume 15, No 1) should read as 
follows: “Application of quantile methods to estimation of Cauchy distribution 
parameters”. Also, appearing in the text the term ‘quintile’ should be replaced by 
‘quantile’.  

We apologize to the Author and to the readers for this error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




